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Abstract This paper is concerned with the approximate solution of
functional differential equations having the form: x′(t) = αx(t) + βx(t −
1) + γx(t + 1). We search for a solution x, defined for t ∈ [−1, k], k ∈ N,
which takes given values on intervals [−1, 0] and (k− 1, k]. We introduce and
analyse some new computational methods for the solution of this problem.
Numerical results are presented and compared with the results obtained by
other methods.
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1 Introduction

The present paper is devoted to the solution of linear functional differential
equations with both delayed and advanced arguments with the form

x′(t) = αx(t) + βx(t − 1) + γx(t + 1). (1)

Such equations are often referred to in the literature as mixed type functional
differential equation (MTFDE) or forward-backward equations. The analysis
of this type of equation has begun comparatively recently and is less devel-
oped compared with other classes of functional equations. Many important
questions remain open. Interest in MTFDEs is motivated by problems in
optimal control (see Ref. [9]) and applications also arise in nerve conduction
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[2], economic dynamics [10] and travelling waves in a spatial lattice [1]. Some
problems about the decomposition of solutions of MTFDEs were investigated
in the works of Mallet-Paret and Verduyn-Lunel [6,7].

In Refs. [3,4], a particular case of (1) is considered, with α = 0. As
remarked in that work, (1) can be reduced to an equation without the term
αx(t) by means of a variable substitution. The authors searched for a solution
of this equation which satisfies the boundary conditions

x(t) =

{
ϕ1(t), t ∈ [−1, 0],

f(t), t ∈ (k − 1, k],
(2)

where ϕ1 and f are smooth real-valued functions, defined on [−1, 0] and (k−
1, k], respectively (1 < k ∈ N). In order to analyse and solve this boundary
value problem (BVP) the authors considered an initial value problem (IVP),
with the conditions

x(t) = ϕ(t), t ∈ [−1, 1], (3)

where the function ϕ is defined by

ϕ(t) =

{
ϕ1(t), t ∈ [−1, 0],

ϕ2(t), t ∈ (0, 1],
(4)

In this case, to solve problem (1)-(2) one needs to determine the function
ϕ2 such that the solution of (1) satisfies the second boundary condition of
(2). This reformulation provides the basis for both analytical and numerical
construction of solutions using ideas based on Bellman’s method of steps for
solving delay differential equations. One solves the equation over successive
intervals of length unity. An initial value problem of the same type was
previously investigated by Iakovleva and Vanegas [5] for a particular case
of (1) (with α = 0, β = γ = 1). Using the same approach, in Ref. [3], an
algorithm was presented for constructing a smooth solution of (1), in the case
α = 0, on the interval [1, k], for any k (provided that the initial function ϕ
satisfies certain conditions). Noting that in this case (1) can be rewritten in
the form

x(t + 1) = ax′(t) + bx(t − 1), (5)

where a = 1/γ, b = −β/γ, the authors have shown that any solution of (5)
which satisfies (4) can be computed using the following formulae:

x(t) =
l−1∑
k=0

γl,2ka2kbl−kϕ(2k)(t − 2l)

+
l−1∑
k=0

γl,2k+1a
2k+1bl−k−1ϕ(2k+1)(t−(2l−1)), t ∈ (2l−1, 2l), (6)

or

x(t) =
l∑

k=0

δl,2ka2kbl−kϕ(2k)(t − 2l)
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+
l−1∑
k=0

δl,2k+1a
2k+1bl−kϕ(2k+1)(t − (2l + 1)), t ∈ (2l, 2l + 1), (7)

l = 1, 2, . . . .
Here, γi,j and δi,j are real coefficients that can be computed recursively.

One can use these formulae to provide basic existence theory.

Theorem 1 [3] The solution to problem (5)-(3) with ϕ ∈ C∞
[−1,1] exists and

is differentiable if and only if

ϕ(n+1)(0) = γϕ(n)(1) + βϕ(n)(−1), n = 0, 1, 2, . . . . (8)

The relationship between the IVP (5)-(3) and the BVP (1)-(2) is complex.
While it is straightforward to determine the BVP corresponding to a given
IVP, the inverse problem is both ill-posed and highly unstable. Indeed, it
may not be possible to solve a given BVP using this method (or at all). In
other words, existence and uniqueness results are available for problem (5)-
(3) but not for problem (1)-(2). One must study the associated numerical
methods with an awareness of the dangers inherent in this observation.

In this paper, we continue the study started in Ref. [3]. Our goal is to
develop new numerical approaches to the solution of problem (1)-(2) and to
provide a comparative analysis of the numerical results.

In Section 2, we revisit the numerical algorithms proposed in Ref. [3] and
describe new approaches, based on collocation and least squares methods.
We also show how to reduce the considered BVP for an MTFDE to a BVP
for an ordinary differential equation (ODE). In Section 3, we give a pre-
liminary error analysis for the algorithm based on the collocation method. In
Section 4, we present and discuss numerical results obtained by the different
methods. Finally, in Section 5 we summarize the conclusions of the work.

2 Numerical methods

2.1 Algorithm proposed by Ford and Lumb [3]
The approach adopted is to use the boundary conditions to provide approxi-
mate initial conditions and then solve the initial value problem to provide a
solution on [1, k − 1].

We introduce the following notation. Fix N ∈ N, h = 1/N and define

yn+N = (xn+N xn+N−1 · · · xn+1 xn · · · xn−N )T,

where xj ≈ x(jh), j = 1, . . . , N. Here x−N , . . . , x0 can be obtained from the
known values of ϕ1(t) while x1, . . . , xN would be obtained from the unknown
function ϕ2. x(k−1)N+1, . . . , xkN may be obtained from values of the function
f.

Discretization of (1) using a θ-method, with h = 1/N, leads to an equation
of the form

yn+N = Ayn+N−1, (9)
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with the block-structured matrix

A =
(

M1 M2

M3 M4

)
,

where M1 takes the form
(

−1 − θ

θ
0 · · · 0

1 − hθα

hθγ

−[1 + h(1 − θ)α]
hθγ

0 · · · 0
−β

γ

)
,

M2 equals
(−β(1−θ)

θγ

)
, M3 is the 2N -dimensional identity matrix and M4 =

(0 · · · 0)T.
Now we use the expression ykN = A(k−1)NyN and the known components

of yN (from ϕ1) and ykN (from f) to determine the unknown components of
yN .

Finally, we can use yN and (9) to find the solution of (1) on [1, k − 1].

2.2 Algorithms based on collocation and least squares method

In this section we will use a generalization of formulae (6)-(7). These were
obtained for the particular case of (1) with α = 0; here we consider the
general case. For the first three subintervals, the formulae for the case α �= 0
can be written as

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aϕ′
2(t − 1) + bϕ1(t − 2) + cϕ2(t − 1), t ∈ (1, 2);

a2ϕ′′
2 (t − 2) + (b + c2)ϕ2(t − 2) + abϕ′

1(t − 3)

+2acϕ′
2(t − 2) + cbϕ1(t − 3), t ∈ (2, 3);

a3ϕ′′′
2 (t − 3) + 3a2cϕ′′

2(t − 3) + (2ab + 3ac2)ϕ′
2(t − 3)

+a2bϕ′′
1(t − 4) + 2abcϕ′

1(t − 4) + (b2 + c2b)ϕ1(t − 4)

+(2cb + c3)ϕ2(t − 3), t ∈ (3, 4),

(10)

where
a =

1
γ

, b = −β

γ
, c = −α

γ
. (11)

Note that in this case formula (8) takes the form

ϕ(n+1)(0) = αϕ(n)(0) + γϕ(n)(1) + βϕ(n)(−1). (12)

Next we search for an approximate solution of (1) on [−1, 1] in the form

x̃d(t) = x0(t) +
d−1∑
j=0

Cjxj(t), t ∈ [−1, 1], (13)

where x0 is an initial approximation of the solution; {xj}0�j�d−1 is a basis
in the space of functions where the correction to the initial approximation is
sought; d is the dimension of this space. The algorithm for computing x̃d can
be described as follows.
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Step 1 From formulae (6)–(8) it follows that if a solution, constructed by
the method of steps, belongs to Cn((l − 1, l]) (for certain l � 1, n � 1),
then it also belongs to Cn−1((l, l + 1]). Therefore, since we want x̃d to be at
least continuous on [−1, k] (for a certain k � 2), we require that x0 belong to
Ck((−1, l]). With this in mind, we define x0 on [−1, 1] in the following way:

x0(t) =

{
ϕ1(t), t ∈ [−1, 0];

P2k(t) = a0 + a1t + · · · + a2kt2k, t ∈ [0, 1].
(14)

Since x0 must be k times continuously differentiable on (−1, 1], it must satisfy
the following conditions at t = 0:

P2k(0) = ϕ1(0); P
(j)
2k (0) = ϕ

(j)
1 (0), j = 1, ..., k. (15)

On the other hand, in order to satisfy (12) with n = 0, 1, . . . , k − 1, the
following equalities must hold:

P2k(1) = aϕ′
1(0) + bϕ1(−1) + cϕ1(0);

P
(j)
2k (1) = aϕ

(j+1)
1 (0) + bϕ

(j)
1 (−1) + cϕ

(j)
1 (0), j = 1, ..., k − 1.

(16)

Here,

a =
1
α

, b = −β

α
, c = − γ

α
.

Conditions (15) and (16) define a linear system of 2k+1 equations with 2k+1
unknowns. It is possible to show that this system has a nonsingular matrix
for any k � 2.

Further, x0 is extended from [−1, 1] to [−1, k] using the recurrence
formulae (10). Let us denote this extension by x

[−1,k]
0 .

Step 2 With the purpose of computing a correction to the initial approx-
imation on [0, k], we first consider this correction on [0, 1]. Let us define a
grid of stepsize h on this interval. Let h = 1/N (N ∈ N, N � k + 1)
and ti = ih, i = 0, . . . , N. The correction x̃d(t) − x0(t) on [0, 1] will be
sought as a k-th degree spline, Sk(t), defined on this grid, which satisfies
Sk(0) = Sk(1) = 0. As usual, we will use as basis functions xj(t), the so-
called B-splines of degree k. Following the usual definition (for details see
Ref. [8]), we have

xj(t) =
1
hk

∆k+1(t − tj)k
+, j = 0, . . . , N − k − 1, (17)

where ∆k represents a k-th order forward difference (with respect to tj) and

(t − tj)+ =

{
0, t < tj ;

t − tj , t � tj .

From the definition it follows that the basis functions have the following
properties:
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• xj ∈ Ck−1[0, 1];
• xj(t) is different from zero only in (tj , tj+k+1).
• xj(t) is a polynomial of degree k on each interval [ti, ti+1], i = 0, . . . , N−

1.

Note that we have N − k functions xj with these properties; therefore, we
set d = N − k.

The case of k = 3 (cubic B-splines) will be analysed in more detail in
Section 3.

Next, the basis functions are extended to the interval [0, k] using the
method of steps. Let us denote the extended basis functions by x

[0,k]
j . Each

time we extend the basis function to the next interval, the degree of the splines
decreases by 1 unit. Therefore, on the interval [k−1, k] the basis functions are
1st degree splines (continuous but not continuously differentiable functions).
On the whole interval [−1, k], the approximate solution is given by

x̃d(t) = x
[−1,k]
0 (t) +

N−k−1∑
j=0

Cjx
[0,k]
j (t), t ∈ [−1, k]. (18)

Step 3 Finally, we compute the coefficients Cj , j = 0, . . . , N − k − 1, of
expansion (18) from the condition that x̃d approximates f on the interval
(k − 1, k]. Two alternative methods were used for this purpose.

(i) Collocation Method.
In this case, the coefficients are obtained from the condition

x̃d(t(k−1)N+i) = x
[−1,k]
0 (t(k−1)N+i) +

N−k−1∑
j=0

Cjx
[0,k]
j (t(k−1)N+i)

= f(t(k−1)N+i), i = imin, . . . , imax, (19)

where

imin =

{
(k + 1)/2, k is odd,

k/2, k is even;
imax =

⎧⎪⎨
⎪⎩

N − k + 1
2

, k is odd,

N − k

2
− 1, k is even.

Equations (19) form a linear system with an (N − k) × (N − k) band
matrix. This system can be solved by standard methods.

(ii) Least Squares Method.
In this case, the coefficients Cj are obtained from the condition that the

following integral is minimized:

∫ k

k−1

(
f(t) − x

[−1,k]
0 (t) −

N−k−1∑
j=0

Cjx
[0,k]
j (t)

)2

dt.

Given the form of the basis functions, this method leads us to the solution
of a system of N − k linear equations with a band matrix.
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2.3 Reducing to an ODE

On the interval [−1, 1] the solution of (1)-(2) can be written in the form

x(t) = x0(t) + u(t), t ∈ [−1, 1], (20)

where x0 is defined by (14); u is a correction that we want to compute.
First of all, note that u(t) ≡ 0, ∀ t ∈ [−1, 0] (otherwise, x does not

satisfy the first boundary condition). Therefore, if we define u on (0, 1], we
can extend it to the whole interval [−1, k] using the method of steps. Let
us denote as u[−1,k] the extension of u(t) to the interval [−1, k]. We shall
now express u[k−1,k](t) in terms of u(t). From (1), taking into account that
u(t) ≡ 0, for t ∈ [−1, 0], we obtain

u[−1,k](t) = au′(t − 1) + cu(t − 1), t ∈ (1, 2], (21)

where a and b are defined by (11). In the same way, u[k−1,k](t) can be
extended to the interval (2, 3] :

u[−1,k](t) = a(u[−1,k])′(t − 1) + bu[−1,k](t − 2) + cu[−1,k](t − 1). (22)

From (21) and (22) we conclude that

u[−1,k](t) = a2u′′(t − 2) + 2acu′(t − 2) + (b + c2)u(t − 2), t ∈ (2, 3]. (23)

Continuing this process, we can define u[−1,k](t) through u(t), on any interval
(l − 1, l], by an equation of the form

u[−1,k](t) = cl−1,ku(l−1)(t − l + 1) + cl−2,ku(l−2)(t − l + 1)

+ · · · + c0,ku(t − l + 1), t ∈ (l − 1, l]. (24)

Here cij are coefficients that can be computed recursively, just as the δij and
γij coefficients in the right-hand side of (6) and (7). In particular, on the
interval (k − 1, k] , we obtain

u[−1,k](t) = Lk−1u(t − k + 1)

:= ck−1,ku(k−1)(t−k+1)+· · ·+c0,ku(t−k+1), t ∈ (k−1, k]. (25)

Here, Lk−1 denotes a linear differential operator of order k − 1.
Notice that x0 can also be extended to the interval [−1, k], using the

method of steps. Let us denote by x
[−1,k]
0 the extension of x0 to this interval.

Then we conclude that x satisfies

x(t) = x
[−1,k]
0 (t) + u[−1,k](t)

= Lk−1u(t − k + 1) + x
[−1,k]
0 (t), t ∈ [k − 1, k]. (26)

Now, since x must satisfy the second boundary condition in (2), we conclude
that

Lk−1u(t − k + 1) + x
[−1,k]
0 (t) = f(t), t ∈ [k − 1, k], (27)
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or equivalently

Lk−1u(t) = f(t + k − 1) − x
[−1,k]
0 (t + k − 1), t ∈ [0, 1]. (28)

Moreover, since u(t) = x(t)−x0(t), ∀ t ∈ [0, 1], and P2k satisfies (15)-(16), we
conclude that u ∈ Ck([0, 1))∩Ck−1(1) and the following boundary conditions
must be satisfied:

u(0) = u′(0) = · · · = u(k)(0) = 0,

u(1) = u′(1) = · · · = u(k−1)(1) = 0.
(29)

The number of boundary conditions in (29), (2k + 1), is higher than the
order of the considered ODE (28). Therefore, there may not exist a solution
of (28) which satisfies all the conditions (29). This is not surprising, since
the existence of a solution to the original boundary value problem (1)-(2) is
also not guaranteed (as discussed in Ref. [3]).

Hence, when solving problem (28)-(29), one has to keep only k − 1
conditions and ignore the remaining ones. If k − 1 is even, we consider
(k − 1)/2 boundary conditions at each end; if k − 1 is odd, we consider k/2
conditions at t = 0 and k

2 − 1 at t = 1. Let us call the obtained boundary
value problem (with k − 1 boundary conditions) the reduced BVP.

For example, in the case k = 3, (28) is a second order ODE and the
reduced BVP has two boundary conditions: u(0) = 1, u(1) = 0. The obtained
BVP can then be solved by standard numerical methods, for example, the
collocation method with a basis of cubic B-splines.

2.4 Error analysis

2.4.1 ODE Approach
When the original problem (1)-(2) is reduced to a BVP by the method
described in the previous subsection, we have to compute an approximate
solution of (28) which satisfies certain boundary conditions on [0, 1]. This
can be otained, for example, by the collocation method, using a basis of
splines of appropriate order. We shall restrict our error analysis to the case
k = 3. In this case, we have to solve a BVP for a second order ODE and, if f
is at least 4 times continuously differentiable, we have the following estimate
for the error norm (see, for example, Ref. [8]):

‖u(N)(t) − u(t)‖∞ � Bh2,

where u(N) is the obtained approximate solution with N basis functions and
B is a constant that does not depend on h. This result applies to the interval
[0, 1], where u is defined. On the interval [1, k−1] this estimate is not valid and
the convergence order may in principle be lower. However, as we will see in
Section 4, the numerical experiments indicate that second order convergence
can be attained in all of the domain.
2.4.2 Method of steps approach
Let us now turn our attention to the collocation method, described in Sec.
2.2. In this case the error analysis is much more complicated. Focusing our
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attention on the case k = 3, we note that when we solve the linear system
(19), we are approximating the solution x on the interval [2, 3] by a certain
function x̃N which does not have the same properties as the cubic splines,
defined on [0, 1]. Actually, taking into account formula (10), used to extend
the basis functions, x̃N is piecewise polynomial of the third degree and does
not belong to C2; it is just a continuous function. As far as we know, there
are no available results on the convergence of collocation methods with basis
functions of this kind. So the error analysis of the proposed method is still
an open question that we intend to investigate in the future. The obtained
numerical results, presented in Section 4, suggest that the method converges,
though its convergence order is lower than in the case of the ODE approach.

3 Numerical results and comparison of methods

In order to analyse the performance of the described numerical methods, we
have considered the following MTFDE:

x′(t) = (m − 0.5e−m − 0.5em)x(t) + 0.5x(t − 1) + 0.5x(t + 1), (30)

with the boundary conditions (2):

φ1(t) = emt, t ∈ [−1, 0]; f(t) = emt, t ∈ (k − 1, k].

The exact solution is x(t) = emt. This example was also considered in
Ref. [3] for some different values of m.

The choice of basis functions depends on k. As an example, let us describe
the case k = 3. In this case, we search for an approximate solution in form
(13), where x0 satisfies

x0(t) =

{
emt, t ∈ [−1, 0];

P6(t) = a0 + a1t + a2t
2 + · · · + a5t

5 + a6t
6, t ∈ [0, 1].

Since x0 and its first three derivatives must be continuous at t = 0, we obtain

a0 = 1, a1 = m, a2 = m2/2, a3 = m3/6.

The remaining coefficients are obtained from conditions

P6(1) = aφ′
1(0) + bφ1(−1) + cφ1(0) = a + b e−1 + c,

P ′
6(1) = aφ′′

1 (0) + bφ′
1(−1) + cφ′−1

1 + c,

P ′′
6 (1) = aφ′′′

1 (0) + bφ′′
1 (−1) + cφ′′−1

1 + c.

The basis functions xi(t), i = 0, . . . , N − k − 1, in this case are the well-
known cubic B-splines.

Next we present the results of some numerical experiments. In Table 1 we
present the results obtained by the least squares method in the case k = 4.
The numerical results suggest that the convergence order of the method is
p = 0.5, for different values of m (in the 2-norm).
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Table 1 Error ε on [0,2] and convergence order p obtained by the least squares
method for k = 3 and m = −0.5, 0.6, 3 (ε = h‖x − x̃d‖2/(k − 1))

i step hi m = −0.5 m = 0.6 m = 3

ε p ε p ε p

1 1/8 9.5247 × 10−9 5.2519 × 10−8 2.8279 × 10−2

2 1/16 6.7022 × 10−9 0.51 3.7075 × 10−8 0.50 1.8448 × 10−2 0.62
3 1/32 4.7348 × 10−9 0.50 2.6214 × 10−8 0.50 1.2804 × 10−2 0.53
4 1/64 3.3473 × 10−9 0.50 1.8536 × 10−8 0.50 9.0123 × 10−3 0.51
5 1/128 2.3668 × 10−9 0.50 1.3107 × 10−8 0.50 6.3654 × 10−3 0.50

Tables 1 and 2 illustrate the application of the collocation and least
squares methods, described in Section 2.2, to equation (30), in the case k = 3.
In both cases, the estimated convergence order is close to 0.5. The error norm
is lower in the case of the collocation method.

Table 2 Error ε on [0,2] and convergence order p obtained by the collocation
method for k = 3 and m = −0.5, 0.6, 3 (ε = h‖x − x̃d‖2/(k − 1))

i step hi m = −0.5 m = 0.6 m = 3

ε p ε p ε p

1 1/8 2.0367 × 10−9 1.2200 × 10−8 2.3550 × 10−3

2 1/16 7.8305 × 10−10 1.38 4.6304 × 10−9 1.40 1.1040 × 10−3 1.09
3 1/32 5.2024 × 10−10 0.59 3.0491 × 10−9 0.60 7.6923 × 10−4 0.52
4 1/64 3.6656 × 10−10 0.51 2.1467 × 10−9 0.51 5.4371 × 10−4 0.50
5 1/128 2.5914 × 10−10 0.50 1.5176 × 10−9 0.50 3.8445 × 10−4 0.50

The results obtained by the same methods in the case when k = 4 are
displayed in Tables 3 and 4. It is interesting to remark that in the case of

Table 3 Error ε on [0,3] and estimated convergence order p obtained by the least
squares method for k = 4 and m = −0.5, 0.6, 3 (ε = h‖x − x̃d‖2/(k − 1))

i step hi m = −0.5 m = 0.6 m = 3

ε p ε p ε p

1 1/8 1.3361e − 7 6.9579e − 7 2.2567e − 1

2 1/16 7.0260e − 8 0.93 3.8791e − 7 0.84 2.1589e − 1 0.06
3 1/32 4.5664e − 8 0.62 2.5652e − 7 0.60 1.5093e − 1 0.51
4 1/64 3.1657e − 8 0.53 1.7863e − 7 0.52 1.0587e − 1 0.51
5 1/128 2.2332e − 8 0.50 1.2611e − 7 0.50 7.4702e − 1 0.50

Table 4 Error ε on [0,3] and estimated convergence order p obtained
by the collocation method of Sec. 2.2 for k = 4 and

m = −0.5, 0.6, 3 (ε = h‖x − x̃d‖2/(k − 1))

i step hi m = −0.5 m = 0.6 m = 3

ε p ε p ε p

1 1/8 5.7351e − 8 3.3729e − 7 1.1459e − 1

2 1/16 2.2176e − 8 1.37 1.3422e − 7 1.33 2.0082e − 2 1.54
3 1/32 7.9488e − 9 1.48 4.8700e − 8 1.46 1.3571e − 2 1.54
4 1/64 2.8136e − 9 1.50 1.7338e − 8 1.49 4.6936e − 3 1.53
5 1/128 1.0031e − 9 1.49 6.1928e − 9 1.49 1.6495e − 3 1.51
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the collocation method the estimated convergence order is higher in the case
when k = 4 (about 1.5) than when k = 3. The same does not happen with
the least squares method.

Some of the results obtained by the method described in Sec. 2.3 are
displayed in Table 5. The convergence order is p = 2 (in the maximum
norm), which is in agreement with the theoretical estimates given in Section
2.4.1.

Table 5 Error ε on intervals [j, j + 1] and estimated convergence
order p obtained by the collocation method of Sec. 2.3

for k = 3 and m = 1 (ε = h‖x − x̃d‖∞/(k − 1))

i step hi [0, 1] [1, 2]

ε p ε p

1 1/8 5.1105e − 7 4.6405e − 6

2 1/16 1.2436e − 7 2.04 9.9905e − 7 2.22
3 1/32 3.0106e − 8 2.05 2.3445e − 7 2.09
4 1/64 7.3718e − 9 2.03 5.7268e − 8 2.03
5 1/128 1.8223e − 9 2.02 1.4156e − 8 2.02

Finally, in Tables 6 and 7, numerical results obtained by different methods
are displayed, for comparison. The collocation methods of Sections 2.2 and
2.3 are compared with the θ-method in Table 6 (case k = 3); the least squares
method and the collocation method of Section 2.3 are compared with the θ-
method in Table 7 (case k = 4). In these tables, we have considered only the
error norm ‖ ·‖2 on [0, 1], so that the results could be compared with those in
Ref. [3]. In Table 6 (case k = 3), the collocation method of Section 2.3 has

Table 6 Error ε on [0, 1] and estimated convergence order p obtained by three
methods: collocation method of Sec. 2.2, collocation method of Sec. 2.3 and

θ-method, for k = 3 and m = −0.5, 0.6, 3 (ε = h‖x − x̃d‖2)

Collocation (Sec. 2.2)
i step hi m = −0.5 m = 0.6 m = 3

ε p ε p ε p

1 1/16 7.830e − 10 1.38 4.630e − 9 1.40 1.104e − 3 1.09

2 1/32 5.202e − 10 0.59 3.049e − 9 0.61 7.692e − 4 0.52
3 1/64 3.666e − 10 0.50 2.147e − 9 0.51 5.437e − 4 0.50

Collocation (Sec. 2.3)
i step hi m = −0.5 m = 0.6 m = 3

ε p ε p ε p

1 1/16 6.291e − 11 2.61 4.156e − 10 2.53 2.216e − 5 3.26

2 1/32 1.041e − 11 2.60 7.109e − 11 2.55 2.585e − 6 3.10
3 1/64 1.767e − 12 2.56 1.230e − 11 2.53 3.627e − 7 2.83

θ-Method (Sec. 2.1)
i step hi m = −0.5 m = 0.6 m = 3

ε p ε p ε p

1 1/16 1.483e-5 2.04 8.896e − 5 2.08 1.568e − 2 2.12

2 1/32 3.654e − 6 2.02 2.164e − 5 2.04 3.752e − 3 2.06
3 1/64 9.067e − 7 2.01 5.328e − 6 2.02 9.168e − 4 2.03
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Table 7 Error ε on [0, 1] and estimated convergence order p obtained by three
methods: least squares method, collocation method of Sec. 2.3 and θ-method, for

k = 4 and m = −0.5, 0.6, 3 (ε = h‖x − x̃d‖2)

Least squares (Sec. 2.2)
i step hi m = −0.5 m = 0.6 m = 3

ε p ε p ε p

1 1/16 1.466e − 9 0.50 8.585e − 9 0.50 2.175e − 3 0.50

2 1/32 1.037e − 9 0.50 6.070e − 9 0.50 1.538e − 3 0.50
3 1/64 7.330e − 10 0.50 4.292e − 9 0.50 1.087e − 3 0.50

Collocation (Sec. 2.3)
i step hi m = −0.5 m = 0.6 m = 3

ε p ε p ε p

1 1/16 2.040e − 10 6.30 1.9221e − 9 1.02 2.1035e − 4 1.83

2 1/32 9.3835e − 11 1.12 8.7412e − 10 1.31 5.9285e − 5 1.83
3 1/64 3.7585e − 11 1.41 3.5275e − 10 1.31 1.7756e − 5 1.74

θ-Method (Sec. 2.1)
i step hi m = −0.5 m = 0.6 m = 3

ε p ε p ε p

1 1/16 1.026e − 5 2.04 1.266e − 4 2.08 2.364e − 2 2.12

2 1/32 2.532e − 6 2.02 3.075e − 5 2.04 5.656e − 3 2.06
3 1/64 6.356e − 7 2.00 7.577e − 6 2.02 1.382e − 3 2.03

the highest convergence order (the estimates suggest that p = 1.5). In Table
7 (case k = 4), the estimated convergence order of the collocation method,
described in Sec. 2.3, becomes less than the order of the θ-method (which is
2 in both cases). In spite of this, the error norm of the collocation method,
for the considered stepsizes (1/64 � h � 1/16), is the lowest.

The graphs of the absolute error for the case k = 3, m = 3 are displayed
in Fig. 1 (by the collocation method of Sec. 2.2) and in Fig. 2 (by the
collocation method of Sec. 2.3). The graphs of the absolute error for the
case k = 4, m = 1 are displayed in Fig. 3 (by the collocation method of Sec.
2.2) and in Fig. 4 (by the collocation method of Sec. 2.3).

Fig. 1 Collocation (Sec. 2.2) k = 3, m = 3
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Fig. 2 Collocation (Sec. 2.3) k = 3, m = 3

Fig. 3 Collocation (Sec. 2.2) k = 4, m = 1

Fig. 4 Collocation (Sec. 2.3) k = 4, m = 1

As expected, the graphs show that the errors grow on each subinterval
[l − 1, l], compared with the previous one. Moreover, at each integer point
the error is zero, since the numerical methods produce the exact solution at
these points.
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4 Conclusions and future work

The proposed computational methods have produced accurate numerical
results when applied to the solution of equation (30), with different values
of m. Concerning the methods as described in Section 2.2, the algorithm
based on collocation has a higher convergence order than the one based on
the least squares. The θ-method has greater absolute error (in the 2-norm),
when applied with stepsize greater than or equal to h = 1/64. However, it
has a higher order of convergence (p = 2). Finally, the method described in
Section 2.3, based on the reduction of the MTFDE to an ODE, seems to
be the most efficient, providing second order convergence and giving results
with absolute error, less than 10−7, for h = 1/64, when k = 3 and m = 1.

In the future, we intend to carry out a more detailed numerical analysis of
the presented methods. We also intend to use the ODE approach described
in Section 2.3, to investigate the existence and uniqueness of the solution of
the considered problem.
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