RESEARCH ARTICLE

SU Bitao, WANG Ke, BAI Jie, MU Hongmei, TONG Yongchun, MIN Shixiong, SHE Shixiong, LEI Ziqiang

Photocatalytic degradation of methylene blue on Fe³⁺-doped TiO₂ nanoparticles under visible light irradiation

© Higher Education Press and Springer-Verlag 2007

Abstract Fe³⁺-doped TiO₂ composite nanoparticles with different doping amounts were successfully synthesized using sol-gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultravioletvisible spectroscopy (UV-Vis) diffuse reflectance spectra (DRS). The photocatalytic degradation of methylene blue was used as a model reaction to evaluate the photocatalytic activity of Fe3+/TiO2 nanoparticles under visible light irradiation. The influence of doping amount of Fe³⁺ (ω : 0.00%– 3.00%) on photocatalytic activities of TiO₂ was investigated. Results show that the size of Fe³⁺/TiO₂ particles decreases with the increase of the amount of Fe³⁺ and their absorption spectra are broaden and absorption intensities are also increased. Doping Fe³⁺ can control the conversion of TiO₂ from anatase to rutile. The doping amount of Fe³⁺ remarkably affects the activity of the catalyst, and the optimum efficiency occurs at about the doping amount of 0.3%. The appropriate doping of Fe³⁺ can markedly increase the catalytic activity of TiO₂ under visible light irradiation.

Keywords Fe^{3+} -doped, TiO_2 nanoparticles, nature light, methylene blue, photocatalytic activity

1 Introduction

It has shown a capacious prospect to generate clean environment using photocatalyst. Particularly, TiO_2 is known to be one of the most effective photocatalysts because of its nontoxicity, low cost and high photocatalytic activities, etc. However, the large band gap ($E_g = 3.2 \text{ eV}$) in TiO₂, activated

Translated from Journal of Northwest Normal University (Natural Science), 2006, 42(6): 55-56 [译自: 西北师范大学学报(自然科学版)]

E-mail: subt0608@sina.com

only by ultraviolet (UV) light, low efficiency in utilizing solar energy and high recombination rate of the photo-generated electron/hole pairs result in the low efficiency in utilizing photon and hinder its further application in industry. In order to solve these problems, many methods have been applied to the modification of TiO₂, such as modification by noble metal [1], semiconductor junctions [2], polymer- [3] and transition metal-doping [4]. Among these methods, transition metaldoping has been studied extensively, and this technology has been applied to the degradation of dye, nitric oxide, polythene film and organic pollutants, etc. However, there are no agreements on the mechanism and effects of the dopants on photocatalytic activities about transition metal-doping till now [5-7], even for the same metal-doping the results are different under different experimental conditions. For example, the optimal amount of Fe³⁺ is 3.0%, 0.5% and 0.0% respectively in the works of Gao et al. [8], Choi et al. [4] and Yu and Cheng [9]. Actually, it is impossible to make a comparison between the results under different experimental conditions because of the effects on the catalytic performance of numerous factors, such as synthesis conditions, work up processes, reaction conditions, surface states and electron quality, etc.

In this paper, Fe³⁺-doped TiO₂ composite nanoparticles with different doping amounts (ω : 0.00%–3.00%) were successfully synthesized by a sol-gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy (UV-Vis) diffuse reflectance spectra (DRS). The influence of the doping amount of Fe³⁺ on photocatalytic activities was also investigated by the degradation of methylene blue (MB) dye solution under nature light.

2 Experimental

2.1 Materials

All chemicals were of analytical grade and were used as received without further purification: tetrabutyl titanate, anhydrous ethanol, ferric nitrate, methylene blue (MB) and deionized water.

SU Bitao (⊠), WANG Ke, BAI Jie, MU Hongmei, TONG Yongchun, MIN Shixiong, SHE Shixiong, LEI Ziqiang

Key Laboratory of Eco-Environment-Related Polymer Materials, Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China

2.2 Characterizations

The crystal structures, morphologies and spectral properties of the Fe³⁺-doped TiO₂ composite nanoparticles were characterized and analyzed by BD-86 X-ray diffraction (XRD, Japan), JEM-1200EX transmission electron microscope (TEM, Japan) and Shimadzu 754 UV-Vis spectrophotometer. The TEM samples were prepared by dispersing the Fe³⁺doped TiO₂ composite nanoparticles in ethanol under ultrasonic, dropping them onto a carbon coated copper grid, and then drying them in the air.

2.3 Preparation of photocatalysts

Tetrabutyl titanate was added to anhydrous ethanol to form a clear solution, and then a solution of ferric nitrate containing hydrochloric acid solution was added dropwise to the above solution with vigorously stirring, thus resulting in a stable sol. The sol was then aged for several days and dried to gel. The gel was sintered at 500°C for 2 h to obtain Fe³⁺-doped TiO₂ nanoparticles. By changing the concentration of ferric nitrate solution, Fe³⁺-doped TiO₂ composite nanoparticles with different doping amounts (ω : 0.00%–3.00%) were successfully prepared.

2.4 Measurement of photocatalytic activity

The Photocatalytic activities of the Fe³⁺-doped TiO₂ composite nanoparticles were evaluated by the photocatalytic degradation of MB. Then, 50.0 mg of sample was added to 50.0 mL of MB solution with a concentration of 10.0 mg/L in a 100.0 mL beaker and the system was stirred under sunlight. After a certain time, 5 mL of suspension solution was centrifugated to remove the photocatalyst and the absorption value (A_t) of the solution at 664 nm (the maximum absorption wavelength of MB) was determined. The degradation efficiency (D_t) of MB solution was calculated as follows: $D = (A_0 - A_t)/A_0 \times 100\%$, in which A_0 is the absorption value of 10.0 mg/L MB solution. The photocatalytic activities of these samples were evaluated by the changes of D_t with the reaction time (t).

3 Results and discussion

3.1 TEM observation

From Fig. 1(a) and (b), the average particle sizes can be seen at different doping amounts of F^{3+} which are respectively about 40 and 10 nm when the amounts are 0.3% and 3.0%. The sizes obviously decrease with the increase of the doping amount of Fe^{3+} and a few films exist while the amount is about 3.0%. These results reveal that the Fe^{3+} doping restrains the growth of the TiO₂ crystal grains, resulting in a decrease in particle size [10] and an increase in the surface energy, which may cause agglomeration between the crystal grains.

3.2 XRD analysis

Figure 2 shows the XRD patterns of TiO₂ nanoparticles with different doping amounts of Fe³⁺ (ω : 0.00%–3.00%). It can be seen that (1) TiO_2 is a mixture of anatase and rutile phases while the doping amount of Fe^{3+} is lower than 0.5%, and rutile phase disappears with the further increase of doped Fe³⁺. In the range of 0.0-0.5%, the percentage of rutile phase increases with the increase of the doping amount of Fe³⁺ and reaches a maximum value (14.9%) when the amount is about 0.3%, and then decreases with the further increase of the amount. These results reveal that the doping Fe³⁺ controls the crystalline conversion of TiO_2 from rutile to anatase phase. (2) The diffraction peaks are remarkably broadened. There are some factors affecting the broadening of diffraction peaks, such as the grain size, the defect of the crystal, and so on. From the results of the sample's TEM, it can be concluded that the small grain size is one of the factors resulting from the broadening of diffraction peaks. (3) The characteristic peaks of Fe₂O₃ are not observed in the studied range of doping amount of Fe³⁺. One of the reasons may be the homogeneous dispersion of Fe^{3+} in the TiO₂ lattice because of the similar ion radii of Fe³⁺ and Ti⁴⁺, and the other is that the amount of doped Fe^{3+} is so low that it can not be detected by XRD or the weak diffraction peaks of Fe₂O₃ are shielded by the broadened diffraction peaks of TiO₂.

Fig. 1 TEM images of TiO₂ composite nanoparticles containing (a) 0.3% and (b) 3.0% Fe³⁺

Fig. 2 XRD patterns of TiO₂ nanoparticles with different amounts of Fe³⁺-doped a) 0.0%; b) 0.1%; c) 0.3%; d) 0.5%; e) 1.0%; f) 2.0%; g) 3.0%

3.3 UV-Vis analysis

Figure 3 shows the UV-Vis spectra of Fe³⁺/TiO₂ nanoparticles with different doping amounts of Fe³⁺. The absorption edge of these samples shows a remarkable shift to the visible range and the intensity increases with the increase of the amount. This is mainly due to that Fe³⁺ inserts into the structure of titanium dioxide, locates at interstices or occupies some of the Ti⁴⁺ lattice sites because of diffusion and transfer of the ions, and forms impurity interim levels between valence and conduction bands in TiO₂. The impurity interim levels form impurity energy band, which overlaps with the TiO₂ conduction band as the amount of impurity increases [11], consequently the transition of the photo-generated electron in the semiconductor to the conduction band requires a lower energy than the transition to the intrinsic absorption band and a lower energy of the photon may excite the transition of the photo-generated electron. Therefore, the semiconductor may absorb the light energy of long wavelength, produce the red shift and broaden the range of the absorption spectra.

Fig. 3 UV-Vis spectra of Fe^{3+}/TiO_2 nanoparticles with different doping amounts of Fe^{3+} -doped a) 0.1%; b) 0.3%; c) 0.5%; d) 1.0%; e) 2.0%; f) 3.0%

3.4 Photocatalytic activity

Figure 4 shows decolorization efficiencies of MB solution on the Fe³⁺/TiO₂ complex particles with different doping amounts of Fe³⁺ as a function of reaction time. It can be found that the photocatalytic activity firstly increases with the increase of the doping amount of Fe³⁺, reaches a maximum activity at about the amount of 0.3% and then decreases with the further increase of the amount. The photocatalytic activity is lower than pure TiO₂' when the doping amount of Fe³⁺ increases to 1.0% upwards. These results indicate that the photocatalytic activity of TiO₂ can be improved by doping an appropriate amount of Fe³⁺ into TiO₂. The photocatalytic activity of TiO₂ is improved most effectively when the doping amount of Fe³⁺ is about 0.3%, and the decolorization efficiency of MB solution reaches 84.9% when the reaction time is 6 h, which showed a 34% increase as compared to the pure TiO₂ with a decolorization efficiency of 51.2%, and is 1.67 times of that of the pure TiO₂. It was reported in a similar system by Yan et al. [12] that the photocatalytic activity had only a 13.5% increase as compared to the un-doped TiO₂. To summarize the experimental results above, the main factors affecting the photocatalytic activity in our experimental conditions may be the crystal and electron structures. This result is consistent with the study of Gao et al. [13], whose study indicated that the separation between photo-generated electron and hole in the anatase crystal could be accelerated effectively when a thin layer of rutile crystal grows on the surface of anatase crystal, and this may improve the photocatalytic activity. Hence, the photocatalytic activity is optimal when the doping amount of Fe³⁺ is 0.3%.

Fig. 4 Decolorization efficiencies of MB solution on the Fe^{3+} / TiO₂ complex particles with different amounts of Fe^{3+} -doped

Choi et al. [4] considered that the transition from Fe^{3+} to Fe^{2+} corresponds to the transition from d⁵ to d⁶, and Fe^{2+} is relatively unstable due to the loss of exchange energy and tends to return to Fe^{3+} , resulting in the release of the trapped electron becoming easy. However, the Fe^{2+}/Fe^{3+}

energy level lies close to Ti^{3+}/Ti^{4+} level. As a consequence of this proximity, the trapped electron in Fe²⁺ can be easily transferred to a neighboring surficial Ti^{4+} and combines with oxygen molecule adsorbed on the surface to form O_2^- and finally \cdot OH, thus the number of active groups is increased and the photocatalytic activity is improved correspondingly.

Furthermore, H_2O_2 may be produced in the photocatalytic reactions on TiO₂ as well. According to Fenton reactive mechanism, the coexistence of Fe²⁺ and H_2O_2 in an acidic condition may produce ·OH, which has strong oxidizing power. Hence, it can be inferred that the following reactions may exist simultaneously in the reactive system.

$$Fe^{3+}+e \rightarrow Fe^{2+}$$

$$Fe^{2+}+H_2O_2+H^+ \rightarrow Fe^{3+}+\cdot OH+H_2O$$

$$Fe^{2+}+HO_2+H^+ \rightarrow Fe^{3+}+H_2O_2$$

$$H_2O_2+e \rightarrow \cdot OH+OH$$

However, the photocatalytic activity of TiO_2 does not increase linearly as the doping amount of Fe^{3+} increases, so the reactions above are unlikely the decisive rate processes.

The experimental results indicate the particle size of the photocatalyst decreases as the amount of doped Fe³⁺ increases under the same processing temperature, and the absorption range of the UV-Vis spectrums becomes broader with the increase of the doping amount of Fe³⁺. However, the photocatalytic activity of TiO₂ does not show a linear increasing relationship simply as the doping amount of Fe³⁺ increases. Therefore, the main factor influencing the variety of the activity is not the particle size of and absorption range of the spectrums. It was reported on the basis of electron spin resonance (ESR) spectrum in the literature [6] that the promotion of the photocatalytic activity of TiO₂ by doping Fe³⁺ should attribute to the effect of Fe³⁺ as an irreversible hole trappers.

We consider that the vacancies introduced in the crystal lattice by Fe³⁺ make the surface charges unbalanced. To keep the electro-neutrality, the surfaces of TiO₂ should adsorb more OH⁻ ions, which may react with photo-generated hole h⁺ and form active ·OH, and hence promote the photocatalytic efficiency. Therefore, the concentration of hole carrier may increase under visible light irradiation with increasing doping amount of Fe³⁺ and the photocatalytic efficiency may be improved accordingly. However, on one hand, when the dopant concentration reaches a definite level, the excessive doping of Fe³⁺ which acts as an acceptor impurity will make the concentration of the hole in the valence band increase, the surface barriror energy reduce, the transition layer thicker, the ability of separating hole and electron weaker, the electronhole combination easier and eventually the photocatalytic efficiency decrease. On the other hand, when the doped Fe³⁺ is excessive, the Fe^{3+} entered into the crystal lattice has become saturated, so the surplus Fe³⁺ combines with TiO₂ as a separate phase and decreases the photocatalytic activity of TiO₂. Thus, it can be inferred from our experimental results

the vacancies in the above crystal play an important role in the improvement of the photocatalytic activity.

4 Conclusion

Fe³⁺-doped TiO₂ composite nanoparticles with different doping amounts (ω : 0.00%-3.00%) are successfully synthesized using sol-gel method under the same condition. The results indicate that the size of the TiO₂ nanoparticles decreases as the doping amount of Fe³⁺ increases, the doping of Fe³⁺ can control the conversion of TiO₂ from anatase to rutile, broaden the width of the diffraction peaks of TiO₂, and produce a red shift in the band gap transition and an increase of absorption in visible range. It is important that an appropriate doping of Fe³⁺ (about 0.3% in our experiment) can markedly improve the catalytic activity of TiO₂ under sunlight irradiation, and the catalytic activity is 1.67 times of that of the pure TiO_2 . The main factors affecting the catalytic activity in our experimental conditions are concluded to be the phase and electron structures of TiO₂. It is of great significance for using solar energy as the irradiation source to improve the catalytic activity of TiO₂ obviously by appropriately doping Fe³⁺ into TiO₂. The introduction of Fe³⁺ ions in TiO₂ nanoparticles is responsible not only for reducing the photo-generated hole-electron recombination rate but also for utilizing solar energy sufficiently. Hence, it is hopeful to use Fe³⁺-doped TiO₂ as an effective photocatalyst in the degradation of organic contaminates, cleanup of aqueous contaminates especially the aqueous contaminates of dye and so on in the fields of environmental decontamination.

Acknowledgements We are grateful for Key Laboratory of Eco-Environment Related Polymer Materials (Northwest Normal University), Ministry of Education of China and the Science Foundations of Gansu Province, China (No.3ZS041-A25-034) for financial support.

References

- Sung-Suh H M, Choi J R, Hah H J, Koo S M, Bae Y C. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO₂ under visible and UV light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(1–2): 37–44
- Bessekhouad Y, Robert D, Weber J V. Bi₂S₃/TiO₂ and CdS/TiO₂ heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(3): 569–580
- Ma Z Y, Min S X, She S X, Su B T. Catalytic property of ZnO/conjugated polymer complex particles under natural light. Chinese Journal of Applied Chemistry, 2005, 22(10): 1,137–1,140 (in Chinese)
- Choi W Y, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO₂: Correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem, 1994, 98(51): 13,669–13,679
- Yamashita H, Harada M, Misaka J, Takeuchi M, Ikeue K, Anpo M. Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148(1–3): 257–261

368

- Graetzel M, Howe R F. Electron paramagnetic resonance studies of doped titanium dioxide colloids. J Phys Chem, 1990, 94(6): 2,566–2,572
- Paola A D, Marci G, Palmisano L, Schiavello M., Uosaki K, Ikeda S, Ohtani B. Preparation of polycrystalline TiO₂ photocatalysts impregenated with various transition metal ions: Characterization and photocatalytic activity for the degradation of 4-nitrophenol. J Phys Chem: B, 2002, 106(3): 637–645
- Gao Y, Xu A W, Liu H Q. Heterogeneous Photocatalytic reactions of nitrite oxidation on iron-doped titania prepared by sol-gel method. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2000, 39(5): 44–48 (in Chinese)
- Yu X Y, Cheng J J. Photocatalytic activities of iron and chromium ion doped TiO₂ films. Journal of Inorganic Materials, 2001, 16(4): 742–746 (in Chinese)

- Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO₂ surface: Principles mechanisms and selected results. Chem Rev, 1995, 95(3): 735–758
- Jin H F, Li W G, Xiang J M, Tang J Y. Nanometer particles of Fe³⁺/TiO₂/SiO₂ complex: Synthesis and usefulness in photocatalytic degradation of nitrite. Chinese Journal of Applied Chemistry, 2001, 18(8): 636–639 (in Chinese)
- Yan P F, Wang J Q, Jiang X, Zhou D R, Fu H G. Preparation and photocatalytic properties of iron-doped TiO₂ nanocrystal. Material Science and Technology, 2002, 10(1): 28–31 (in Chinese)
- 13. Gao W, Wu F Q, Luo Z, Fu J X, Wang D J, Xu B K. Studies on the relationship between the crystal form of TiO₂ and its photocatalyzing degradation efficiency. Chemical Research In Chinese Universities, 2001, 22(4): 660–662 (in Chinese)