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Abstract: Flood susceptibility modeling is crucial for rapid flood forecasting, disaster reduction 
strategies, evacuation planning, and decision-making. Machine learning (ML) models have 
proven to be effective tools for assessing flood susceptibility. However, most previous studies 
have focused on individual models or comparative performance, underscoring the unique 
strengths and weaknesses of each model. In this study, we propose a stacking ensemble 
learning algorithm that harnesses the strengths of a diverse range of machine learning mod-
els. The findings reveal the following: (1) The stacking ensemble learning, using RF-XGB- 
CB-LR model, significantly enhances flood susceptibility simulation. (2) In addition to rainfall, 
key flood drivers in the study area include NDVI, and impervious surfaces. Over 40% of the 
study area, primarily in the northeast and southeast, exhibits high flood susceptibility, with 
higher risks for populations compared to cropland. (3) In the northeast of the study area, 
heavy precipitation, low terrain, and NDVI values are key indicators contributing to high flood 
susceptibility, while long-duration precipitation, mountainous topography, and upper reach 
vegetation are the main drivers in the southeast. This study underscores the effectiveness of 
ML, particularly ensemble learning, in flood modeling. It identifies vulnerable areas and con-
tributes to improved flood risk management. 
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1  Introduction 

Floods stand as one of the most devastating natural disasters globally, leaving long-term 
impacts on ecosystems and human societies (Li et al., 2020; Silva et al., 2020). Simultane-
ously, floods impose a heavy toll on economies and the environment, causing widespread 
destruction in populated areas, agriculture, and water resources (Wu et al., 2019). Flood oc-
currences can stem from natural causes such as prolonged precipitation, heavy rainfall, and 
snowmelt, or they can manifest unnaturally due to urbanization, population expansion, and 
deforestation (Chan et al., 2018). In the wake of a 1.2℃ increase in global temperatures 
since the pre-industrial era (1850–1900), the frequency and intensity of rainfall events have 
escalated (IPCC, 2019). Alarmingly, projections suggest that over 2 billion individuals could 
be adversely impacted by floods by 2050 (Siegert et al., 2020). China, in particular, grapples 
frequently with flood and waterlogging disasters, notable for both the scale of affected pop-
ulations and the ensuing economic losses (Zhao et al., 2018). Consequently, the imperative 
to mitigate flood-induced damages in susceptible regions has emerged as a paramount strat-
egy (Chen et al., 2019). 

Prior methodologies employed for assessing flood susceptibility have predominantly en-
compassed statistical techniques and hydrological models. Statistical approaches, such as 
regression analysis, bivariate statistics, and multi-criteria decision analysis (Youssef et al., 
2016; Costache and Bui, 2020), often rely on expert insights, consequently introducing an 
element of uncertainty into their outcomes. Conversely, hydrological models aim to decode 
the intricate interplay between floods and influential factors by emulating hydrological pro-
cesses (Rozalis et al., 2010; Li et al., 2019; Gao et al., 2024). However, the implementation 
of hydrological modeling mandates meticulously curated long-term hydrologic, meteoro-
logical, and topographic data, which can be elusive in less documented or ungauged basins. 
Additionally, the site-specific nature of hydrological models restricts their adaptability to 
dissimilar basins, rendering them less suitable for expansive regional investigations. 

In recent years, the advent of big data collected through diverse sensors for weather mon-
itoring, coupled with new computational paradigms and significant strides in 
high-performance computing technology, has fostered the era of big data. Within this land-
scape, the application of machine learning (ML) methods has gained traction in modeling 
flood susceptibility. At its core, flood susceptibility modeling hinges on constructing predic-
tive models grounded in the correlation between flood occurrences and influencing factors. 
This endeavor results in the deduction of flood susceptibility, manifested through spatial 
distribution maps (Liu et al., 2022). Notably, the ambit of flood susceptibility modeling 
spans varied geographical scales, ranging from local basins and regions to the broader na-
tional context (Shahabi et al., 2020).  

Prominent ML techniques fueling these modeling endeavors encompass a spectrum of 
methodologies. These include the acclaimed Deep transfer learning based on transformer 
(Xu et al., 2023), LSTM (Zhang et al., 2018), Random Forest (RF) (Chapi et al., 2017; Chen 
et al., 2020), Support Vector Machine (SVM) (Tehrany et al., 2015; Zhang et al., 2023), Ar-
tificial Neural Networks (ANN) (Zhao et al., 2018; Li et al., 2022), Generalized Linear 
Models (GLM) (Vandenberg-Rodes et al., 2016), Logistic Regression (LR) (Tien et al., 2019) 
and Naive Bayes (NB) (Khosravi et al., 2019). These advanced techniques not only under-
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score the versatility of ML but also highlight its burgeoning importance in addressing intri-
cate challenges within flood susceptibility modeling. 

Given the inherent limitations of individual machine learning (ML) models, such as over-
fitting and instability, various ensemble learning methodologies have been adopted to im-
prove flood susceptibility assessment. Ensemble learning combines predictions from multi-
ple ML models using techniques like bagging, boosting, average weighted approaches, and 
stacking. Bagging and boosting unite models of the same type to mitigate singular model 
instability or bias, such as decision tree-based bagging (Ha et al., 2021), Gradient Boosting 
Decision Tree (GBDT) (Chen et al., 2021), eXtreme Gradient Boosting (XGBoost) (Ma et 
al., 2021). The weighted averaging method assigns a weight to each base model that is used 
to compute the weighted average. These weights can be determined based on the perfor-
mance of the model on the validation set, and usually better performing models are assigned 
larger weights (Mahato et al., 2021). Stacking typically fuses diverse model types to lever-
age their respective strengths and mitigate weaknesses (Kuhn and Johnson, 2013), while 
stacking reduces the risk of overfitting and has better generalization capabilities. The stack-
ing method has been evaluated as a high-performance model in existing studies, with better 
accuracy and stability compared to the first three methods (Lv et al., 2022; Li et al., 2023; 
Wu and Wang, 2023). However, the application of stacking for flood susceptibility assess-
ment remains under-explored, thus forming the primary focus of this study. It is paramount 
to emphasize that a theoretically optimal model may not inevitably yield superior outcomes 
in practical implementations. For instance, in evaluating flash flood susceptibility in Marka-
zi, Iran, Pham et al. (2020) observed AdaBoost’s superior accuracy compared to bagging. 
Similarly, in a flood risk investigation within China’s Pearl River Delta, Chen et al. (2021) 
identified GBDT’s superior performance compared to XGBoost, typically regarded as pos-
sessing superior learning capabilities. Consequently, the applicability or generalizability of 
diverse ML methods under distinct geographical contexts remains elusive. 

The Xiangjiang River Basin (XRB), spanning the largest drainage area and runoff in Hu-
nan province, China, lies within a subtropical monsoon climate and is acutely susceptible to 
summer floods from June to August. In July 2006, the region suffered heavy rainfall due to 
the severe tropical storm “Bilis”, triggering floods that impacted 7.29 million people and 
incurred economic losses exceeding 780 billion yuan (Du et al., 2006). The summer of 2017 
witnessed an extreme rainfall event, coupled with heavy reliance on riverbank levees for 
flood control, leading to record water levels in the XRB. This accentuates the pressing need 
for comprehensive flood risk assessment within the XRB and the identification of primary 
contributing factors. 

Hence, this study endeavors to delineate flood-prone zones within the XRB utilizing di-
verse models, comparing their outcomes, and identifying flood occurrence determinants 
(Figure 1). The primary contributions of this study encompass: (1) developing a stacking 
ensemble model for quantitative flood susceptibility assessment within the XRB, evaluating 
its performance through climatic, topographical, and environmental lenses; (2) identifying 
and quantitatively analyzing key influencing factors across distinct flood-prone areas; and (3) 
quantitatively examining population, construction land, and cropland exposure to floods 
within the XRB. 
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Figure 1  The modeling framework outlined in this article 

2  Data source 

In this study, the flood inventory map data were provided by the Hunan Provincial Meteor-
ological Bureau (hn.cma.gov.cn), and a total of 5989 flood events occurred in the XRB 
(Figure 2). Among these, 70% of the flood records were used for modeling purposes, while 
the remaining 30% were used to assess the model’s predictive ability. Based on the literature 
review, data availability, and insights from previous studies (Fang et al., 2022; Zeng et al., 
2022), 18 flood susceptibility factors were selected (Figures 3 and 4): maximum 1-day pre-
cipitation (RX1day), maximum 3-day precipitation (RX3day), maximum 5-day precipitation 
(RX5day), average precipitation during the flood season, elevation, slope, aspect, curvature, 
Topographic Roughness Index (TRI), Topographic Wetness Index (TWI), distance to rivers, 
distance to roads, drainage density, NDVI, 1990 landuse, 2000 land use, 2010 land use, and 
2020 land use. 

The RX1day dataset contains daily precipitation data from 195 meteorological stations in 
the XRB. It covers the period from January 1, 1960 to December 31, 2019. This dataset is 
provided by the National Climate Center of the China Meteorological Administration. 
RX3day, RX5day, and average precipitation during the flood season are computed from the  
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Figure 2  Geographical location of the Xiangjiang River Basin (The red points are the test set for flooding and 
the black points are the training set for flooding) 
 

 
 

Figure 3  Climatic and topographic information used for flood susceptibility in the Xiangjiang River Basin 
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Figure 4  Environmental information used for flood susceptibility in the Xiangjiang River Basin 
 
RX1day. The DEM data are derived from the Geospatial Data Cloud (https://www.gscloud. 
cn/) for extracting slope, aspect, curvature, TRI, and TWI. The spatial resolution of this data 
is 90 m. Water system data originated from the 1:250,000 national basic geographic database 
in the National Geographic Information Resource Catalog Service System 
(http://www.webmap.cn). Road data originated from the Geographic Information Expertise 
Service system (kmap.ckcest.cn) in a 1:250,000 dataset. NDVI data were obtained from 
Landsat-8 image processing. Land use data originated from the Resource and Environment 
Science and Data Center of the Chinese Academy of Sciences (https://www.resdc.cn). The 
data are described in Table 1. 

3  Methods 

3.1  GIS database development 

Based on the flood data obtained from the flood inventory maps, a random sampling method 
was used to generate non-flood data. The GIS database was then constructed by combining  
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Table 1  Information of flood susceptibility factors 

Factor type Susceptibility factors Data description Abbreviation 

Climatic factors 

RX1day Maximum rainfall in 1 day X1 

RX3day Maximum rainfall in 3 days X2 

RX5day Maximum rainfall in 5 days X3 

Average precipitation 
during the flood season Average rainfall April-August X4 

Topographic and 
geomorphologic 
factors 

Elevation Water usually runs off from higher elevations and col-
lects at lower elevations X5 

Slope Measuring the depth of the ground surface, which di-
rectly affects the rate of surface runoff X6 

Aspect Identifying the direction of the steepest downslope at a 
location on the surface X7 

Curvature Measurement of unevenness X8 

TRI The lower the surface roughness, the more prone to 
flooding X9 

TWI Indicating the extent of waterlogging in the catchment X10 

Environmental 
factors 

Distance to rivers Areas near rivers are more prone to flooding X11 

Distance to roads Areas near roads are more prone to flooding X12 

Drainage density Water abundance in the region X13 

NDVI The state of the vegetation X14 

1990 Landuse The way natural attributes of land were utilized in 1990 X15 

2000 Landuse The way natural attributes of land were utilized in 2000 X16 

2010 Landuse The way natural attributes of land were utilized in 2010 X17 

2020 Landuse The way natural attributes of land were utilized in 2020 X18 
 

the flood susceptibility factors. In this database, all flood data are given a value of “1”, while 
all non-flood ones are given a value of “0”. The impact factors were reclassified using the 
natural breakpoint classification method. To further analyze the data, frequency ratios (FR) 
are adapted to weighting the data during the preprocessing step. The formula used for FR is 
as follows: 

 /
/

A AFR
B B

′
=

′
             (1) 

where A represents the number of floods in each influencing factor, A′ represents the number 
of all floods, B is the number of pixels in a particular class, and B′ is the total number of 
pixels (Wang et al., 2021). In addition, the FR value of each influencing factor was normal-
ized, and the formula of normalization frequency ratio (NFR) is: 

 ( ) ( )
( ) ( )

u Min uU E F F
Max u Min u

−′ = − +
−

      (2) 

where U′ is the normalized value, u is the original value, E and F are the upper and lower 
normalization boundary (Tien et al., 2012). 

3.2  Data processing and analysis 

3.2.1  Tests for multicollinearity 

Spearman’s rank correlation coefficient, tolerance, and variance inflation factor were utilized 
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to judge the multicollinearity between the influencing factors (Islam et al., 2021). Spear-
man>0.7 indicates a high degree of dependence. The tolerance value < 0.1 indicates the 
presence of covariance between this independent variable and other independent variables. 
When VIF < 10, there is no multicollinearity. While VIF≥10, there is strong multicollinearity. 

3.2.2  Multiple linear regression (MLR) 

Standardized coefficients (Beta values) are used in multiple regressions to compare the sig-
nificance between variables. A higher Beta value indicates that the variable has a greater 
influence on the dependent variable. 

3.3  Flood susceptibility modeling 

3.3.1  Machine learning model 

In this paper, five ML models, namely RF, XGB, CB, DT and LR, are selected to assess 
flood susceptibility and testing a multi-model approach in the XRB. RF, XGB, and CB were 
chosen in this paper mainly because these three models are themselves integrated learning 
algorithms, and it has been demonstrated that integrated models outperform other algorithms 
(Zhao et al., 2018; Seydi et al., 2023; Ren et al., 2024). DT was chosen mainly because DT 
modeling offers several processing methods such as squared automatic interaction detection 
(CHAID), classification and regression trees (CRT), and fast, unbiased, and efficient statis-
tical trees (QUEST) (Roe et al., 2005). CHAID is the most suitable for the purpose of our 
modeling because the conditional (predictor) factor selected at each step is the one that has 
the strongest relationship with the dependent variable factor. In decision tree analysis, creat-
ing each new branch of the tree is considered a step. Conditional factor categories are 
merged if they show significant differences relative to the dependent variable. In terms of its 
speed and ability to split multiplexed nodes, CHAID in DT is best suited for susceptibility 
modeling (Kusiak et al., 2010). The rationale for choosing LR is that metamodel selection is 
usually simple during stacking modeling, and therefore it provides a smooth interpretation of 
the predictions made by the underlying classifiers. Therefore, it is recommended that the 
linear model be used as a meta-classifier for linear regression, and for the task of classifying 
predictive class labels, DT should be used (Yaseen et al., 2022). 

The fundamentals of flood vulnerability modeling begin with dividing the dataset into 
two subsets: the training set (70% of the total observations) and the test set (30%). Random 
Forest (RF) is a machine learning algorithm that does not rely on any assumptions about the 
statistical distribution of the data (Breiman, 2001). It is capable of balancing datasets that are 
not evenly distributed. Even if a majority of the characteristics are absent, it is still possible 
to preserve the precision (Zhu et al., 2020). For the classification problem, RF consists of a 
set of classification trees. Each tree is constructed using a subset of the entire training set 
and a random portion of the input features. The classification tree divides the sample data 
into smaller homogeneous groups, where homogeneity can be defined by various metrics. 
When making predictions about new samples, each tree votes on a class. The class probabil-
ity of a new sample is defined by the proportion of votes for each class, and the class with 
the most votes is the predicted class, the voting process is explained below: 

 max

1
( ) arg ( ( ) )

k

z i
i

sH x I h x Z
=

= =∑           (3) 
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where H(x) is the model, hi is the individual tree structure, I is the indicative function, and Z 
is the final prediction. 

XGBoost (XGB) is a complex ensemble learning algorithm based on classification or re-
gression trees (Chen and Guestrin, 2016). XGB aims to minimize computational complexity 
and improve accuracy (Merghadi et al., 2020). XGB considers a dataset containing m fea-
tures and n instances. 
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where F denotes the space of the tree, which can be computed as: 
 { }( )( ) ( : , )m T

q xF f x w q R T w R= = → ∈         (6) 

where q is the structure of a single tree and T denotes a leaf tree within a single tree. In XGB 
algorithm, in order to optimize the integration tree and minimize the error, the objective 
function is calculated as follows: 

 ( ) ( 1)

1
ˆ( , ( )) ( )

n
t t

i i t i t
i

L l y y f x f−

=
= + +Ω∑           (7) 

where l is a loss function that quantifies the error between the measurements and the esti-
mates, and t denotes the number of iterations used to minimize the error. Ω denotes the pen-
alty for model complexity using the regression tree function as follows: 

 21 || ||
2kf T wγ λ= +             (8) 

CatBoost (CB) is a Gradient Boosting Decision Tree (GBDT) framework based on sym-
metric decision trees. It has the advantages of fewer parameters, support for categorical var-
iables, and high accuracy. The main pain point it addresses is the efficient and reasonable 
handling of categorical features. In addition, the issue of gradient bias and prediction bias is 
effectively tackled by CB. This helps to minimize overfitting and enhances the accuracy and 
generalization of the algorithm (Saber et al., 2023). CB depends mainly on the use of gradi-
ent boosting, which uses a binary tree classification scheme. 

Assume a dataset: 
 { }( , ) 1,..., )J JD X Y       J m= =(             (9) 

where XJ is the combination of attributes and YJ∈R denotes the desired goal. The input and 
output datasets are equally and independently dispersed according to the unknown function, 
and the goal of the learning technique is to train and check that the function H:Rn→R reduc-
es the loss of information, i.e., L(H)=EL(y,H(X)), where L is the smoothing error function, 
and (X,y) denotes the test samples from D. The learning technique is based on a series of 
approximations, Ht=H(t–1)=gt, which are derived from a priori approximations. The gradi-
ent enhancement method creates a series of approximations Ht, with Ht=H(t–1)=gt being the 
final function generated from the a priori approximations (Saber et al., 2023). 

Decision Tree (DT) is a model for decision making judgment based on a tree structure, 
which categorises the dataset through multiple conditional discriminative processes and fi-
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nally obtains the desired result. There is no need for pre-established associations between 
input and target variables (Saito et al., 2009). DT grades and uniformly categorizes condi-
tioning factors according to the level of susceptibility. The purpose of constructing a tree is 
to establish a set of decision rules that can form the basis for predicting the outcome of the 
set of input variables (Debeljak and Džeroski, 2011). Thus, rules are generated by analyzing 
a set of factors with the aim of predicting outcomes from a set of similar variables (Myles et 
al., 2004). 

The use of Logistic Regression (LR) was due to the nature of the data used in this study, 
which included categorical and continuous data as predictor variables and the presence or 
absence of flood data variables as outcomes. LR analyses of the training data using forward 
stepwise regression aim to find the most prudent set of predictors. These predictors were 
effective in estimating the outcome variables (Kleinbaum and Klein, 2010). LR is a com-
monly used ML algorithm for binary classification problems. Assuming the probability of 
flood occurrence is p, LR models the logarithm of flood occurrence as a linear function, as 
shown in (10): 

 0 1 1 2 2log ...
1 k k

p
x x x

p
β β β β  = + + + + − 

    (10) 

where Xi (i=1, 2, …, k) is a factor associated with flood occurrence, with a total of k factors. 
βi is the regression coefficient and β0 is the intercept. 

3.3.2  Stacking ensemble modeling 

Stacking, first proposed by David (1992), is an ensemble algorithm designed to reduce the 
generalization error. It accomplishes this by integrating multiple regression or classification 
algorithms during the training phase. Stacking can enhance overall prediction accuracy by 
synthesizing the outputs of multiple models. In the first stage, the original dataset is sliced 
and divided into training sets and test sets based on specific ratios. Suitable base learners are 
then chosen through cross-validation to train the training set. In the case of stacking K-Fold, 
the dataset is divided into K parts. One part is designated as the test set, and the remaining 
parts are used as the training set in K iterations. The final result’s accuracy or value is de-
termined by averaging the outcomes obtained from these K iterations. Each model generates 
a K-Fold prediction, and the data gathered from the K-Fold training of the first layer of 
models are combined to form a training set for base models.  

In the second phase, the predictions from the base models serve as feature data for train-
ing and predicting the meta-learner, respectively. The meta-learner is then merged with the 
labels of the original dataset, along with the feature and sample data acquired in the previous 
phase. This amalgamated information is utilized to construct the model and generate the fi-
nal stacking prediction results (Figure 5).  

The selection of the base model layer and the meta-model layer is the most significant 
part of building stacking (Dou et al., 2019). The base model layer is more complex due to its 
numerous classifiers, while the meta-model is chosen to be a relatively simple LR. (Adeli et 
al., 2020). According to the classifier, the choice of base model should be strong and multi-
ple (Pourghasemi et al., 2017). Therefore, the base model is selected out of four schemes: 
RF-XGB-CB, RF-XGB-DT, RF-CB-DT, and XGB-CB-DT. 
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Figure 5  Procedure of stacking for ensemble learning 
 

3.3.3  Validation and performance of the models 

To evaluate the flood sensitivity effect, this paper used several statistical metrics of Precision, 
Recall, Accuracy, and F1 Score to evaluate the model’s performance (Chen et al., 2018; 
Zhao et al., 2020). Additionally, the predictive ability of the model was evaluated using the 
ROC curve (Pham et al., 2016). The higher the ROC value indicates better model perfor-
mance, with a range of 0.5(less accurate) to 1(highly accurate) (Bui et al., 2015). A ROC 
value less than 0.6 indicates model failure, while a value above 0.8 suggests better model 
performance. 

4  Results 

4.1  Identifying flood susceptibility factors 

Figure 6a displays the Spearman correlation among flood susceptibility factors. The correla-
tion between curvature, distance to rivers, drainage density, and NDVI appeared relatively 
low, with the lowest correlation observed between curvature and NDVI at 0.0018. On the 

 



1524  Journal of Geographical Sciences 

 

other hand, RX1day and RX3day, 1990 landuse and 2010 landuse, and RX3day and RX5day 
demonstrated higher correlations, with the highest correlation being 0.6915 between 
RX1day and RX3day. However, as this value falls short of 0.7, it suggests that the flood 
susceptibility factors were mutually independent. A linear regression test for collinearity 
among 18 factors revealed high VIF values for RX3day, slope, and TRI, with slope exhibit-
ing the highest value at 9.401. In contrast, low tolerance values were found for RX3day, 
slope, and TRI, with slope showing the lowest value (0.106). Thus, all flood susceptibility 
factors meet the requirements of VIF<10 and tolerance>0.1 (Figure 6b). 

Figure 7 illustrates the contributions of individual flood susceptibility factors, assessed 
using the multiple linear regression method. The analysis highlighted RX3day as the most 
 

 
 

Figure 6  Multicollinearity test between flood susceptibility factors (X1: RX1day; X2: RX3day; X3: RX5day; 
X4: Average precipitation during the flood season; X5: Elevation; X6: Slope; X7: Aspect; X8: Curvature; X9: TRI; 
X10: TWI; X11: Distance to rivers; X12: Distance to roads; X13: Drainage density; X14: NDVI; X15: 1990 
Landuse; X16: 2000 Landuse; X17: 2010 Landuse; X18: 2020 Landuse) 

 

 
 

Figure 7  Contribution values of various flood susceptibility factors to floods (X1: RX1day; X2: RX3day; X3: 
RX5day; X4: Average precipitation during the flood season; X5: Elevation; X6: Slope; X7: Aspect; X8: Curvature; 
X9: TRI; X10: TWI; X11: Distance to rivers; X12: Distance to roads; X13: Drainage density; X14: NDVI; X15: 
1990 Landuse; X16: 2000 Landuse; X17: 2010 Landuse; X18: 2020 Landuse) 
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influential factor with a contribution value of 0.185, followed by RX1day (0.141) and NDVI 
(0.137), emphasizing their primary roles in flood occurrence. Other factors such as RX5day, 
the average precipitation during the flood season, elevation, aspect, TRI, distance to roads, 
and land use in various years (1990, 2000, 2010, and 2020) exhibited contribution values 
ranging from 0.01 to 0.126. Notably, all recorded contribution values for flood susceptibility 
factors exceeded zero, indicating their significant impact on flood dynamics. Consequently, 
all identified factors were included in subsequent modeling endeavors. 

4.2  Construction of flood susceptibility maps 
Following the validation of flood impact factors, five ML models and four stacking ensem-
ble learning models were employed to compute flood susceptibility values. The natural 
breakpoint classification method was utilized to divide flood susceptibility values into five 
classes: very high, high, moderate, low, and very low. Figure 9 presents the proportion of 
different flood susceptibility categories. Broadly, across all models, the high susceptibility 
category predominated over the other categories, accounting for 27.5%. For the high and 
very high categories, the area proportion in the DT model exceeded those of other models, 
standing at 29.82% and 20.11% respectively. In the LR model, the categories with substan-
tial area proportions were the low (19.37%) and very low (16.11%) categories. The CB 
model predominantly predicted the moderate category, constituting 28.95%. Even though 
the performance of the models varies, the spatial distribution rendered by these nine models 
exhibited similar characteristics, all indicating that the high susceptibility areas were situated 
in the northeast and southeast of the XRB, while the low susceptibility areas primarily occu-
pied the western region of the XRB (Figure 8). Collectively, over 40% of the XRB was 
marked by high and very high flood susceptibility. 

4.3  Validation of model performance 

The performance of the models was validated using ROC curve values (Figure 10), along-
side Accuracy, Precision, Recall, and F1 score indicators (Figure 11). The results indicated 
that the stacking ensemble models generally outperformed single models in terms of both 
goodness of fit and generalization ability. The RF-XGB-CB-LR model displayed the highest 
ROC curve value (0.9941), and the overall values for Accuracy, Precision, Recall, and F1 
score indicators were also the highest, implying optimal model performance. Conversely, the 
ROC curve values for the DT and LR models stood at 0.6760 and 0.6359 respectively, and 
the values of Accuracy, Precision, Recall, and F1 score indicators were relatively low, sug-
gesting poorer model performance. The ROC curve values of the remaining models sur-
passed 0.94, denoting generally good performance. 

4.4  Importance of flood impact factors 

Based on the evaluations presented in Figures 10 and 11, the RF-XGB-CB-LR model was 
identified as the optimal model. Subsequently, Python was utilized to evaluate the feature 
importance of flood impact factors within this model, as depicted in Figure 12. The results 
revealed that X14 (NDVI) was the most critical factor, boasting an importance value of 0.22. 
This was followed by X3 (average precipitation during the flood season), X12 (distance to 
roads), and X1 (RX1day). In contrast, other factors demonstrated relatively low feature im-
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portance, with land use in different years and drainage density appearing as the least im-
portant variables. Due to the complex relationship between impact factors and the model, 
each impact factor contributed differently to the model. 
 

 
 

Figure 8  Flood susceptibility in the Xiangjiang River Basin 

4.5  Statistical analysis of population, built environment, and cropland exposed to floods 

The analysis of the percentage of population, built environment, and cropland exposed to 
floods is depicted in Figure 13. A significant number of people in the XRB were at risk due 
to high flood susceptibility areas. To be precise, 156,000 individuals, which made up 34% of 
the total basin population, reside in these areas (Figure 13a). When considering the exposure 
of buildings, the area of built environment affected by floods serves as an accurate indicator 
(Figure 13b). High flood susceptibility areas encompassed 870.872 km2 of built environ- 
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Figure 9  Percentage of different flood susceptibility categories 
 

 
 

Figure 10  ROC curves for model validation 
 

ment, accounting for 24% of the total. It is worth noting that the Changsha-Zhuzhou- 
Xiangtan (Changzhutan) urban agglomeration, one of the most industrialized, urbanized, and 
densely populated regions in the XRB, falls within these high susceptibility zones. This  
geographical coincidence results in a higher exposure of both population and built environ- 
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Figure 11  Performance indicators of different models (The black wireframe represents the highest value of each 
evaluation indicator) 

 

 
 

Figure 12  The importance of different features in the optimal model (X1: RX1day; X2: RX3day; X3: RX5day; 
X4: Average precipitation during the flood season; X5: Elevation; X6: Slope; X7: Aspect; X8: Curvature; X9: TRI; 
X10: TWI; X11: Distance to rivers; X12: Distance to roads; X13: Drainage density; X14: NDVI; X15: 1990 
Landuse; X16: 2000 Landuse; X17: 2010 Landuse; X18: 2020 Landuse) 

 
ment. Cropland exposure was estimated by considering the area of agricultural land that was 
prone to floods (Figure 13c). Of the total crop area, 8898 km2 (or 20%) was found within 
high susceptibility zones. The agricultural belt around the Nanling and Luoxiao mountains is 
particularly vulnerable, as it falls within a high flood susceptibility area, and thus the crops 
there suffer severely from disasters. Despite this, the largest proportion of cropland exposure 
was at a low level, accounting for 33% of the total. This is attributed to regions such as the 
outskirts of the Changzhutan urban agglomeration and the hilly areas in central and southern 
Hunan, which have been intensifying agricultural development and are situated in low sus-
ceptibility areas. Therefore, cropland exposure in these regions was comparatively lower. 
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Figure 13  Statistical analysis of population, built environment, and cropland exposure to floods 

5  Discussion 

Identifying flood-prone areas assumes paramount importance in devising effective disaster 
preparedness strategies and judicious resource allocation for impending flood events. De-
spite the widespread utilization of ML techniques in flood prediction, crafting highly precise 
flood susceptibility maps remains an intricate undertaking. In this research, we harnessed 
five ML methods and employed four stacking ensemble models to formulate flood suscepti-
bility maps, leveraging climate, topographic, and environmental variables. Subsequently, we 
scrutinized their predictive capabilities within the XRB and evaluated the factors influencing 
flood susceptibility within the region. Across all models, a consistent observation emerged: 
the northeastern and southeastern sectors of the XRB exhibited heightened vulnerability to 
flooding. Remarkably, among the array of models, the RF-XGB-CB-LR ensemble model 
emerged as the exemplar, boasting an impressive ROC score of 0.9941. 

5.1  Performance of stacking ensemble model 

The realm of ML models has made remarkable strides across diverse domains, especially in 
the context of spatial flood modeling. In this study, a suite of five ML models was harnessed 
alongside stacking ensemble techniques to meticulously assess flood-prone regions within 
the XRB. Through the comparative lens, ensemble algorithms outshone conventional ML 
approaches, solidifying ensemble methodologies as the avant-garde in data mining classifi-
cation. The supremacy of ensemble models, which amalgamate the strengths of individual 
models for predictive precision, has been corroborated by antecedent research endeavors 
(Arabameri et al., 2019; Prasad et al., 2022). 

Among the evaluated models, the RF-XGB-CB-LR ensemble model distinguished itself 
with a commendable assessment of flood-prone areas (ROC=0.9941). An integration of the 
three most adept standalone models—RF, XGB, and CB—yielded even superior outcomes. 
As the performance of the DT model lagged, its inclusion slightly moderated the ensemble 
model’s accuracy. Notably, the top-performing individual learners, RF, XGB, and CB, are in 
themselves ensemble learning methods, orchestrating resilient learners by synergizing mul-
tiple weaker components. However, less proficient base learners like DT might have exerted 
a diluting influence on overall accuracy (Pourghasemi et al., 2017). 

While ensemble models have primarily found utilization within the XRB for tasks such as 
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water level forecasting, their application in assessing flood susceptibility remains relatively 
nascent. Thus, this study pioneers the application of stacking ensemble models for flood 
susceptibility evaluation within the XRB. Notably, stacking ensembles outperformed other 
ensemble techniques employed (Table 2). The model’s efficacy is intrinsically intertwined 
with factors such as data quality, biophysical features of the study area, and selection of ap-
propriate flood susceptibility determinants. Notably, a more comprehensive inclusion of 
factors augments the model’s potential accuracy (Donati and Turrini, 2002). Importantly, the 
methodology undertaken here holds broader applicability, extending beyond flood suscepti-
bility to encompass other environmental calamities such as landslides, debris flows, and av-
alanches. Furthermore, its potential extends to exploring the prediction accuracy of models 
within diverse topographical settings. 
 
Table 2  Comparison between stacking ensemble model and other ensemble models 

Region Impact factor Ensemble model ROC Reference 

Haraz watershed Slope, curvature, TWI, elevation, NDVI, rainfall, 
lithology, stream density, distance to rivers, land use Bagging-LMT 0.95 Chapi et al., 

2017 

Khiyav-Chai 
watershed 

Altitude, slope, aspect, drainage density, land use, 
curvature, distance to rivers, TWI, soil depth, soil 
hydrological groups SHG, land use, lithology 

Weighted and  
unweighted  
averaging 

0.91 Choubin et al., 
2019 

Teesta 
Sub-catchment 

Elevation, curvature, SPI, aspect, slope, TRI, TWI, 
STI, LULC, distance to rivers, soil type, rainfall Dagging 0.87 Islam et al., 

2021 

Xiangjiang  
River Basin 

RX1day, RX3day, aspect, RX5day, slope, TRI, 
TWI, average precipitation during the flood season, 
elevation, distance to rivers, distance to roads, 
drainage density, NDVI, curvature, 1990 landuse, 
2000 landuse, 2010 landuse, 2020 land use 

Stacking 0.99 This work 

  
Stacking is a powerful ensemble learning technique that enhances model generalizability 

by leveraging the strengths of multiple individual models. Unlike single machine learning 
(ML) models. Stacking combines the performance of various base models, each potentially 
excelling on different data subsets and feature sets. Through cross-validation, the diverse 
strengths of these base models are harnessed to complement one another, resulting in im-
proved overall prediction accuracy. This ensemble approach fosters both competition and 
collaboration among the base models, which mitigates the risk of overfitting. Specifically, 
the meta-model, which serves as the final decision-making layer, learns from the predictions 
generated by the base models across the training data. By focusing on the averaged outputs 
of the base models rather than directly on the training data, the meta-model reduces the like-
lihood of overfitting to any single model’s biases or noise. Stacking not only lowers the var-
iance of the model but also increases its robustness to noise, outliers, and unknown inputs. 
This integration-based learning strategy enhances the model’s ability to generalize across 
different regions and similar geographic environments, thereby offering superior perfor-
mance in diverse and complex scenarios. 

5.2  Analysis of major influencing factors of floods in the XRB 

In deciphering the optimal model outcomes, it was evident that NDVI played a paramount 
role in influencing floods within the XRB, with an importance score of 0.22. NDVI, com-
monly used to assess vegetation attributes in an area, demonstrates an inverse relationship 
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between vegetation density and flood occurrence (Kumar and Acharya, 2016). Vegetation 
density aids water infiltration, curbing surface water volume and subsequently diminishing 
the likelihood of flood incidents (Turoğlu and Dölek, 2011). Amidst the rapid urbanization 
in central cities like Changzhutan, Hengyang, Yongzhou, and Loudi, which harbor intensive 
development activities in manufacturing, services, transportation, and residential sectors, an 
expansion of deforested regions has ensued. This, coupled with similar trends in peripheral 
areas of Changzhutan urban agglomeration, the hilly tracts in central and southern Hunan, 
and the agricultural belt of the Nanling and Luoxiao mountains, has led to decreased affor-
estation, consequently exacerbating flood occurrences in the XRB. Notably, precipitation 
patterns emerged as the predominant influencer of flood occurrences in the XRB. The spatial 
distribution of precipitation generally mirrored an east-high and west-low trend, akin to the 
spatial variability exhibited by floods. Regions characterized by low flood susceptibility 
were predominantly concentrated in the western territory. This can be attributed to the pro-
tective influence of Yangming Mountain on the southern part of the western region, mitigat-
ing the effects of typhoon cloud systems and reducing the likelihood of intense rainfall 
events (Chen et al., 2011). 

The XRB’s subtropical monsoon humid climate, marked by abundant yet unevenly dis-
tributed rainfall throughout the year, engenders prolonged periods of elevated temperature 
and humidity within the basin (Hang et al., 2022). Impervious surfaces such as roads, side-
walks, and parking lots intensify rainfall runoff (Mukherjee and Singh, 2020), making areas 
adjacent to roads more susceptible to flooding. Across the XRB, the majority of regions are 
located near roads, significantly increasing their vulnerability to floods. 

High flood susceptibility regions predominantly cluster in the XRB’s northeastern and 
southeastern sectors. The optimum RF-XGB-CB-LR model was employed to dissect the 
feature importance within these regions (Figure 14). In the northeast, the chief influencing 
factor was the highest daily rainfall (RX1day), bearing an importance score of 0.19 (Figure 
14a). There exists a robust positive correlation between flood events and RX1day (Ávila et 
al., 2016). Impacted by substantial rainfall, RX1day in the northeastern XRB ascends to its 
peak value of 292.963 mm, culminating in heightened water levels for rivers such as the 
Daxi River. The downstream nature of the northeast, coupled with lower elevation compared 
to upstream regions, fosters substantial downstream flow due to heavy upstream rainfall, 
resulting in elevated water levels in lower-lying regions. In the absence of large-scale dam 
construction due to the region’s economic significance, flood control in the Changzhutan 
metropolitan area primarily relies on dikes, complicated by intricate river-lake dynamics and 
the pressure from Lake Dongting (Hang et al., 2022).  

Conversely, the southeastern sector sees the average precipitation during the flood season 
reigning supreme as the key flood influencer (Figure 14b). The average flood season rainfall, 
RX1day, and RX5day in this region soar to 6.81 mm, 442.152 mm, and 1385.59 mm respec-
tively. Persistent and intense rainfall, particularly torrential downpours, render this region 
markedly susceptible to floods (Bui et al., 2017). Torrential rain generation and distribution 
are steered by factors like the Pacific subtropical high pressure, frontal rainfall, shear lines, 
cyclones, and typhoon climates (Luo, 2006). Nestled between the middle section of the Nan-
ling Mountains and the southern span of the Luoxiao Mountains, the area’s mountainous 
terrain augments rainfall intensity (Gao et al., 2006). With subpar vegetation and severe soil 
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erosion, the upper reaches of this flood-prone zone primarily encompass agricultural terrain. 
Intense human activity has triggered deforestation, leading to extensive soil and water loss. 
Degraded vegetation and soil, compounded by water depletion, have eroded the natural 
storage capacity of forests and soil, truncating runoff confluence time, exacerbating river 
siltation, and reducing flood passage cross-sections (Chenzhou Flood Control Office, 2020). 
Cumulatively, these factors magnify flood susceptibility in the region. 
 

 
 

Figure 14  The importance of characteristics in high susceptibility areas of the Xiangjiang River Basin (X1: 
RX1day; X2: RX3day; X3: RX5day; X4: Average precipitation during the flood season; X5: Elevation; X6: Slope; 
X7: Aspect; X8: Curvature; X9: TRI; X10: TWI; X11: Distance to rivers; X12: Distance to roads; X13: Drainage 
density; X14: NDVI; X15: 1990 Landuse; X16: 2000 Landuse; X17: 2010 Landuse; X18: 2020 Landuse) 

6  Conclusions 

This study employed machine learning models in conjunction with stacking ensemble 
learning techniques to develop a flood susceptibility assessment for the XRB, while also 
examining the contributing factors. The main findings are: 

(1) Factors such as rainfall, low NDVI values, and impervious surfaces contribute to 
floods. Stacking models, especially RF-XGB-CB-LR, outperformed individual machine 
learning approaches, yielding an ROC of 0.99 and high evaluation metrics. 

(2) Precipitation patterns matched flood spatial distribution, with the east-high, west-low 
trend driven by Pacific subtropical high pressure. 

(3) Over 40% of the XRB is highly susceptible to flooding, mainly in the northeast and 
southeast. Other than heavy rainfall, factors such as low terrain, and human activities am-
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plify the flood risk. 
(4) High susceptibility regions affect 156,000 people (34% of the basin), with urban areas 

most exposed. The built environment and cropland exposure in these areas are 24% and 20% 
respectively. 

Nevertheless, this study has its limitations, stemming from its exclusive reliance on ML 
models and the absence of time series data. To enhance future research, incorporating a 
range of diverse deep learning models and integrating meticulously acquired high-precision 
time-series flood data from multiple sources could pave the way for more comprehensive 
insights. 
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