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Abstract Sparse decomposition is a new theory in signal
processing, with the advantage in that the base (dictionary)
used in this theory is over-complete, and can reflect the
nature of a signal. Thus, the sparse decomposition of signal
can obtain sparse representation, which is very important in
data compression. The algorithm of compression based on
sparse decomposition is investigated. By training on and
learning electrocardiogram (ECG) data in the MIT-BIH
Arrhythmia Database, we constructed an over-complete
dictionary of ECGs. Since the atoms in this dictionary are in
accord with the character of ECGs, it is possible that an
extensive ECG datum is reconstructed by a few nonzero
coefficients and atoms. The proposed compression algo-
rithm can adjust compression ratio according to practical
request, and the distortion is low (when the compression
ratio is 20∶1, the standard error is 5.11%). The experiments
prove the feasibility of the proposed compression algorithm.

Keywords sparse decomposition, orthogonal matching
pursuit (OMP), K-SVD, electrocardiogram (ECG)

1 Introduction

With the gradually widespread application of all types of
electrocardiographs in clinical medicine, increasingly
more electrocardiogram (ECG) data need to be stored
and transmitted. Under the premise that a reconstructed
ECG can meet the need of clinical diagnosis, ECG data
compression technology can reduce data to facilitate ECG
data storage and transmission.

According to the different airspace in ECG data
compression, the compression of an ECG can be classified
into time-domain compression and transform-domain
compression. The former appears earlier and uses the
time-domain character of ECG directly. Its compression
ratio is lower, but the compression speed is higher and the
distortion of the reconstructed ECG is low. Thus, its
application is widespread in earlier periods. The latter
changes an ECG into a transform domain such as frequency
domain [1] or wavelet domain [2]. This compression, which
is suitable for removing redundancy, encodes and
compresses the coefficients of transformation. Since its
compression ratio is higher and can be controlled as needed,
it is currently the mainstream compression algorithm. In
recent years, there have been many compression algo-
rithms based on wavelets at home and abroad. In Ref. [3],
one-dimensional ECG data are first segmented and aligned
into a two-dimensional data array. This data array is
transformed by a two-dimensional wavelet transform, and
the wavelet coefficients are then coded and compressed by
a modified coding algorithm. In Ref. [4] a novel ECG
compression and de-noising algorithm based on the
wavelet transform is introduced. These compression
algorithms have obtained better results. However, because
there is no consequent connection between elements of the
wavelet base and ECG, and these elements cannot reflect
the structural characteristics of ECG, the algorithm is likely
to cause greater distortion.
The ECG compression algorithm based on sparse

decomposition is a kind of transform-domain compression
algorithm. By training on and learning the ECG data, we
can construct an overcomplete dictionary in accordance
with the characteristics of the ECG. Based on this
dictionary, the ECG is decomposed into a sparse vector
and atoms corresponding to nonzero values of the vector.
Using this sparse vector and atoms, the original ECG can
be reconstructed and the distortion is very low. The data
amount of spare decomposition coefficients is significantly
smaller than the original ECG; therefore, this compression
algorithm can realize a higher compression ratio. Because
the dictionary is constructed by training on and learning
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the ECG data, the atoms in the dictionary comply more
with the characteristics of ECGs than the elements of other
transform-domain bases. Therefore, with the same com-
pression ratio, the ECG compression algorithm has lower
distortion than other transform-domain compression algo-
rithms.

2 Sparse decomposition, orthogonal
matching pursuit (OMP) algorithm and K-SVD

2.1 Sparse decomposition

In 1993, Mallat and his partner proposed a new theory of
using an overcomplete and redundant dictionary to
sparsely decompose signal [5]. The new theory differs
from the conventional decomposition theories in that it
uses an over-complete and redundant dictionary (base)
while the conventional decomposition theories use a
common complete and orthogonal base. The base elements
have many restrictions. Thus, when signals are decom-
posed based on the complete and orthogonal dictionary,
many structural characters of signals often cannot be fully
reflected by the base elements, and the representation of
signals is not sparse enough. In contrast, the amount of
atoms in an overcomplete dictionary is significantly more
than that of elements in a complete dictionary. By
designing a suitable algorithm, the atoms can be changed
according to the character of signals and thus can approach
the structure of the signals. Therefore, the over-complete
dictionary reflects the character of signals more faithfully
and the solution vector produced in signal decomposition
is more sparse, which is conducive to signal compression
and feature extraction. Based on the over-complete
dictionary and in accord with the characters of signals,
we can obtain the signal approximation, which is the best
linear combination by M atoms of the dictionary. This
theory is called sparse decomposition, and the approxima-
tion is called a sparse approach of signal. The linear
representation of the signal is called a sparse representation
of signal.
Suppose D∈ℝn�K , y∈ℝn, x∈ℝK represent the over-

complete dictionary (K> n), the original signal and the
solution vector of sparse decomposition of the original
signal, respectively. The formula of sparse decomposition
is

min
x

kxk0 s:t: y¼Dx; (1)

or

min
x

kxk0 s:t: ky – Dxk2£ε: (2)

Equation (1) is a sparse decomposition that needs
accurate reconstruction, while Eq. (2) is a sparse decom-
position that needs only sparse approximate representation.

2.2 OMP algorithm

OMP algorithm is an important greedy optimal atom
searching algorithm.When the dictionary is N-dimensional
and N is finite, the OMP can converge in N steps, i.e., the
OMP overcomes the disadvantage of slow convergence of
the MP algorithm.
We suppose that f∈ℝn represents the original signal,

D ¼ fxig∈ℝn�K represents an overcomplete dictionary,
where the norms of all atoms are 1, and Rkf is the kth
iterative remaining signal. Before initialization, let f 0 ¼ 0,
R0f ¼ f , x0 ¼ 0, a00 ¼ 0, k = 0. After the kth step decom-
position, the signal can be represented as

f ¼
Xk
n¼1

aknxn þ Rkf ¼ f k þ Rkf ,

xn, R
kf

� � ¼ 0, n ¼ 1,2,:::,k:

(3)

Here, akn represents the coefficient produced in the kth
step decomposition, and the signal decomposition in the
(k + 1)th step is

f ¼
Xkþ1

n¼1

akþ1
n xn þ Rkþ1f ,

xn, R
kþ1f

� � ¼ 0, n ¼ 1,2,:::,k þ 1,

(4)

xkþ1 ¼
Xk
n¼1

bknxn þ γk ,

γk , xnh i ¼ 0, n ¼ 1,2,:::,k:

(5)

Here,
Xk
n¼1

bknxn ¼ PV k
xkþ1 represents the projection of

xkþ1 on fx1, x2,:::, xkg, and γk ¼ PV?
k
xkþ1 represents the

element of xkþ1, which is the vertical component of
fx1, x2,:::, xkg.

akþ1
n ¼ akn – �kb

k
n, n ¼ 1,2,:::,k,

akþ1
kþ1 ¼ �k :

(6)

Here,

�k ¼
Rkf , xkþ1

� �
γk , xkþ1h i ¼ Rkf , xkþ1

� �
kγkk2

¼ Rkf , xkþ1

� �
kxkþ1k2 –

Xk
n¼1

bkn xn, xkþ1h i
:

The remaining signal Rkþ1f satisfies the condition
of

Rkþ1f ¼ Rkf – �kγk
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and

kRkþ1f k2 ¼ kRkf k2 – Rkf , xkþ1

� �2
kγkk2

:

The detailed algorithm and proofs can be found in Ref. [6].

2.3 K-SVD

The K-SVD [7] algorithm has a close connection with
K-means cluster algorithm. When only one atom is
demanded to approach each signal, K-SVD is degraded
into K-means. Suppose that D∈ℝn�K , y∈ℝn, and x∈ℝK

represent the dictionary, training signal and coefficient
vector in sparse representation of training signal, respec-
tively, and Y ¼ fyigNi¼1 represents the sets of N training
signals and X ¼ fxigNi¼1 represents the sets of solution
vector of Y. Then the objective function of K-SVD is

min
D, X

kY – DXk2F
n o

, s:t: 8i, kxik0£l: (7)

Here, l is the upper limit of diversity, which is the number
of non-zero elements in each solution vector.

Updating the dictionary is done column by column in
the process of learning the K-SVD. Suppose the kth
column dk in the dictionary is to be updated, then

kY – DXk2F ¼ Y –
XK
j¼1

djx
j
T

�����
�����
2

F

¼ Y –
X
j 6¼k

djx
j
T

 !
– dkx

k
T

�����
�����
2

F

¼ Ek – dkx
k
T

�� ��2
F : (8)

Here, xkT represents the kth row of X (which is different
from the kth column of X, i.e., xk). Define the set !k ¼
fi 1£i£N , xkT ðiÞ 6¼ 0g�� as the index set of signal {yi} that
uses dk in the decomposition, i.e., the index set of
xkT ðiÞ 6¼ 0. Define Ωk as a matrix of size N � !kj j, with
ones on the ð!kðiÞ, iÞth entries, and zeros elsewhere.
Define xkR ¼ xkTΩk , Y

k
R ¼ YΩk , E

k
R ¼ EkΩk , which are

the shrink results of the row vector xkT , Y , Ek by discarding
the zero entries. The length of xkR is !kj j, hence Y k

R and Ek
R

are n� !kj j matrices. Ek
R can be done directly via SVD,

and its SVD decomposition is Ek
R ¼ UDVT. Define d~k as

the first column of U, then d~k is the update of dk . At the
same time, update the coefficient vector xkR with the
product of the first column of Vand Dð1,1Þ. After updating
the dictionary, sparse decomposition is performed on the

new dictionary D~, and if the stop condition is satisfied, K-
SVD will stop. The stop condition can either be the
iteration times or the error ratio between the original signal
and the reconstructed signal.

The K-SVD algorithm is very flexible and can be
combined with some familiar optimal atom searching
algorithms of sparse decomposition such as matching
pursuit, orthogonal matching pursuit, basis pursuit [8] and
FOCUSS [9].

3 Compression algorithm for ECGs based
on sparse decomposition

The computational complexity of sparse decomposition
changes at an exponential rate with the length of atoms in
the over-complete dictionary. Since this is an NP problem,
sparse decomposition thus cannot be used in the real time
problem. In data compression, the most important factors
are compression ratio and distortion degree, and the
demand of real-time computation is not too high. Thus, it is
the familiar method for compression algorithm that uses a
great deal of computation to obtain a high compression
ratio and low distortion.
First, we decide the length n and the number K of atoms

in the over-complete dictionary, and the ECG used in
training is split into sample vector y whose length is n.
These vectors become training matrix Y. The initialization
of the dictionary can be realized by taking K n-dimensional
vectors of Y as its atoms or by producing K atoms
randomly. The former is used in our algorithm. The
maximal diversity l of sparse decomposition is fixed,
which represents the maximal number of atoms represent-
ing the original signals. The stop condition of iteration is
then decided, which can be the times of iteration L or error
ratio ε or the combination of L and ε. After the
initialization, the iteration computation begins until the
stop condition is satisfied. First, the set of solution vectors
of Y is decomposed using OMP algorithm; second, the K-
SVD algorithm is used to update each atom in the
dictionary and the corresponding row of X; the stop
condition is then judged. If the stop condition is satisfied,
the iteration completes, otherwise, the iteration continues.
The algorithm flowchart is shown in Fig. 1.

Fig. 1 Flowchart of the algorithm
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Based on the overcomplete dictionary obtained by
training, the ECG can be decomposed into a sparse
solution vector. When storing the ECG, only a very sparse
solution vector and the overcomplete dictionary are
needed. The effects of the dictionary on the compression
ratio can be ignored when the amount of compression data
is large enough. The ECG can be reconstructed with high
quality using the solution vector and the overcomplete
dictionary.

4 Experimental results and analysis

4.1 Compression result for same dimension and different
diversity

An ECG datum is selected randomly as experimental
datum from the MIT-BIH Arrhythmia Database (in prac-
tice the 100th record is selected), and its sample ratio
is 360 Hz. First, some vectors of suitable length are cut
from the ECG datum to construct the training matrix Y. The
first K columns of the training matrix are then considered
as the initial over-complete dictionary. The number of non-
zero values in the solution vector is no more than l, and the
number of training iterations is no more than 50. Next, the
over-complete dictionary D is obtained by training, at the
same time, the solution vector matrix of the training matrix
is obtained. Finally, by using the OMP algorithm, the non-
training part of the datum is decomposed into a sparse
vector based on the above dictionary. The sparse decom-
position of the whole ECG datum is realized. If the effect
of the over-complete dictionary is ignored, the compres-
sion ratio is equal to n∶2l. Defining the reconstructed train-

ing matrix as Y
^
, the formula of relative root mean square

error (RRMSE) in the compression algorithm can be

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
i¼1

XN
j¼1

ðYði, jÞ – Y
^ ði, jÞÞ2

XK
i¼1

XN
j¼1

Y ði, jÞ2

vuuuuuuuut � 100%:

When n = 120, K = 240, N = 3000 and the value of l is
different, the experimental results are as follows:

When l = 6, the waveforms of the first 10 atoms in the
over-complete dictionary are shown in Fig. 2. It can be

seen that the waveform and wave width of these atoms
reflect the character of ECG intensively, to the exclusion of
the atoms whose frequency range are higher than that of
the ECG in the over-complete dictionary.

Another ECG not included in the training data is
selected as experimental data and sparse decomposition is
performed under the condition of l = 6. The experimental
results are shown in Fig. 3. Comparing the original ECG
with the reconstructed ECG shows that the latter is
smoother than the former, which means that the high
frequency noise of the original ECG is filtered out and all
of the useful signals are retained, including bitty incisure,
denoted by arrows in Fig. 3.

4.2 Compression result for different data

A few ECG data are selected as experimental data from the
MIT-BIH Arrhythmia Database. These data include some
kinds of arrhythmia and all types of ECG exceptions
caused by drugs and breaths. When n = 60, K = 120, N =
6000, l = 6, the RRMSEs of ECG data are shown in
Table 2. From Table 2, it can be concluded that when
CRs are 5∶1, RRMSEs are low, i.e., distortion is low under
the above condition. These results mean that our
compression algorithm can be applied to abnormal ECGs.

4.3 Comparison with other compression algorithms of
ECGs

For the same ECG data in the MIT-BIH Arrhythmia
Database, by using DCT transform [1] to compress the data
when the average value of CR reaches 15.76, the average
RRMSE is 6.76; by using wavelet transform [2] to
compress the data when the average value of CR reaches
10.6, the average RRMSE is 5.3. Compared with the
experimental results in Tables 1 and 2, the RRMSE and
distortion of our compression is lower under the condition
of similar CRs.

Fig. 2 Waveforms of the first 10 atoms

Table 1 Compression ratio (CR) and RRMSE of the algorithm for

different l

l 3 4 5 6

CR 20∶1 15∶1 12∶1 10∶1

RRMSE/% 5.11 4.18 3.60 3.17
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The main computation in this compression algorithm
concentrates on learning and construction of the over-
complete dictionary. The OMP algorithm is then relatively
easier in sparse decomposition based on this dictionary.
Overall, the algorithm proposed in this paper is compli-
cated because of the overcomplete dictionary and the
greedy searching algorithm (OMP).

5 Algorithm discussion and conclusions

When the ECG data amount is large enough and the effect
of the overcomplete dictionary can be ignored, the CR of
our ECG compression algorithm is n∶2l. If the ECG data

are infinite, the length of the atoms in an overcomplete
dictionary can be any natural number in theory, and thus
the CR of an ECG compression algorithm based on sparse
decomposition can be infinite in theory. Obviously, infinite
CR cannot be achieved because of computational com-
plexity. However, this algorithm brings forward a
theoretically high CR in the compression of ECG. In
practice, the length of atoms in an overcomplete dictionary
is decided by application requirements.
Sparse decomposition is a new theory in signal

processing. Although its development and application are
not perfect, its strong potential can be foreseen from
current extensive and successful applications. In this
article, the application of sparse decomposition in ECG
data compression is studied. By learning and training on
the ECG database, the dictionary corresponding with the
characteristics of ECGs is constructed. With this diction-
ary, ECG signals are sparsely decomposed and com-
pressed. The experiments demonstrate that the
compression results of this new theory are better compared
to earlier theories.
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