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Abstract: There is a great uncertainty in generation and formation of non-point source (NPS) 
pollutants, which leads to difficulties in the investigation of monitoring and control. However, 
accurate calculation of these pollutant loads is closely correlated to control NPS pollutants in 
agriculture. In addition, the relationships between pollutant load and human activity and 
physiographic factor remain elusive. In this study, a modified model with the whole process of 
agricultural NPS pollutant migration was established by introducing factors including rainfall 
driving, terrain impact, runoff index, leaching index and landscape intercept index for the load 
calculation. Partial least squares path modeling was applied to explore the interactions be-
tween these factors. The simulation results indicated that the average total nitrogen (TN) load 
intensity was 0.57 t km-2 and the average total phosphorus (TP) load intensity was 0.01 t km-2 
in Chengdu Plain. The critical effects identified in this study could provide useful guidance to 
NPS pollution control. These findings further our understanding of the NPS pollution control in 
agriculture and the formulation of sustainable preventive measures. 

Keywords: modified export coefficient model; pollution load; non-point source pollution; total nitrogen; total 
phosphorus 

1  Introduction 

Non-point source (NPS) pollution is one of the main causes of water pollution in recent 
years (Guo et al., 2004; Gruber and Galloway, 2008; Wang et al., 2016; Yuan et al., 2021). 
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NPS input, especially agricultural activity, has been a serious aspect of water quality man-
agement in China since Stock-breeding Law of the People’s Republic of China was issued in 
2005. In the Jinjiang River basin, the total nitrogen (TN) load was 12,029.06 t yr–1 and total 
phosphorous (TP) load was 570.82 t yr–1 (Chen et al., 2013). NPS pollution cannot be ig-
nored their effect on drinking water sources. In the Huangqian Reservoir basin, TN and TP 
loads were 707.09 t and 114.42 t in 2018, respectively (Hou et al., 2022). In Dongting Lake, 
TN load was 6.06 t in 2014 (Yuan et al., 2017). As indicated from data summarized above, 
we can conclude that effect of NPS pollution on freshwater resources is particularly out-
standing in China. Large amounts of nitrogen and phosphorus enter aquatic systems causing 
serious environmental problems such as water eutrophication, oxygen running out, fish and 
shrimp death and biodiversity decline (Hoppe et al., 2004; Ierodiaconou et al., 2005; Par-
ween et al., 2021; Babaei et al., 2022). For example, eutrophication with reduced river flows 
contributed to frequency and severity of toxic algae blooms in Australian basins (Young et al., 
1996). However, NPS pollution is characterized by randomness of occurrence time, intermit-
tence of occurrence mode, uncertainty of emission path, temporal and spatial variability of 
pollutant load, and difficulty in simulation and control compared with point source pollution. 

Controlling water eutrophication and managing water environment are based on obtaining 
NPS pollutant loads, so calculating NPS pollutant loads accurately has become important in 
water research. There are physically based models and empirical models to calculate NPS 
pollutant loads. The physical models (e.g., Soil and Water Assessment Tool (SWAT), Annu-
alized Agricultural Non-point Source Pollution (AnnAGNPS) and Hydrological Simulation 
Program Fortran (HSPF)) attempt to simulate the formation of rainfall, runoff and pollutant 
migration through mathematical models according to the intrinsic mechanism of the NPS 
pollution formation (Hou and Gao, 2019; Ba et al., 2020). López-Ballesteros et al. (2023) used 
SWAT to estimate an average TN inflow to the Mar Menor coastal lagoon of 482.4 t yr−1 for 
2003–2021. This result is consistent with the range (515±176 t yr−1) obtained by Gar-
cía-Pintado et al. (2007). AnnAGNPS was employed to assess the effectiveness of four best 
management practices (BMPs) in the Shanmei Reservoir watershed (Chen et al., 2022). 
Risal et al. (2022) evaluated the performances of SWAT and HSPF in simulating TN and TP 
load in Big Sunflower River Watershed. The result showed that the HSPF model simulated 
equally good as SWAT for TN and TP load. In summary, there was consensus that the phys-
ical models were widely used in calculation of NPS pollutant loads with accurate results. 
However, when lots of parameters are not available from the field, they must be determined 
by calibration instead (Ding, 2010). In contrast, empirical models require less data and have 
fewer parameters. Export coefficient model (ECM) was established by American scholar in 
the 1970s and it been gained favor since then because of less required parameters, easy to 
operate and relative robustness (Mattikalli and Richards, 1996). The ECM was widely ap-
plied in many regions of the world (Bowes et al., 2008; Zhang et al., 2019). Based on pre-
vious ECM research results, Johnes (1996) proposed a model that considered single source 
such as land use, livestock quantity and distribution, living emission and treatment level of 
rural residents and NPS pollutant loads as the sum of a single source of losses. 

Some researchers believed that the results of many calculations of NPS pollutant load in 
China were too high (Ongley et al., 2010). The second national pollution source census bul-
letin pointed out that chemical oxygen demand (COD), total nitrogen (TN) and total phos-
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phorus (TP) of Chinese agricultural sources accounted for 49.77%, 46.52% and 67.22% of 
the total pollution source emissions, respectively. According to a report released by the 
Asian Development Bank, the proportion of COD in rural areas was 1.4 times higher than in 
urban life source and industrial source, and rural TN and TP loads also accounted for the 
majority. Since the traditional ECM ignored the underground spatial heterogeneity, temporal 
and spatial distribution of precipitation and soil conditions, there are some limitations in the 
model (Noto et al., 2008). Hence, some studies have made modifications to improve ECM. 
Terrain effect factor and rainfall driving factor were then introduced to analyze the influ-
ences of livelihood transformation on NPS pollution (Yuan et al., 2017; Feng et al., 2023a). 
In the Three Gorges Reservoir region, interception coefficient was added to ECM to calcu-
late the pollutant loads under different land uses (Wang et al., 2015). Cheng et al. (2018) 
established a modified ECM to calculate the amount of total phosphorus (TP) from agricul-
tural NPS in the Luanhe River Basin of northern China. According to previous studies, the 
rainfall and terrain factors were mainly considered to the improvement of ECM while some 
studies considered factors such as surface runoff, landscape interception, but few studies 
considered the whole process of agricultural NPS pollutant migration. 

In recent years, water quality of the upper Yangtze River and its tributaries, Minjiang 
River, Tuojiang River, have shown obvious seasonal characteristics and an overall trend of 
deterioration (Hou et al., 2021). Moreover, the Chengdu Plain is part of the upper Yangtze 
River basin. Meanwhile, the Chengdu Plain is the national important rice, wheat, corn, pig 
and poultry production base. However, due to the rural population agglomeration, inappro-
priate use of chemical fertilizers, sewage discharge, poultry and solid waste disposal, which 
are not effectively treated and recycled, they make the Yangtze River upstream one of the 
serious NPS polluted areas. Nitrogen and phosphorus lost from agricultural production enter 
water bodies quickly and are difficult to control, which have a great impact on local and 
downstream water ecological environment (Feng et al., 2023b; Li et al., 2023). In general, 
the present study provided new insight with new factors to the modified ECM. The research 
objectives were (a) to adopt a modified ECM by introducing factors of rainfall driving, ter-
rain impact, runoff index, leaching index and landscape intercept index that can simulate TN 
load and TP load in Chengdu Plain and (b) to analyze the pollution sources of TN and TP 
loads and their proportion. 

2  Materials and methods 

2.1  Study area 

The Chengdu Plain is located in southwest China (Figure 1), including Chengdu city and 
other counties. It is the largest plain in the three provinces (Sichuan, Yunnan and Guizhou) 
of southwest China. The study area has a warm and humid subtropical Pacific southeast 
monsoon climate. The average precipitation is approximately 1458 mm and the multi-year 
average temperature is 16.1°C. June to September is the flood season, accounting for 80% of 
the total annual rainfall. The western side of Chengdu Plain is the entrance of surface water 
system, which develops Minjiang River and Tuojiang River (Li et al., 2021). After entering 
the plain, two rivers diverge in fan shape, confluence at the foot of Longquan Mountain on 
the east side of the plain. 
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Figure 1  Location of the Chengdu Plain, southwest China 
 

2.2  Modified export coefficient model 

The ECM came from an idea called unit load approach (Johnes, 1996). The model essen-
tially calculated the amount of pollutant load produced in each unit, including human living, 
livestock husbandry, land use and atmosphere deposition. The formula is outlined as: 

 1

n
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where L is the total pollutant load in the study area (kg); Ei is the export coefficient of nu-
trient pollution source i; Ai is acreage of land use type i in the basin (km2), or the amount of 
livestock type i and rural population; m is total amount of pollution input by rainfall (kg). 

The modified ECM is proposed which considers the effects of hydrometeorology, geog-
raphy, terrain and human activity on NPS pollution. The formula is shown as the following: 
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where α is rainfall driving factor; β is terrain impact factor; RI is runoff index; LI is leaching 
index; LII is landscape intercept index; other indexes are the same as in Eq. (1). 

2.2.1  Rainfall driving factor 

The calculation formula of rainfall driving factor (α) is consisted of two parts, including the 
temporal unevenness impact factor (αt), and the spatial unevenness impact factor (αs) (Ding 
et al., 2010): 
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where L is loss of annual NPS pollutants discharged into water body with the runoff (kg); 
L  is average yearly amount of pollutants flowing into water body; Rj is the yearly rainfall 
in spatial grid unit j of the river basin (mm); R  is the average yearly rainfall of the whole 
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river basin (mm); f(r) is the relationship between the annual water inflow of agricultural 
NPS pollutants and the rainfall; ( )f r  is loss of nutrients under the multi-year precipita-
tion. 

Through regressing analysis, the relationship between the annual water inflow of agricul-
tural NPS pollutants and the precipitation was established according to the rainfall and agri-
cultural pollutant load data in the Minjiang River basin. This study selected total nitrogen 
(TN) and total phosphorous (TP) to evaluate the agricultural NPS pollution situation. The 
regression equations are expressed as: 

 
( )210.644 1312.2 0.5811TNL r R= + =  (4) 

 
( )23.1521 24.525 0.5952TPL r R= − =  (5) 

Based on the precipitation interpolation, the multi-year (from 2016 to 2020) average precip-
itation in the study area was 1185.98 mm. The Eq. (3) can be described as Eqs. (6) and (7): 
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2.2.2  Terrain impact factor 

The relationship between the loss of agricultural NPS pollutants and slope is as follows 
(Aschmann et al., 1999): 

 
dL cθ=  (8) 

where L is the yearly water inflow of pollution load (kg); θ is the slope gradient (°). 
Based on Eq.(8), the terrain impact factor (β) is shown as follows (Ding et al., 2010): 
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where θj is the slope for spatial grid unit j of the river basin and θ  is the average slope of 
Chengdu Plain. 

The d value is 0.6104 in the Yangtze River (Ding et al., 2010). The average slope is 
12.99° in the study area. According to Eq. (9), β can be described using Eq. (10): 

 

0.6104

0.610412.99
jθβ =  (10) 

2.2.3  Runoff index 

In this study, the SCS-CN flow production model can assess the runoff index (RI) in the 
Chengdu Plain (Williams and LaSeur, 1976). The runoff volume under different soil types 
and land uses can be calculated through this method (Auerswald and Haider, 1996): 

 

( )20.2
, 0.2

0.8
0, 0.2

P S
P SQ P S

P S

 −
 >=  +

 ≤

 (11) 



ZHAO Xiaoyuan et al.: Application of modified export coefficient model to estimate nitrogen and phosphorus 2099 

 

 
min

max min

Q QRI
Q Q

−
=

−
  (12) 

where Q is accumulated runoff excess (mm); P is the total rainfall depth which is obtained 
from field monitoring data in the study area (mm); S is a parameter which is related to the 
underlying surface. 

S is decided by SCS curve number. The parameter is defined as: 
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where CN is a curve parameter that reflects the soil permeability, land use and antecedent 
soil water conditions. The larger the CN indicates, the smaller the water storage capacity. 
According to gravel, sand, clay and soil organic matter parameters of the soil, the soil satu-
rated hydraulic conductivity was obtained by using SPAW software, and the hydrological 
group was conducted to find the corresponding soil type. The CN2 value can be obtained as 
shown Table S1. 

Part of the phosphorus loss is due to soil erosion. Hence, soil erosion needs to be consid-
ered in terms of TP runoff index. Universal Soil Loss Equation (USLE) provides a way that 
evaluates soil loss risk of the Chengdu Plain. The soil erosion amount (A) was defined by 
Wischmeier et al. (1971). A′ is soil erosion factor which is defined as follows: 

 
min
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A AA
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′ −
=  (15) 

Granular phosphorus accounts for about 90% and dissolved phosphorus accounts for 
about 10% of the total phosphorus emissions in the Yangtze River. According to this ratio, 
surface runoff index of TP is described in the following equation: 

 0.1 0.9TPRI RI A= × + × ′  (16) 

2.2.4  Leaching index 
Soil pollutant such as inorganic nitrogen is easily dissolved in water under natural environ-
ment, resulting in its leaching into water system. Therefore, leaching index (LI) was intro-
duced to modified ECM. LI can be determined through precipitation index (PI) and season 
index (SI). PI characterized the maximum theoretical rainfall can be used for infiltration in 
the watershed unit. Seasonal changes in rainfall can affect the soil water infiltration, which 
can be expressed as follows. 

 LI PI SI= ×  (17) 
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where prec is yearly rainfall (mm yr–1); R is yearly soil intercept capacity (mm yr–1); prec(ls) 
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is total rainfall in non-flood season (June-September) (mm); LI needs to be standardized. 

2.2.5  Landscape intercept index 

Landscape interception is of vital importance in affecting the nutrient pollutant output in a 
basin. Li et al. (2016) implied landscape intercept index into ECM and proved that the mod-
ified model can better explain the NPS pollutant output of different space. Landscape inter-
cept index (LII) is thus established. 
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where DA is land use type; DAT∑  is accumulated interception efficiency of forest and 

grassland; B is slope gradient (°). Interception efficiency of forest and grassland is listed in 
Table S2, and other land use types are 0. LII needs to be standardized. 

2.3  Determination of export coefficients 

The agricultural NPS in Chengdu Plain was divided into rural living, livestock and cropland. 
The export coefficient of rural living was provided by Handbook of Pollutant Discharge Co-
efficient of Urban Household Sources (The Office of the Leading Group on the First Na-
tional Census on Pollution Sources, 2008). The export coefficient of livestock was deter-
mined based on Handbook of Pollutant Discharge Coefficient of Livestock and Poultry In-
dustry. The export coefficient of cropland was calculated based on Handbook of Fertilizer 
Loss Coefficient of Agricultural Pollution Sources. The Ei values of modified ECM for rural 
living, livestock and cropland are listed in Table S3. 

2.4  Getis-Ord Gi* Statistic 

The Getis-Ord Gi* statistic was applied to analyze the distribution of high value gathering 
area and low value gathering area of NPS pollutant loads. The calculation method is as fol-
lows (Getis and Ord, 1992; Ord and Getis, 1995): 
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where n is the number of regions, i = 1, 2, ..., n. wij is a spatial weight matrix between i and j. 
X  and S are mean and standard deviation of sample, respectively. When the value of Gi* is 

positive and significant, the hot spot area appears. When Gi* value is negative and signifi-
cant, the cold spot area appears. 
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2.5  Partial least squares path modeling 

This study used partial least squares path modeling (PLSPM) to confirm the relationship 
among NPS pollutant load, modified ECM factors, and human activities. Latent variables 
consist of four parts, including hydrometeorology features, geomorphic features, land use 
and human activities. The latent variable hydrometeorology features include rainfall driving 
factor and runoff index. Terrain impact factor, leaching index and landscape intercept index 
were considered to represent the latent variable geomorphic features. Land use including 
paddy field and dry land indicates the latent variable land use. Rural life and livestock 
breeding were taken to explore the latent variable human activities. 

Due to the manifest variable being non-normally distributed, PLSPM was performed to 
confirm the relationship among NPS pollutant load, modified ECM factors and human ac-
tivities. Dillon-Goldsteins rho (ρ) and GoF were used to elevate the structural model relia-
bility. The larger the ρ and GoF, the better the structural model robustness. 

2.6  Model results verification 

Since the modified ECM derived from the original ECM was used in this study, it deserves 
verifying the robustness of the modified ECM. It is planned to compared the monitoring 
load data and the simulated load data in Chengdu Plain outlet. The measured data of 2020 
were obtained from Hongyuan monitoring section and Yuedianzixia monitoring section. The 
measured data represent NPS pollution load of the Minjiang (Waijiang) basin. The relative 
error (Re) was given later in the following section. 

2.7  Study data and analysis 

The longitude of land use data were 30 m × 30 m, which came from the Resource and Envi-
ronment Data Center of Chinese Academy of Sciences (https://www.resdc.cn). The source of 
annual rainfall data were 13 representative rainfall stations in Chengdu Plain form 2016 to 
2020 which were obtained from Chengdu Water Authority. The terrain data were processed 
derived from DEM data. The source of DEM data were obtained from the Computer Net-
work Information Center, Chinese Academy of Sciences (http://www.gscloud.cn). The rural 
population and livestock were derived from 2020 Chengdu Statistical Yearbook. All the 
basic data were unified in ArcGIS 10.2 to a resolution of 1 km × 1 km. The rural population 
and livestock were distributed to rural settlements in land use. The Getis-Ord Gi* (Hot Spot 
Analysis) was used to analyze spatial agglomeration and correlation of NPS pollution load. 
The construction of PLSPM was performed using the PLSPM (Sanchez et al., 2017) pack-
age with the help of R version 3.6.2 (R Core Team, 2019). 

3  Results 

3.1  Descriptive statistics and spatial distribution characteristics of factors for modi-
fied export coefficient model 

Descriptive statistics of factors for modified ECM are listed in Table 1 and Figure 2. The 
mean values were ranked in the following order: αTP>αTN>LIITN>LIITP>β>LI>RITN>RITP. 
Both CV values for β and RITP were over 50%, indicating that these factors varied greatly in 
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Chengdu Plain. The DEM in Chengdu Plain is from 369 to 5277 m (Figure S1) and the spa-
tial distribution characteristics are high in the west and low in the central and eastern parts 
corresponding to the same trend of CV values for β. The soil erosion amount (A) is from 0 to 
8525.58 t km–2 yr–1) in Chengdu Plain (Figure S2), also resulting in high CV values for RITP. 
 
Table 1  Descriptive statistics of factors for modified export coefficient model 

Parameter αTN αTP β RITN RITP LI LIITN LIITP 

Mean 1.0406 1.0442 0.9020 0.4701 0.1042 0.5215 0.9460 0.9455 

Standard deviation 0.3975 0.4141 0.5387 0.2117 0.0971 0.1480 0.1477 0.1481 

Coefficient of variation (%) 38.20 39.66 59.72 45.03 93.19 28.38 15.61 15.66 

Maximum 2.1651 2.2250 2.8407 1 0.9429 1 1 1 

Minimum 0.3363 0.3161 0 0 0 0 0 0 
 

 

Figure 2  Box plots of factors including rainfall driving factor (α), terrain impact factor (β), runoff index (RI), 
leaching index (LI) 

 

3.2  Spatial pattern of total nitrogen and total phosphorus pollution risks 

TN and TP loads were estimated in Chengdu Plain through modified ECM (Figure 3). The 
results showed that TN export intensity ranged from 0 to 49.85 t km–2 with a mean value of 
0.57 t km–2. TP export intensity ranged from 0 to 2.00 t km–2 with a mean value of 0.01 
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t km–2. It was obvious that the TN load and TP load intensities exhibited large spatial varia-
tion. The region with the highest TN load intensity is located in the west with the highest 
rainfall and terrain impact factor values, where greater rainfall and gradient contribute to 
nutrient loss (Wu et al., 2015). In addition, rural population density and cropland area in the 
high TN load area were larger than in other areas. 
 

 

Figure 3  The spatial distributions of total nitrogen load (a) and total phosphorus load (b) in the Chengdu Plain 
 
Hot spot analysis was carried out to explore the spatial aggregation features of NPS pol-

lutant loads (Figure 4). The hot spots of TN load were concentrated in Dayi county and 
Chongzhou city which indicated that these regions had high spatial correlation, and cold 
spots appeared in the east of Chengdu Plain. The spatial aggregation characteristics of TN 
load and TP load were roughly the same. According to Chengdu Statistical Yearbook, the 
gross domestic product of the primary industry in Dayi county and Chongzhou city were at 

 



2104  Journal of Geographical Sciences 

 

the forefront of Chengdu city, with 340,489 million yuan and 410,848 million yuan, respec-
tively. Moreover, the number of living hogs of Dayi county and Chongzhou city ranked the 
third and fourth in Chengdu city. Therefore, The NPS pollution brought by aquaculture and 
agriculture was more serious in Dayi county and Chongzhou city. 

 

 

Figure 4  The spatial distributions of hot and cold spots of total nitrogen load (a) and total phosphorus load (b). 
The number in parentheses stands for corresponding confidence 

 

3.3  Source apportionment for agricultural non-point source pollution 

The different sources of TN and TP pollution in Chengdu Plain are showed in Figure 5. The 
estimated TN load from agricultural NPS was 6576.76 t. The contributions to TN load in the 
Chengdu Plain included livestock husbandry (48.75%), rural living (29.78%), Cropland 
(21.46%). Obviously, livestock husbandry contributed most and rural living was also a 
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non-negligible source. One important reason was that most of rural wastewater was directly 
discharged into rivers where sewage collection and treatment were not processed. A consid-
erable part of livestock and poultry breeding bases in the Chengdu Plain were built near the 
rivers and the manure management measures were not perfect. As a consequence, the 
wastewater was directly discharged into the rivers. In addition, the long-term storage of 
livestock and poultry manure also caused nitrate leaching, which was also an important fac-
tor affecting the excessive TN standard in the study area. 

The sources contributed to TP load in the Chengdu Plain were found as follows: livestock 
husbandry 75.54%, rural living 20.61% and cropland 3.85%. Among eight kinds of pollution 
sources in this area, pig breeding was ranked the largest contributor to TP load (41.50%) that 
was related to the large number of livestock. For example, there were 2.6 million pigs raised 
in the study area. In addition, Chengdu Plain is one of the most important farming and ani-
mal husbandry areas in China. Frequent and intensive agricultural activities were bound to 
an increase in NPS pollution. 

 

 

Figure 5  Total nitrogen and total phosphorus loads from different pollution sources in the Chengdu Plain 
 

3.4  Pathways of mediating NPS pollutant loads 

PLSPM was used to identify the pathways mediated NPS pollutant loads (Figure 6). For all 
latent variables of TN and TP, the ρ values were greater than 0.7. The GoF value of TN and 
TP were 0.514 and 0.601, respectively. The ρ value and GoF index indicated that the meas-
urement and structural models can be used in this study. The hydrometeorology features 
played a leading role in the direct positive effect of TN load. Geomorphic features had an 
indirect positive effect on TN load through land use. The indirect negative effect of land use 
on TN load was greater than the direct positive effect. The path coefficient between human 
activities and TN load was 0.684, which indicated strongly positive affected on TN load. In 
terms of PLSPM for TP, hydrometeorology features were one of the factors that directly af-
fect TP load associated with a path coefficient of 0.743. Furthermore, the PLSPM path dia- 
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Figure 6  The partial least squares path modeling for the effects of different modified export coefficient model 
factors on pollutant loads. The red arrows stand for positive effect and blue arrows stand for negative effect. The 
wider the arrow, the stronger the effect. The number in parentheses represent the t value. * stands for statistical 
significance at p < 0.05 and *** stands for statistical significance at p < 0.001. 

 

gram revealed that geomorphic features could indirectly affect TP load by negatively influ-
encing land use. Land use was shown to affect TP load directly and negatively associated 
with a path coefficient of –0.653. 

3.5  Robustness of modified export coefficient model 

The relative error of TN load in the simulation results was 233.31% of ECM and –16.72% of 
modified ECM, which was increased by 92.8% in the simulation accuracy (Table 2). The 
relative error of TP load in the simulation results was 376.73% of ECM and –80.82% of 
modified ECM, with a 78.5% increase in the simulation accuracy (Table 2). The results re-
vealed that the modified ECM showed more accurate in simulating TN and TP loads than 
ECM. It also proved that introducing five correction factors to ECM was feasible. The sim-
ulation accuracy of TP load was lower than TN load. Some studies have found that ECM is 
more sensitive in nitrogen load simulation because phosphorus is mostly absorbed by sedi-
ment (Wang et al., 2015). 
 

Table 2  Comparison on pollutant loads of simulation accuracy between export coefficient model and modified 
export coefficient model in Minjiang River watershed (2020) 

Pollutant Observation (t) ECM (t) Re (%) Modified ECM (t) Re (%) 

Total nitrogen 5053.78 16844.73 233.31 4208.97 –16.72 

Total phosphorus  454.47  2166.58 376.73   87.15 –80.82 
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4  Discussion and conclusions 

4.1  Discussion 

4.1.1  The relationship between driving factors and pollutant loads 

The annual rainfall ranged from 835 to 2209 mm in the study area, which increased from the 
east to the west (Figure S3). The spatial trend of rainfall driving factor for TN and TP were 
in accordance with rainfall (Figure S4). The rainfall is a vital factor during NPS pollution 
happening, such as precipitation intensity, lasting time and spatial heterogeneity. The annual 
precipitation in the upper reach of Yangtze River was about 850 mm, and rainfall driving 
factor values were from 0.26 to 3.08 (DN) and from 0.24 to 2.91 (DP) (Ding et al., 2010). 
The annual average rainfall in Huangqian Reservoir Basin was 721.51 mm, and rainfall 
driving factor values were from 1.083 to 1.242 (TN) and from 1.216 to 1.393 (TP) (Hou et 
al., 2022). Topographical heterogeneity can influence the NPS pollution to a large extent and 
it can be described by terrain impact factor. Slope affects the flow rate of runoff, and ulti-
mately affects the nutrients loss (Li et al., 2006; Shen et al., 2008). The terrain impact factor 
values ranged from 0 to 2.8407 in the study area, which were in keeping consistence with 
DEM (Figure S4). Runoff from surface to water system is a significant way controlling the 
movement of nutrient pollutant (Zhang and Huang, 2011). Some studies about basins over 
the world had been confirmed that high runoff amount was conducive to soil nitrogen re-
moval followed by entering to water system (Stalnacke et al., 1999; Tomer et al., 2003). 
Runoff index of TN showed an increasing trend from the west to the east (Figure S4). How-
ever, runoff index of TP was not the same as that of TN resulted from soil erosion. P is 
tightly bound to soil particles in most cases (Caraco and Cole, 2001; Braskerud, 2002). 
Leaching index ranged from 0 to 1 and most of the study area maintained a large leaching 
index (Figure S4). Previous studies indicated that nitrate was difficult to be adsorbed by soil 
and plants due to its negatively charged, and it was easy to infiltration through soil solution 
(Kiese et al., 2011). The width and slope of vegetation buffer zone can affect the physical 
retention of P (Uusi-Kämppä et al., 2000). Some other factors such as vegetation area also 
play a role in physical retention of P (Karr and Schlosser, 1978). However, compared to oth-
er factors, vegetated buffer strips width and slope had the greatest impact on retention of P 
from comprehensively overland flow (Zhang et al., 2010). The larger the width of the inter-
ception band and the smaller the slope, the higher the interception efficiency (Syversen, 
2005; Ziegler et al., 2006; Roberts et al., 2012). Landscape intercept index showed signifi-
cant spatial heterogeneity (Figure S4), because different land uses had different interception 
efficiency including the effect of woodland or grassland being significant (Duchemin and 
Hogue, 2009). 

Compared with other study areas, the Chengdu Plain had relatively lower TN and TP load 
intensities, e.g. the Fujiang watershed (3.38 t km–2; 0.24 t km–2) (Shen et al., 2011), the Jin-
jiang River watershed (2.23 t km–2; 0.11 t km–2) (Chen et al., 2013), the Fuji River Catch-
ment (NO3-N load 803 t yr–1; PO4-P load 659 t yr–1) (Delkash et al., 2014), the Redon (TP 
load 0.25 t km–2) (Pilleboue and Dorioz, 1986). These differences were reasonable because 
the spatial scales of the above studies were larger than the present study area. In addition, 
land use types also contributed to these differences. Compared with these previous studies, 
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dry fields were dominant in land uses, whereas the major land use type was paddy field in 
our study. There were obvious differences between the export coefficient of dry land and 
paddy field, which the former was significantly larger than the latter (Shen et al., 2011). An-
other reason was that other factors besides rainfall driving factor and terrain impact factor 
were involved in modified ECM of this study. These factors demonstrated the whole process 
by which pollutants enter a water body. Hence, the NPS pollutant loads were lower than 
those in other study areas. 

4.1.2  Contributions of modified export coefficient model factors to non-point source pol-
lution risks 

Previous study has reported that human activities including rural life and livestock hus-
bandry have become the important factors of NPS pollution (Follett and Delgado, 2002; Hou 
et al., 2017). Additionally, the eutrophication level of water in Taihu Lake basin has in-
creased in recent years, which has been resulted from the contribution rate of household 
wastewater and solid waste to more than 46% of TP load (Liu et al., 2013). Rural life and 
livestock husbandry were also two main sources for NPS pollution in the Chengdu Plain 
with a proportion of 78.53% for TN. The lack of sewage and treatment facilities in rural ar-
eas of the Chengdu Plain led to NPS pollutants entering the water system through runoff. In 
addition to the above reason, farmers usually used more than sufficient fertilizers in order to 
increase crop yields, but this has caused environment pollution. However, fertilizer residues 
as the N-rich and P-rich pollutants were not effectively managed. It has been indicated that 
conventional tillage was less available to reduce pollutants in water than no-tillage (Chen et 
al., 2013). 

Geomorphic features have shown negative effect to NPS pollution loads because the slope 
condition was a key factor for pollutant loss especially the slope below 15° (Figure 6) (Geng 
et al., 2016). As the slope increases, the area of cropland and vegetation surfaces will be 
reduced. On the contrary, land cover such as forest and grassland can effectively reduce TN 
load and TP load. According to Figure 3, TN and TP loads along the river system were larger 
than other area. Therefore, it is necessary to pay attention to NPS pollution in gentle slope 
area and restrict agricultural planting and livestock breeding activities along the river (Li et 
al., 2004; Delgado et al., 2008). As for TN load, the contribution rate of hydrometeorology 
factor was relatively low, perhaps because the spatial heterogeneity of rainfall was weaker 
than human activities and other economic factors. However, hydrometeorology factor such 
as rainfall and runoff could affect soil erosion that directly influenced TP load. As mentioned 
above, P is usually closely bound to soil particles, which is the reason why the contribution 
of hydrometeorological factors to TP load is much greater than that to TN load. 

4.2  Conclusions 

Based on geomorphic features, hydrometeorological characteristics and human activities, 
modified ECM was developed and integrated to assess TN and TP spatial losses of agricul-
tural NPS and assist NPS pollution control. Rainfall driving factor (α) and terrain impact 
factor (β) were involved in modified ECM to describe the spatial heterogeneity of rainfall 
and terrain. Runoff index (RI) simulated the influence of runoff on agricultural NPS pollu-
tion. In the process of pollutant migration, groundwater runoff was an important way for the 
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loss of agricultural non-point source pollutants, so leaching index (LI) was introduced. Sim-
ilarly, vegetation interception cannot be ignored since landscape intercept index (LII) ought 
to be considered as a factor in modified ECM. Besides, based on the partial least squares 
path modeling (PLSPM), by considering the impact of regional physical geography, hydro-
meteorology, human activities and land use, we explored the relationship between pollutant 
loads and modified ECM factors. The results showed that hydrometeorology factor and hu-
man activities were the most critical factors to TP load and TN load, respectively, which 
should be the focus of agricultural NPS control. The two factors were the initial parameters 
in ECM and the remaining factors still had an effect on pollutant loads, which were evidence 
for the rationality of modified ECM. In conclusion, the whole process of agricultural NPS 
pollutant migration had been considered into this study. Modified ECM can be used to fur-
ther analyze the characteristics of agricultural NPS pollutant loads in large watersheds, 
providing a new way to support NPS pollution management. 
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