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Abstract We discuss the nature of complex num-
ber and its effect on complex-valued neural networks
(CVNNs). After we review some examples of CVNN
applications, we look back at the mathematical his-
tory to elucidate the features of complex number, in
particular to confirm the importance of the phase-
and-amplitude viewpoint for designing and construct-
ing CVNNs to enhance the features. This viewpoint is
essential in general to deal with waves such as electro-
magnetic wave and lightwave. Then, we point out that,
although we represent a complex number as an ordered
pair of real numbers for example, we can reduce inef-
fective degree of freedom in learning or self-organization
in CVNNs to achieve better generalization characteris-
tics. This merit is significantly useful not only for wave-
related signal processing but also for general processing
with frequency-domain treatment through Fourier trans-
form.

Keywords electromagnetic wave, lightwave, coher-
ence, adaptive processing in sensing and imaging, learn-
ing logic, neural hardware

1 Introduction

Complex-valued neural networks (CVNNs) [1–6] extend
the application fields steadily. We have various appli-
cation systems employing CVNNs in the field of, for
example, ultrasonic fault detection to find defects in
metals and other materials [7], blind separation based
on principal component analysis (PCA) in sonar [8] and
voice processing [9], radars including ground penetrating
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radars to visualize plastic landmines [10–15] and satel-
lite radars to estimate landscape information [16] and/or
land-use classification [17], blur-compensation image
processing [18], filtering and other time-sequential sig-
nal processing [19,20], frequency-domain multiplexed
(FDM) microwave signal processing [21] and pulse
beamforming in ultra-wideband (UWB) communica-
tions [22], FDM neural networks and learning logic cir-
cuits using lightwave [4,23–25] and fast adaptive three-
dimensional holographic movie generation for optical
tweezers [26,27], and developmental learning of motion
control in combination with reinforcement learning [28].
In parallel, general associative memories [29] and in-
dependent component analysis (ICA) neural networks
[30�31] are also making progress in their improvement.

In the case of linear processing with a simple network
structure, we often use the complex-valued least mean
square (LMS) algorithm [32]. Neural networks, in gen-
eral, conduct nonlinear processing. Regarding the non-
linearity to be employed, we have a series of discussions
including several milestone papers [33]. The pros and
cons of respective nonlinearities basically depend on the
nature of the signal to be treated. We often deal with
wave-related complex signals [1,3]. When we observe
a wave signal by using coherent detection, or a base-
band complex signal generated through Hilbert trans-
form, we obtain the complex amplitude, i.e., the phasor,
inevitably. The CVNNs are compatible with such wave
phenomena. This is the most significant feature of the
CVNNs. Actually, in the very early stage of the CVNN
research, a pioneering idea and a basic experiment was
reported concerning this important feature. That is, in
1992, M. Takeda and T. Kishigami [34] pointed out the
fact that the electromagnetic field in a phase-conjugate
resonator is formulated in the same manner as that of an
associative memory, and that the resonant system real-
izes a quite fast recall. In this case, the limitation in the
energy supply causes amplitude saturation, which real-
izes the neural nonliearity in the signal amplitude in a
natural way.

In such wave information processing or wave control,
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it is essentially important to deal directly with phase
(or phase difference) and amplitude. The reason lies in
the facts that the amplitude corresponds to the wave en-
ergy (e.g., number of photons of lightwave), and that the
phase difference represents time course and/or position
change. From this viewpoint, the so-called amplitude-
phase-type nonlinearity is consistent with wave [1,4,33],
as is often the case in signal processing widely in elec-
tronics.

In this paper, with such application background, we
examine what gives rise to the merits of the CVNN. As a
result, we find that the weight multiplication at synapses
yields the phase rotation as well as the amplitude am-
plification or attenuation. This type of multiplication re-
duces ineffective degree of freedom in the learning or self-
organization to enhance the generalization characteris-
tics in comparison with double-dimensional real-number
networks, in spite of the fact that a complex number can
be represented as an ordered pair of real numbers. The
network dynamics consisting of this elemental rotation
and amplification/attenuation leads to significant mer-
its in total, originating from the consistency with the
wave-related phenomena and information.

2 Application examples of CVNNs

In this section, we review two examples of applications of
feedforward CVNNs to provide the readers with physical
picture of wave-related systems. One example is a light-
wave learning logic circuit in which the logic functions
are variable depending on optical frequency. In other
words, it is a FDM logic circuit.

Figure 1 shows the basic idea of the frequency multi-
plexed learning logic circuit [24]. This logic utilizes the
ultra-wide frequency band of optics based on the FDM.
For example, a learning optical element works as an
AND logic gate at a certain optical frequency, but as

an XOR at another frequency. We employ a frequency-
dependent learning process based on steepest-descent
and backpropagation learning in CVNNs [1,4,21].

Fig. 1 Basic idea of the frequency-controlled optical learning
logic circuit [24]

Figure 2 shows the experimental setup where we use
a spatial light modulator (SLM) as a signal and weight
generator. Figure 3 displays learning results showing the
logic outputs for continuous input signals. We can ob-
tain a set of results, AND and XOR, as we intended,
with natural generalization characteristics. We can also
estimate the realizable logic density in the frequency do-
main [25]. Figure 4 illustrates that such a FDM learning
logic circuit can be equivalent with a number of con-
ventional logic. This feature realizes a high flexibility in
hardware in the future.

Besides the context mentioned above, coherent neu-
ral hardware will increase its significance gradually and
steadily also from the viewpoint of quantum electron cir-
cuits. Modern microelectronics pursues ultimate minia-
turization. The nano-electronics subjects to stochastic-
ity both in space and in time. We can no longer say
that a bit is 1 or 0 definitely. This fact leads to a fail-
ure of bit processing, i.e., symbol processing. We have
inevitably to shift ourselves into the framework of pat-
tern processing, which is represented by neural networks.

Fig. 2 Optical setup with two optical-path difference neural circuits [24]
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Fig. 3 Experimental results. (a) Input generalization characteristic at f=f1 (AND); (b) input generalization characteristic
at f=f2 (XOR); (c) frequency-domain generalization characteristics (see detailed parameters in Ref. [24])

Fig. 4 Conceptual illustration of neuron cascading architecture. (a) Flexibility in functional category and combination;
(b) wavelength multiplexed optical processor operation compared to multiple-CPU electrical circuit [24]
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Fig. 5 Schematic diagram of CGH and coherent neural network. (a) Schematic diagram of CGH; (b) coherent neuron
with multiple input connections [26]

Furthermore, when we make progress into subnanometer
electronics, we also face to the quantum nature of elec-
trons more explicitly, where the wave phenomena play
significantly important roles. Consequently, the coher-
ent neural networks can become the most fundamental
framework of information processing hardwre.

The second example is an application in computer-
generated hologram (CGH) aiming at three-dimensional
movie (3D-movie) applications such as optical tweezers
in biology. Figure 5(a) shows a schematic illustration
of carrier frequency-dependent CGH, in which the SLM
yields a frequency-variable image as a reconstructed
lightwave. That is, the SLM generates a movie, a se-
ries of images, when we change the optical frequency.
A computer generates such a frequency-dependent CGH
through calculation. However, the calculation cost of-
ten becomes very high since we have a number of frames
(images) per second. To reduce the cost, we employ a co-
herent neural network shown in Fig. 5(b) to interpolate
the frames by utilizing the generalization nature [26].

The coherent neural network learns the delay and
transmittance of the neural connections. After a learning
process at a set of sparse frequency points, the network
generates interpolating images, thanks to the neural gen-
eralization ability in the optical frequency domain. In
other words, the generalization ability reduces the num-
ber of the learning points.

Figure 6 shows (upper in each black panel at time
t) an example of a series of master and interpolating

CGHs with (lower) reconstructed image showing a mov-
ing sharp spot. We found that the image quality is high
enough in spite of the drastically reduced calculation
cost. A resulting movie is available in Ref. [26]. Meth-
ods to improve the quality of such neural CGH were also
reported [27].

3 What is the complex number?

3.1 Geometric and intuitive definition

In the old days history, the definition of the complex
number changed gradually [35]. In the 16th century, Car-
dano tried to work with imaginary roots in dealing with
quadratic and cubic equations. Afterward, Euler used
complex numbers in his calculations intuitively and cor-
rectly. It is said that by 1728 he knows the transcen-
dental relationship i log i = −π/2. The Euler formulae
appear in his book as

cosx =
eix + e−ix

2
and sin x =

eix − e−ix

2i
. (1)

It is also believed that, in early 1749, Euler already had a
visual concept of complex numbers as points of plane. He
described a number x on a unit circle as x = cos g+i sin g

where g is an arc of the circle. In 1798, Wessel described
representation of the points of a plane by complex
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Fig. 6 Simulation result of interpolation when a single point is intended to move on an arc. In each image: (Upper) CGH
phase images in gray scale, and (Lower) brightness on screen. Underlined time t in the movie: learning points tp in time.
(See details in Ref. [26])

numbers to deal with directed line segments. Argand also
interpreted

√−1 as a rotation through a right angle in
the plane, and justified this idea on the ground that two√−1 rotations yields a reflection, i.e., −1. Gauss was in
full possession of the geometrical theory by 1815. Fur-
thermore, he proposed to call +1, −1, and

√−1 as di-
rect, inverse, and lateral unity, instead of positive, nega-
tive, and imaginary or “impossible” elements, to enhance
the substantiality of imaginary number.

3.2 Definition as ordered pair of real numbers

The geometrical representation is intuitively simple and
visually understandable, but may be weak in strictness.
In 1835, Hamilton presented the formal definition of the
complex number as an “ordered pair of real numbers”,
which also led to the discovery of quaternions, in his ar-
ticle entitled “Theory of conjugate functions, or algebra
as the science of pure time”. He defined addition and
multiplication in such a manner that the distributive,
associative, and commutative laws hold. The definition
as the ordered pair of real numbers is algebraic, and can
be stricter than the intuitive rotation interpretation.

At the same time, the fact that a complex number

is defined by two real numbers may lead present-day
neural-network researchers to consider a complex net-
work equivalent to just a doubled-dimension real-number
network in essence. However, in this paper, the authors
would like to clarify the merit by focusing on the rota-
tional function even with this definition.

Based on the definition of the complex number as an
ordered pair of real numbers, we represent a complex
number z as

z ≡ (x, y), (2)

where x and y are real numbers. Then, the addition and
multiplication of z1 and z2 are defined in complex do-
main as

(x1, y1) + (x2, y2) ≡ (x1 + x2, y1 + y2), (3)

(x1, y1) · (x2, y2) ≡ (x1x2 − y1y2, x1y2 + y1x2). (4)

As a reference, the addition and multiplication (as a step
in the calculation of inner product, for example) of two-
dimensional real values is expressed as

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), (5)

(x1, y1) · (x2, y2) = (x1x2, y1y2). (6)

In the comparison, the addition process is identical. Con-
trarily, the complex multiplication seems quite artificial,
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but this definition (4) brings the complex number with
its unique function, that is, the angle rotation, as well as
amplitude amplification/attenuation, which are the re-
sult of the intermixture of the real and imaginary com-
ponents.

It is easily verified that the commutative, associative,
and distributive laws hold. We have the unit element
(1, 0) and the inverse of z (�= 0), which is

z−1 ≡
(

x

x2 + y2
,

−y

x2 + y2

)

=
(

x

|z|2 ,
−y

|z|2
)

, (7)

where |z| ≡
√

x2 + y2.

3.3 Real 2×2 matrix representation

We can also use real 2×2 matrices, instead of the or-
dered pairs of real numbers, to represent complex num-
bers [35,36]. With every complex number c = a + ib, we
associate the C-linear transformation

Tc : C → C, z �→ cz = ax − by + i(bx + ay), (8)

which includes a special case of z → iz that maps 1 into
i, i into −1, ..., with a rotation with right angle each. In
this sense, this definition is a more precise and general
version of Argand’s interpretation of complex numbers.
If we identify C with R2 by

z = x + iy =

(
x

y

)
, (9)

it follows that

Tc

(
x

y

)
=

(
ax − by

bx + ay

)

=

(
a −b

b a

)(
x

y

)
. (10)

In other words, the linear transformation Tc determined

by c = a + ib is described by the matrix

(
a −b

b a

)
.

Generally, a mapping represented by a 2×2 matrix is
non-commutative. However, in the present case, it be-
comes commutative. By this real matrix representation,
the imaginary unit i in C is given as

I ≡
(

0 −1

1 0

)
, I2 =

(
−1 0

0 −1

)
= −E. (11)

In the days of Hamilton, we did not have matrices yet.
Even present, it is very rare to define complex numbers
in terms of real 2×2 matrices [35(Chapter 3, §2, 5.),36].

The introduction of complex numbers through 2×2 ma-
trices has the advantage, over introducing them through
ordered pairs of real numbers, that it is unnecessary to
define an ad hoc multiplication. What is most important
is that this matrix representation clearly expresses the
function specific to the complex numbers. That is, the
rotation and amplification or attenuation as

(
a −b

b a

)
= r

(
cos θ − sin θ

sin θ cos θ

)
, (12)

where r and θ denote amplification/attenuation of am-
plitude and rotation angle applied to signals, respec-
tively, in the multiplication calculation. On the other
hand, addition is rather plain. The complex addition
function is identical to that in the case of doubled-
dimension real numbers.

In summary, the phase rotation and amplitude ampli-
fication/attenuation are the most important features of
complex numbers. The significance is described in the
following sections.

4 Complex-valued neural networks

4.1 Synapse and network function

In wave-related adaptive processing, we often obtain ex-
cellent performance with learning or self-organization
based on the CVNNs. As already mentioned, the reason
depends on situations. However, the discussion in Sect. 3
suggests that the origin lies in the complex rule of arith-
metics. That is to say, the merit arises from the functions
of the four fundamental rules of arithmetics of complex
numbers, in particular the multiplication, rather than
the representation of the complex numbers, which can
be geometric, algebraic, or in matrices. Moreover, the
essence of the complex numbers also lies in the charac-
teristic multiplication function, the phase rotation, as
overviewed in Sect. 3 [1].

Let us consider a very simple case shown in Fig. 7(a)
where we have a single-layered 2-input 2-output feed-
forward neural network in real number. For simplicity,
we omit the possible nonlinearity at the neurons, i.e.,
the activation function is the identity function, where
the neurons have no threshold. We assume that the net-
work should realize a mapping that transforms an input
xIN to an output xOUT in Fig. 7(b) through supervised
learning that adjusts the synaptic weights wji. Simply,
we have only a single teacher pair of input and output
signals. Then, we can describe a general input-output
relationship as

(
xOUT

1

xOUT
2

)
=

(
a b

c d

) (
xIN

1

xIN
2

)
. (13)
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We have a variety of possible mapping obtained by the
learning because the number of parameters to be de-
termined is larger than the condition, i.e., the learning
task is an ill-posed problem. The functional difference
emerges as the difference in the generalization character-
istics. For example, learning can result in a degenerate
mapping shown in Fig. 7(c), which is often unuseful in
practice.

Fig. 7 A simple linear feedforward network to learn a mapping.
(a) A real-valued single-layered two-input two-output feedforward
network; (b) a task to learn a mapping that maps xIN to xOUT;
(c) a possible but degenerate solution that is often unuseful

Next, let us consider the mapping learning task in
the one-dimensional complex domain, which transforms
a complex value xIN = (xIN

1 , xIN
2 ) to another complex

value xOUT = (xOUT
1 , xOUT

2 ). Figure 8(a) shows the
complex-valued network, where the weight is a single
complex value. The situation is expressed just like in
Eq. (13) as(

xOUT
1

xOUT
2

)
=

(
|w| cos θ −|w| sin θ

|w| sin θ |w| cos θ

)(
xIN

1

xIN
2

)
, (14)

where θ ≡ arg(w). The degree of freedom is reduced, and
the arbitrariness of the solution is also reduced. Figure
8(b) illustrates the result of the learning. The mapping is
a combination of phase rotation and amplitude attenua-
tion. This example is truly an extreme. The dynamics of
a neural network is determined by various parameters
such as network structure, input–output data dimen-
sions, and teacher signal numbers. However, the above
characteristics of phase rotation and amplitude modula-
tion are embedded in the complex-valued network as a
universal elemental process of weighting.

Fig. 8 Another simple linear feedforward network to learn the
same task given in Fig. 7(b). (a) CVNN seemingly identical to Fig.
7(a); (b) a solution obtained in this small degree-of-freedom case

The essential merit of neural networks in general lies
in the high degree of freedom in learning and self-
organization. However, if we know a priori that the ob-
jective quantities include “phase” and/or “amplitude,”
we can reduce possibly harmful portion of the freedom
by employing a CVNN, resulting in a more meaning-
ful generalization characteristics. The “rotation” in the
complex multiplication works as an elemental process at
the synapse, and realizes the advantageous reduction of
the degree of freedom. This feature corresponds not only
to the geometrical intuitive definition of complex num-
bers but also to the Hamilton’s definition by ordered
pairs of real numbers, or the real 2×2 matrix represen-
tation.

Although we considered a small feedforward network
in this section, the conclusion is applicable also to other
CVNNs such as complex-valued Hebbian-rule based net-
work and complex correlation learning networks, where
the weight is updated by the multiplication results. The
elemental process of phase rotation and amplitude mod-
ulation results in the network behavior consistent with
phase rotation and amplitude modulation in total.

The nature is a great advantage when we deal with
not only waves such as electromagnetic wave and light-
wave, but also arbitrary signals with the Fourier syn-
thesis principle, or in the frequency domain through the
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Fourier transform.

4.2 Nonlinearity of the neuron activation function

The rotation at the synapses is the most fundamental
specific nature in CVNNs. The neuron nonlinearity can
be another issue.

The complex LMS is the most widely used basis of
adaptive processing of complex signals [32]. The intro-
duction of nonlinearity into the neuron activation func-
tion once seemed to have a serious problem in the differ-
entiability in the complex domain. Liouville’s theorem in
complex analysis states that every entire (holomorphic)
function must be constant. It follows that, if we intro-
duce some nonlinearity, we have to abandon the differ-
entiability. This fact was considered to be a big problem
at around 1990s because some researchers believed that
the indifferentiability should lead directly to the impos-
sibility to obtain and/or analyze the dynamics of the
CVNNs.

However, the concern was found to be a trifle because
neural dynamics are generally described by partial dif-
ferentiation in terms of a number of variables associated
with the neurons. Actually, nowadays, we calculate par-
tial differentials in terms of real and imaginary parts, or
phase and amplitude, to determine neural dynamics in
CVNNs. This manner is practically effective.

At the same time, it is true that we discard the confor-
mal mapping nature of the holomorphic function. How-
ever, when we utilize a conformal mapping function,
we often concentrate upon the mapping structure itself,
rather than a combination with some nonlinearity. Addi-
tional nonlinearity should rather be hindrance. Accord-
ingly, the non-holomorphy is not a big problem again.

In complex-valued associative memories, researchers
investigated the requirements on the nonlinearity to de-
termine an effective energy function [37]. As a result,
we have two types of possibility. One is to apply non-
linearity to real and imaginary parts, respectively, and
to combine them to yield a complex output [38,39]. An-
other is to employ nonlinear functions for the phase and
amplitude, respectively [4].

In other CVNNs, we may have possibilities to employ
other nonlinearity depending on the objects, i.e., what
type of processing we aim at. Even in such cases, the
above-mentioned two types of nonlinearity will be the
most promising candidates since we normally consider
that a direct extension of the real sigmoid function works
well also widely in complex domain.

4.3 Amplitude and phase or real and imaginary in non-
linearity

When we deal with wave information or wave itself, the

real and imaginary axes are essentially less meaningful
than amplitude and phase (or phase difference) because
the real and imaginary axes are determined relatively
to an arbitrarily determined phase reference. An exam-
ple is the coherent detection in communications receiver,
where we prepare a local oscillator (LO) with a phase-
locked loop (PLL) locked to some reference to be used
for demodulation, that is, extraction of real and imagi-
nary signals. The receiver determines the real and imag-
inary parts, which never exist beforehand [1,4]. Instead,
the difference of two phase values are meaningful itself,
which corresponds to time course and/or position differ-
ence. In this sense, the phase difference represents cer-
tain information directly. The amplitude, orthogonal to
phase, is also meaningful, signifying energy or power of
the wave. Accordingly, the amplitude–phase nonlinear-
ity is more suitable for wave-related processing. Actu-
ally, based on the amplitude–phase nonlinearity, we have
proposed new adaptive systems such as the optical learn-
ing logic circuits realizing frequency-multiplexed opera-
tion [25] and the fast method to yield CGH for three-
dimensional movies [26,27] reviewed in Sect. 2.

5 Conclusion

We looked back at the history of the complex number
to elucidate and discuss its features. We found that the
phase rotation in the complex multiplication is the most
important characteristic. It follows that, in the neural
network construction, we have to focus upon the phase
and amplitude of the signals to be treated to emphasize
the merit of the CVNNs. This nature is a great merit in
dealing with wave-related information or wave itself such
as electromagnetic wave, lightwave, sound wave, and ul-
trasonic wave. The advantage is useful not only for pure
sinusoidal wave but also for arbitrary signals in combina-
tion with the concept of Fourier synthesis and/or in the
treatment in the frequency domain through the Fourier
transform. The most important merit of the CVNNs lies
in this point.
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