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Abstract: Since the launch of China’s reform and opening up policy, the process of urbaniza-
tion in China has accelerated significantly. With the development of cities, inter-city interac-
tions have become increasingly close, forming urban agglomerations that tend to be inte-
grated. Urban agglomerations are regional spaces with network relationships and hierarchies, 
and have always been the main units for China to promote urbanization and regional coor-
dinated development. In this paper, we comprehensively consider the network and hierar-
chical characteristics of an urban agglomeration, while using urban flow to describe the in-
teractions of the inter-city networks and the hierarchical generalized linear model (HGLM) to 
reveal the hierarchical driving mechanism of the urban agglomeration. By coupling the HGLM 
with a cellular automata (CA) model, we introduced the HGLM-CA model for the simulation of 
the spatial expansion of an urban agglomeration, and compared the simulation results with 
those of the logistic-CA model and the biogeography-based optimization CA (BBO-CA) model. 
According to the results, we further analyzed the advantages and disadvantages of the pro-
posed HGLM-CA model. We selected the middle reaches of the Yangtze River in China as the 
research area to conduct this empirical research, and simulated the spatial expansion of the 
urban agglomeration in 2017 on the basis of urban land-use data from 2007 and 2012. The 
results indicate that the spatial expansion of the urban agglomeration can be attributed to 
various driving factors. As a driving factor at the urban level, urban flow promotes the evolu-
tion of land use in the urban agglomeration, and also plays an important role in regulating 
cell-level factors, making the cell-level factors of different cities show different driving effects. 
The HGLM-CA model is able to obtain a higher simulation accuracy than the logistic-CA 
model, which indicates that the simulation results for urban agglomeration expansion con-
sidering urban flow and hierarchical characteristics are more accurate. When compared with 
the intelligent algorithm model, i.e., BBO-CA, the HGLM-CA model obtains a lower simulation 
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accuracy, but it can analyze the interaction of the various driving factors from a hierarchical 
perspective. It also has a strong explanatory effect for the spatial expansion mechanism of 
urban agglomerations. 

Keywords: urban flow; hierarchical characteristics; cellular automata; driving mechanism; spatial expansion; 
urban agglomeration; middle reaches of the Yangtze River 

1  Introduction 

Since the implementation of China’s reform and opening up policy in 1978, the process of 
urbanization in China has accelerated significantly. With the continuous strengthening of 
economic, population, transportation, and information links, inter-city interactions are be-
coming closer (Wang et al., 2016). By taking cities as “nodes” and the inter-city interactions 
as “lines”, it is possible to generate a network structure across urban spaces, representing an 
urban agglomeration that tends to be integrated (Fang et al., 2014). The Yangtze River Delta, 
Pearl River Delta, and Beijing-Tianjin-Hebei agglomerations, and 19 other urban agglomer-
ations approved as part of the “13th Five-Year Plan” (2016‒2020), contain 73.63% of Chi-
na’s population and create 90.87% of the country’s GDP from only 32.67% of the land 
(Zhang, 2020). Urban agglomerations have thus become an important part of promoting new 
urbanization and leading regional development, and have become increasingly prominent in 
China’s economic and social development pattern. The “14th Five-Year Plan” (2021‒2025) 
clearly states that urban agglomerations should be the main body to promote coordinated 
regional development and new urbanization. Therefore, studying the spatial expansion of 
urban agglomerations is of great significance for promoting regional coordinated develop-
ment and cultivating modern metropolitan areas. 

Simulation and prediction are important components when studying the spatial expansion 
of urban agglomerations, and they are of both theoretical and practical value when identify-
ing the development trends of urban agglomerations and planning the future patterns of ur-
ban agglomerations. The existing research has generally focused on the simulation and pre-
diction of urban spatial expansion, for which the cellular automata (CA) model is an im-
portant method for simulating urban expansion (Wu et al., 2019). In the 1970s, Tobler (1970) 
discovered the advantages of the CA model in solving geographic problems, and used it to 
simulate the urban expansion of Detroit in the U.S. Through in-depth investigation of geo-
graphic CA theory (Couclelis, 1985; 1989), the CA model has been further developed and 
improved, and models such as CA-Markov (Luijten, 2003) and Logistic-CA (Wu et al., 1997) 
have been widely used. However, most of the existing studies have focused on the coupling 
of the CA model and intelligent algorithms, and have usually combined the CA model with 
other models such as multi-agent systems (MAS) (Yang et al., 2007), artificial neural net-
works (ANNs) (Li et al., 2002; Xie et al., 2020), the maximum entropy (MaxEnt) model 
(Wang et al., 2020; Zhang et al., 2020), and biogeography-based optimization (BBO) (Wang 
et al., 2017). This was done to make up for the defects of the CA model and make the simu-
lation effect closer to real urban expansion. The above-mentioned studies have usually 
aimed to improve the existing methods, with the goal of mining cell transformation rules and 
improving the model simulation accuracy. Furthermore, most of these studies have focused 
on the expansion of a single city space, and have ignored the impact of inter-city interaction. 
In addition, although the combination with artificial intelligence algorithms can improve the 
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simulation accuracy, the intelligent algorithms are mostly black box models, and they lack 
the ability to analyze the driving mechanism of urban expansion. 

As the highest spatial organization form of urban development in the mature stage, urban 
networks (Wu et al., 2015) and urban hierarchies (Zhang et al., 2020) coexist in urban ag-
glomerations. Therefore, the simulation of the spatial expansion of an urban agglomeration 
differs from that for a single city. It is therefore necessary to consider the network interaction 
between cities and the hierarchical nature of urban agglomerations. In an urban spatial ex-
pansion model, urban network interaction usually refers to the flow of various factors such 
as economy and population between cities, i.e., the “urban flow”, which is an important 
form of interaction and connection between cities. The existing studies have mainly taken 
the impact of urban interaction into account from the following two aspects. The first aspect 
is to improve the traditional CA model by characterizing the city flow. For example, He et al. 
(2016) quantified the city flow and embedded it as a conversion rule in the CA model to 
simulate the sprawl of urban agglomerations, and found that the simulation accuracy was 
improved after considering the urban flow. He et al. (2017) combined urban flow and a 
gravity model to simulate and predict the expansion of the Wuhan urban agglomeration, and 
concluded that urban flow has a significant impact on land-use changes in urban agglomera-
tions. Xia et al. (2019) introduced bidirectional flow to improve the traditional gravity mod-
el, and constructed a model from the three perspectives of “macro”, “meso”, and “micro” 
(Xia et al., 2020), confirming that urban flow is an important driving factor of urban ag-
glomeration, and that simulation results considering urban flow are usually more accurate. 
The second aspect is to combine an interactive model to reflect the inter-city long-distance 
connections and predict the urban land-use demand in different regions, while integrating 
the interactive model into the CA conversion rules. For example, Chen et al. (2019) incor-
porated the multi-region input-output (MRIO) model to describe the urban flow of land ele-
ments, and simulated nationwide urban expansion on the basis of estimating the relationship 
between urban land supply and demand, obtaining good simulation results. It can therefore 
be seen that, when simulating the spatial expansion of large-scale areas such as urban ag-
glomerations, urban flow is one of the factors that cannot be ignored. The hierarchical char-
acteristics of cities have also gradually attracted the attention of the academic community, 
but different people have different opinions on the understanding of urban hierarchies. The 
related research has also been based on different perspectives. For example, Sun et al. (2020) 
considered multi-level planning management and control, and built a multi-level vector CA 
model based on the hierarchical relationships in the urban planning system, which was used 
to simulate the land-use changes in the city of Jiangyin, China. Shu et al. (2020) considered 
the hierarchical characteristics of the land-use system and divided it into two levels‒the cell 
and the township‒and built a multi-level logistic‒CA model to simulate the urban expansion 
of Tongshan District in the city of Xuzhou, China. The above-mentioned studies considering 
urban hierarchical characteristics have usually obtained superior simulation results. However, 
the existing studies are generally small in spatial scale, and most of them are limited to the 
simulation of spatial clusters within the city scale, without paying attention to the hierar-
chical problem of urban agglomeration expansion. The urban agglomeration system is 
formed by the agglomeration of multiple cities, with a wide range of space and frequent flow 
of internal elements. It is a complex system with multiple cores and multiple levels. There-
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fore, the role of urban flow and hierarchy at the scale of urban agglomerations is important, 
and they are important factors that cannot be ignored in the study of the spatial expansion of 
urban agglomerations. 

In this paper, we consider the influence of urban network interaction when studying the 
spatial expansion of an urban agglomeration, and use urban flow to describe the interactions 
within the urban agglomeration. At the same time, taking into account the hierarchical char-
acteristics of the urban agglomeration, the hierarchical generalized linear model (HGLM) is 
used to study the hierarchical driving mechanism of the urban agglomeration evolution, and 
the HGLM-CA model is introduced to simulate the spatial expansion of the urban agglomer-
ation. Taking the urban agglomeration in the middle reaches of the Yangtze River in China 
as the study area, an empirical study was carried out to explain the driving mechanism of the 
spatial expansion of the urban agglomeration. The simulation results are then compared in 
this paper with the results of the logistic-CA model and BBO-CA model, to show the ad-
vantages and disadvantages of the HGLM-CA model. 

2  Methodology 

2.1  The hierarchical generalized linear model (HGLM) 

The HGLM was developed from the hierarchical linear model (HLM). The dependent varia-
ble of the HLM is limited to continuous data. The HGLM improves on this basis and can 
handle binary dependent variables. The HLM model is a statistical analysis method that 
considers both overall factors and individual factors, and can process data with hierarchical 
characteristics. Traditional logistic regression can only consider factors at a single level, and 
usually ignores the level differences. The high-level factors are decomposed into lower lev-
els for research, so that samples obtained from the same group are relevant and do not satis-
fy the independence assumption. The HLM overcomes the shortcomings of traditional lo-
gistic regression, and aggregates the parameters obtained after individual-level regression 
analysis, and then performs regression analysis again at the overall level, which is also 
called “regression of regression”, which can effectively process hierarchical feature data (Li 
et al., 2006). However, in practical applications, the HLM models have certain requirements 
for the number of groups of samples (Hox, 1999), and too few groups may cause the model 
to fail to converge. 

Multi-level structure data are ubiquitous (Lei et al., 2002). In the problem of the spatial 
expansion of an urban agglomeration, the urban agglomeration has hierarchical characteris-
tics. The land-use unit (cell) is embedded in the city, and the cell transition probability varies 
with the city where it is located. Therefore, the independent variables used to describe cel-
lular characteristics are the individual variables at a lower level (level 1), while the inde-
pendent variables used to describe urban characteristics are the group variables at a higher 
level (level 2), and group variables within the same city have the same value. In this paper, 
the urban agglomeration is divided into a cell level (level 1) and a city level (level 2). The 
formulas are as follows: 

Level 1: 
 ( )1Sij ij ijP y j= =  (1) 
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where PSij(yij=1) is the suitability of the cell with regard to being transformed into urban land, 
ηij is the vector describing the state transition of the cell, and Xnij denotes the nth independ-
ent variable of cell i located in city j in the cell level (level 1). k is the number of independ-
ent variables in the cell level, β0j is a random intercept, βnj is the regression coefficient of Xnij, 
Wmj is the mth independent variable of city j in the city level (level 2), and l is the 
self-independent variable in the city level. The number of variables, γ00 and γn0, are the in-
tercepts of β0j and βnj, respectively. γ0m and γnm are the regression coefficients of Wmj, and μ0j 
and μnj are residual items. 

2.2  The hierarchical generalized linear model-cellular automata (HGLM-CA) model 

2.2.1  Obtaining weight parameters based on the HGLM 

Establishing a null model is the first step in applying the HGLM. The purpose is to deter-
mine whether the data are suitable for stratified research by calculating the intraclass corre-
lation coefficients (ICCs). The ICC is the ratio of the variance between groups to the total 
variance. The larger the ICC value, the greater the influence of the difference between the 
groups on the dependent variable, i.e., the greater the probability of the cell state transition 
being affected by the city-level factors, and the more the city-level factors cannot be ignored. 
Generally speaking, ICC<0.059 is considered as low intra-group correlation, 0.059≤ 

ICC<0.138 is moderate intra-group correlation, and ICC≥0.138 is high intra-group correla-
tion. The ICC can be calculated as follows: 
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2

00( )
ICC τ

τ σ
=

+  
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where τ00 is the variance between groups and σ2 is the intraclass variance. 
The cell-level and city-level variables are added into the empty model to obtain the ran-

dom covariate model and the random intercept model, which can verify the significance of 
the influence of the cell-level and city-level variables on the dependent variable and the ex-
planation degree of the variance. Two levels of variables are added into the model to build 
the full model, and the weight parameters of each variable and the relationship between the 
variables are then obtained (Figure 1). 
2.2.2  CA transition rules for urban agglomerations 

Defining transition rules is the core of a CA model (Li et al., 2007). In this paper, we com- 
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Figure 1  Flowchart of parameter acquisition based on the HGLM 
 

prehensively consider the influence of the cell state transition suitability, the constraint con-
ditions, and the neighborhood effects to construct the CA model transition rules. Since the 
follow-up experiments involved the accuracy comparison of different models, the conver-
sion rule does not include stochastic perturbation, for the time being, which can be ex-
pressed as: 
 ( ) Ωij Sij ij ijP P con S= × ×  (7) 

where ijP is the cell transition probability and SijP is the cell state transition suitability, as ob-

tained by the HGLM: 
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where ( )ijcon S  is the constraint condition. The areas that are not allowed to be developed 

(such as water areas) are assigned a value of 0, and the others are assigned a value of 1. 
Ωij is the effect of the neighborhood. In this study, a 3×3 Moore neighborhood was se-

lected for the research. The influence of the neighborhood on the cell transformation is as 
follows: 

 
( )1

3 3 1
ij

ij

con S =
Ω =

× −
∑  (10) 

A conversion threshold is set to determine whether the cell state will change. According to 
the number of cell transformations and the number of iterations, the number of cells that 
needs to be transformed in each iteration is obtained. We calculate the cell transition proba-
bility P, and arrange the cells that can be transformed according to the probability. The cell 
probability corresponding to the number of iterations is selected as the transition threshold 

thresholdP to determine whether the cell state has changed. The state of the cell at the next 
moment is then: 
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In this paper, the intensity of the urban flow is used to describe the interaction between cit-
ies, and the HGLM is used to analyze the hierarchical driving mechanism of the spatial expan-
sion of the urban agglomeration. The weights of the driving factors at different levels and their 
mutual relations are obtained as parameters of the CA model, and the HGLM-CA model is 
constructed to simulate the spatial expansion of the urban agglomeration (Figure 2). 

 

 
 

Figure 2  Framework of the HGLM-CA model 

3  Implementation and results 

3.1  Study area and data sources 

In this study, the urban agglomeration in the middle reaches of the Yangtze River was se-
lected as the study area, covering 31 cities in total, including Wuhan, Changsha, and Nan-
chang (Figure 3). The urban agglomeration in the middle reaches of the Yangtze River is a 
cross-regional national-level urban agglomeration that has been approved by the State 
Council of the People’s Republic of China. It is a key area for coordinating regional devel-
opment and promoting new urbanization. The urban agglomeration in the middle reaches of 
the Yangtze River covers a wide range of land, and there are differences in the economic 
strengths and urbanization levels of the cities. Wuhan had a permanent urban population of 
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more than 9 million in 2019, with an urbanization rate of more than 80% (WSB, 2020), and 
has become a core city in central China. The permanent resident population and per capita 
GDP of Changsha and Nanchang are in the forefront, while the comprehensive strength of 
cities such as Huanggang and Yiyang is still weak. It can therefore be seen that the devel-
opment situations of the cities in the middle reaches of the Yangtze River are significantly 
different. 

 
 

Figure 3  Location of the study area (the urban agglomeration in the middle reaches of the Yangtze River) 
 
The data required for the research included land-use data from 2007, 2012, and 2017, 

road data, and urban flow data for the city cluster in the middle reaches of the Yangtze River 
(Table 1). 

 
Table 1  The sources of data 

Data name Data specification Data source 

Land-use 
data 

The impervious surface data of urban areas are obtained by using 
the reliable impervious surface mapping algorithms and GEE 
platform with a resolution of 30 m×30 m. The impervious sur-
face is regarded as urban land, while the others are non-urban 
land, which is resampled to 90 m ×90 m 

Published by Gong et al. (2019), 
Tsinghua University 
(http://data.ess.tsinghua.edu.cn/) 

Road data Shapefile data including railways, thruways and national high-
ways 

Resource and Environment Sci-
ence and Data Center 
(http://www.resdc.cn/) 

DEM Based on the latest SRTM V4.1 data after collation and stitching, 
the resolution is 90 m×90 m 

Resource and Environment Sci-
ence and Data Center 
(http://www.resdc.cn/) 

Urban flow 
data 

According to statistical yearbook data and big data of spa-
tio-temporal geography, models of economic flow, population 
flow, traffic flow, and information flow (Wang et al., 2018; Zhai, 
2019) are constructed separately to obtain the intensity of each 
element flow, and the weighted average of the four element 
flows to obtain the urban flow intensity. 

See references (Zhai, 2019) 
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3.2  Operation and simulation of the HGLM-CA model 

The 2007, 2012, and 2017 land-use data were selected for the research. The first two phases of 
data (2007 and 2012) were used for the model parameter calibration, and the last phase of data 
(2017) was used for the model validation. In this study, nine spatial driving factors were se-
lected in the experiments, i.e., urban flow intensity, elevation, slope, the Euclidean distance to 
city centers, the Euclidean distance to district and county centers, the Euclidean distance to 
railways, the Euclidean distance to national highways, the Euclidean distance to thruways, and 
the Euclidean distance to water (Figure 4). Under the ArcGIS platform, each driving factor 
was processed and standardized, and the area where the land-use status changed from 
non-urban land to urban land was extracted by overlay analysis. After random sampling, outli-
ers were eliminated to obtain training samples. Due to the large research scope and calculation 
efficiency, 3,000 and 30,000 samples were selected from the transformed and untransformed 
areas, respectively, for the experiments conducted in this study. Variable parameters were ob-
tained through the HGLM, which were then substituted into the CA model to obtain the simu-
lation results. 

 

 
 

Figure 4  Driving factors of urban agglomeration spatial expansion in the middle reaches of the Yangtze River 

3.3  Hierarchical driving mechanism of the spatial expansion of urban agglomerations 

The spatial expansion of an urban agglomeration is the result of the combined effects of the 
different driving factors, and the analysis of the driving mechanism is of great significance 
to the development and planning of urban agglomerations (Wang et al., 2018). In this study, 
we built the HGLM using HLM 6.08 software, and analyzed the hierarchical driving mech-
anism of the urban agglomeration in the middle reaches of the Yangtze River. Firstly, an 
empty model was constructed for ANOVA, and the preliminary running results are listed in 
Table 2. According to Table 2, both the intercept mean (γ00) and slope mean (μ0) exist (P < 
0.01). The inter-group variance is 0.431. The variance of the logistic regression residual is 
usually π2/3, and ICC = 0.116 could be obtained here, indicating that 11.6% of the variance 
is caused by the different cities where the cells were located. Therefore, the differences be-
tween the different cities could not be ignored, and a hierarchical analysis was necessary. 
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Table 2  ANOVA results of the HGLM 

Fixed effect Coefficient Standard 
error T-ratio P-value Random 

effect 
Standard 
Deviation 

Variance 
Component Chi-square P-value 

γ00 ‒2.081 0.120 ‒17.337 0.000 μ0 0.657 0.431 1571.213 0.000 
 

By constructing a random covariate model, a random intercept model, and a complete 
model, the independent variables were screened in several experiments, and were divided 
into explanatory variables and control variables. 

The driving factors for the spatial expansion of the urban agglomeration were divided into 
the following levels: 

Cell-level (level 1) independent variables, including distance to city centers, distance to 
district and county centers, distance to railways, distance to water, distance to national 
highways, distance to thruways, elevation, and slope. Among the variables, distance to city 
centers, distance to district and county centers, and distance to railways were used as ex-
planatory variables. The other variables were considered to be control variables. 

City-level (level 2) independent variables, referring to the intensity of the urban flow. The 
intensity of the urban flow varied between cities, and the intensity of the urban flow in the 
same city was the same. The dependent variable was a binary variable, where 1 meant that 
the cell was converted to urban land, and 0 meant that the state of the cell had not changed. 

The final construction of the HGLM is shown in Figure 5. After running the HGLM, the 
parameter identification results were obtained (Table 3). 

 

 
 

Figure 5  Schematic diagram of the HGLM 
 

According to the parameter identification results, urban flow is positively correlated with 
the cell state transition probability (γ01 > 0), indicating that the urban flow has a significant 
impact on the spatial expansion of the urban agglomeration. The higher the intensity of the 
urban flow in a city, the easier it is for the cells in the city to transform into urban land. 
Among the independent variables, the coefficient β1 of distance to city centers has the larg-
est weight, which reflects that city centers have a greater influence on the cell transition 
probability. The distance to city centers γ10 and the effect of city flow on the distance to city 
centers γ11 are negatively correlated with the cell state transition probability, indicating that  
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Table 3  Variable parameter identification results of the HGLM 

  Coefficient P   Coefficient P 

Intercept: Control variables: 

Level 1 intercept β0     Elevation     

Intercept γ00 ‒1.429 0.000 Intercept γ40 ‒0.592 0.000 

Urban flow γ01 0.947 0.000 Slope     

Independent variables： Intercept γ50 ‒1.764 0.000 

Distance to city centers β1     Distance to water     

Intercept γ10 ‒3.261 0.000 Intercept γ60 0.313 0.315 

Urban flow γ11 ‒8.176 0.000 Distance to national  
highways     

Distance to district and county 
centers β2     Intercept γ70 ‒0.486 0.111 

Intercept γ20 ‒1.899 0.001 Distance to thruways     

Urban flow γ21 ‒1.790 0.206 Intercept γ80 ‒0.297 0.391 

Distance to railways β3           

Intercept γ30 ‒1.338 0.048       

Urban flow γ31 4.752 0.021       

 
the existence of urban flow aggravates the impact of the distance to city centers variable, 
making it easier for land units closer to the city centers to be transformed into urban land, 
while making it more difficult for land units farther away from city centers to be trans-
formed into urban land. This phenomenon is more obvious in areas with a higher intensity of 
urban flow. Distance to the district and county centers has an impact on the spatial expansion 
of the urban agglomeration that is second only to that of city centers, but the effect of urban 
flow on the district and county centers is not significant (γ21 = −1.790, P > 0.1). Among the 
road factors, railways make a greater contribution to urban expansion, and urban flow has an 
obvious regulating effect on railways, which means that the influence of railways on the cell 
transition probability presents different effects in different cities. Since the cell transition 
probability is negatively correlated with the distance to railways γ30, and positively corre-
lated with the effect of urban flow on the distance to railways γ31, in cities with a low inten-
sity of urban flow, the effect of the urban flow is relatively weak, which weakens the influ-
ence of railways on the cell transition probability. In areas with a high intensity of urban 
flow, the influence of urban flow on the railway factors gradually appears with the increase 
of the urban flow, and it is very likely that the coefficient β3 of the distance to railways will 
change from negative to positive. Therefore, in cities with a higher level of economic and 
social development, the more likely it is that land units farther away from railways are con-
verted to urban land. Among the control variables, elevation γ40 and slope γ50 have a great-
er impact on the spatial expansion of the urban agglomeration, reflecting that topography is 
still one of the important factors restricting urban development, and topography and land-
form play a certain role in shaping urban form. 

From the HGLM analysis results, it can be seen that the urban flow, as a high-level 
(city-level) factor, not only has a significant positive impact on the cell transition probability, 
but also adjusts the degree of influence of the low-level (cell-level) independent variables on 
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the cell transition probability. Furthermore, the same driving factor presents different effects 
in different cities. 

3.4  Analysis of the HGLM-CA simulation results 

The logistic model and the BBO model were used to obtain nine driving factor parameters, 
including the intensity of urban flow, and the logistic-CA model and the BBO-CA model 
were constructed and simulated. The simulation results of the HGLM-CA, logistic-CA, and 
BBO-CA models are shown in Figure 6. In this paper, the three indices of overall accuracy 
(OA), Kappa, and figure of merit (FoM) are used to evaluate the simulation results. The 
HGLM-CA model was compared with the logistic-CA and BBO-CA models, and the com-
parison results are shown in Table 4. 

Comparing the simulation results, it can be found that the overall simulation effect of the 
BBO-CA model is better than that of the HGLM-CA model, and the HGLM-CA model per-
forms better than the logistic-CA model. Among the different models, the OA and Kappa 
values are relatively close, and the FoM value of the BBO-CA model is significantly higher 
than that of the other two models. Compared with the actual status of the land use in 2017, 
the simulation accuracies for the different cities are different. For example, the logistic-CA, 
HGLM-CA, and BBO-CA models show a poor simulation effect in Wuhan, especially in the 
marginal areas where a lot of urban land is not identified. However, the simulation effects of 
the three models in Nanchang and Jingdezhen were generally good, with high values of  
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Figure 6  Comparison of the simulation results of the urban spatial expansion models in the middle reaches of 
the Yangtze River for 2017 
 
OA,Kappa and FoM, In addition, the FoM value is significantly higher than that in other 
areas, at above 0.25. Furthermore, the simulation accuracies of the different models in the 
same city are also quite different. Due to the small difference between the OA and Kappa 
values of the three models, the simulation results are evaluated according to the FoM value. 
For FoM, the BBO-CA model shows the best simulation effect in most of the cities in the 
middle reaches of the Yangtze River, especially in Hunan and Hubei provinces, where the 
FoM values are generally higher than those of the other two models. In Xinyu and Pingxiang, 
the simulation accuracy of the HGLM-CA model is the best, with FoM values of 0.27223 
and 0.17084, respectively. The FoM value of BBO-CA is slightly lower than that of 
HGLM-CA. In Nanchang, the logistic-CA model shows a good simulation effect, where the 
FoM value is 0.25614, which is slightly higher than that of the BBO-CA and HGLM-CA 
models. However, in cities such as Xiangyang and Xinyu, the FoM values of the logistic-CA 
model are all lower than 0.10, which is far from the simulation accuracy of the other two 
models. 

HGLM-CA divides the driving factors into two levels, and the intensity of the urban flow 
is used as the city-level factor to adjust the cell-level factors. Overall, the OA, Kappa, and 
FoM values of HGLM-CA are slightly improved when compared to logistic-CA, and the 
simulation effect is better than that of logistic-CA in most cities, indicating that considering   
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Table 4  Comparison of the simulation accuracies of the urban spatial expansion models in the middle reaches of 
the Yangtze River for 2017 

  HGLM-CA Logistic-CA BBO-CA 

  OA Kappa FoM OA Kappa FoM OA Kappa FoM 

Overall 
accuracy 

Urban ag-
glomeration 0.99436 0.79872 0.18085 0.99427 0.79574 0.17374 0.99455 0.80567 0.19779 

Local 
accuracy 

Wuhan 0.95525 0.78844 0.14126 0.93924 0.74020 0.18817 0.94952 0.77246 0.18303 

Huangshi 0.97859 0.81788 0.17746 0.98138 0.83651 0.16789 0.98146 0.83816 0.18391 

Yichang 0.99445 0.78486 0.20519 0.99461 0.78646 0.18571 0.99448 0.78702 0.21576 

Xiangyang 0.99498 0.82902 0.15516 0.99514 0.82517 0.03963 0.99475 0.82610 0.19173 

Ezhou 0.94591 0.69046 0.14923 0.95070 0.70959 0.15293 0.96023 0.75093 0.16121 

Jingmen 0.99516 0.82205 0.11262 0.99563 0.83010 0.01952 0.99485 0.81586 0.14256 

Xiaogan 0.98711 0.77240 0.17225 0.98773 0.77889 0.16251 0.98763 0.77942 0.17561 

Jingzhou 0.99185 0.78990 0.15924 0.99196 0.79076 0.14808 0.99238 0.80328 0.18866 

Huanggang 0.99170 0.76696 0.15049 0.99208 0.77326 0.14080 0.99192 0.77603 0.18343 

Xianning 0.99392 0.82252 0.12214 0.99464 0.83704 0.08533 0.99347 0.81337 0.13292 

Xiantao 0.99208 0.83366 0.00041 0.99204 0.83445 0.02894 0.99065 0.82169 0.16428 

Qianjiang 0.98856 0.81205 0.04288 0.98857 0.81206 0.04001 0.98702 0.80615 0.18890 

Tianmen 0.99343 0.79276 0.01163 0.99346 0.79249 0.00210 0.99301 0.80157 0.19527 

Changsha 0.97542 0.79792 0.19991 0.97230 0.78174 0.21561 0.97574 0.80148 0.21485 

Zhuzhou 0.98999 0.77736 0.18150 0.99006 0.77920 0.18720 0.99081 0.79106 0.18815 

Xiangtan 0.97724 0.75437 0.21572 0.97718 0.75427 0.21746 0.98161 0.78615 0.20658 

Hengyang 0.99068 0.77667 0.20602 0.99089 0.78041 0.20796 0.99141 0.78814 0.20171 

Yueyang 0.99359 0.81224 0.14242 0.99422 0.82528 0.12560 0.99355 0.81314 0.16095 

Changde 0.99417 0.78845 0.17407 0.99461 0.79653 0.14288 0.99435 0.79537 0.19085 

Yiyang 0.99511 0.78612 0.18180 0.99544 0.79554 0.17560 0.99578 0.80790 0.18663 

Loudi 0.99284 0.80869 0.19307 0.99392 0.82569 0.13254 0.99350 0.82162 0.19003 

Nanchang 0.96873 0.79236 0.25293 0.96683 0.78406 0.25614 0.97187 0.80732 0.25144 

Jingdezhen 0.98913 0.79545 0.27337 0.98991 0.80425 0.26468 0.99082 0.81581 0.25770 

Pingxiang 0.98945 0.79041 0.17084 0.99075 0.79585 0.01749 0.98967 0.79303 0.16650 

Jiujiang 0.99296 0.80933 0.21376 0.99308 0.81093 0.20696 0.99303 0.81233 0.22926 

Xinyu 0.98812 0.85138 0.27223 0.99066 0.86902 0.09938 0.98876 0.85730 0.26929 

Yingtan 0.98118 0.73188 0.23667 0.98301 0.74787 0.23628 0.98613 0.77889 0.23856 

Ji’an 0.99532 0.77351 0.20956 0.99562 0.78092 0.19306 0.99591 0.79410 0.21761 

Yichun 0.99310 0.81064 0.12226 0.99302 0.80679 0.09893 0.99240 0.80345 0.18943 

Fuzhou 0.99558 0.80872 0.17760 0.99598 0.81430 0.09066 0.99566 0.81252 0.19129 

Shangrao 0.99397 0.79382 0.16224 0.99446 0.80489 0.14914 0.99459 0.81160 0.18193 
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the hierarchy of the urban agglomeration can improve the simulation accuracy of the CA 
model, to a certain extent. At the same time, it shows that there is a problem of underfitting 
when the logistic regression identifies the CA parameters, and the simulation effect is poor. 
After considering the hierarchical influence, the HGLM-CA model can mine the transition 
rules more deeply and obtain a better simulation effect. Compared with BBO-CA, the OA 
and Kappa values of the two other models are not much different, but the FoM value of the 
HGLM-CA model is significantly lower than that of the BBO-CA model, and the simulation 
accuracy in most cities is lower than that of BBO-CA. This shows that, compared with intel-
ligent algorithms, the HGLM still has certain limitations in obtaining parameters. Although 
the BBO-CA model obtains the highest simulation accuracy, it is unable to analyze the driv-
ing mechanism. 

4  Conclusions 

Compared with the spatial expansion of a single city, the spatial expansion of an urban ag-
glomeration is more complicated. In this study, by taking into account the urban flow and 
hierarchical characteristics, we constructed the HGLM-CA model to analyze the hierarchical 
driving mechanism of the spatial expansion of an urban agglomeration, and simulated the 
spatial expansion of the urban agglomeration in the middle reaches of the Yangtze River. We 
then compared the results with the results of the logistic-CA model and the BBO-CA model. 
The main conclusions are as follows:  

(1) The urban agglomeration in the middle reaches of the Yangtze River is a large urban 
agglomeration in central China with close inter-city connections. Therefore, the influence of 
urban flow needs to be considered when analyzing the driving mechanism of its spatial ex-
pansion. In this study, we took urban flow as the driving factor at the urban level, and found 
that the intensity of the urban flow has a significant positive correlation with the spatial ex-
pansion of the urban agglomeration. Urban flow is therefore an important factor affecting 
the spatial expansion of the urban agglomeration in the middle reaches of the Yangtze River. 

(2) Since the HGLM has high requirements on the number of sample groups, the use of 
the HGLM method to analyze the hierarchical driving mechanism is more suitable for areas 
with larger scales and more partitions. Therefore, in this study, we took the urban agglomer-
ation in the middle reaches of the Yangtze River as the study area, which covers 31 cities, as 
this could effectively analyze the hierarchical driving mechanism of the urban agglomera-
tion. Through experiments, it was concluded that the intensity of the urban flow of the urban 
factors plays an important role in regulating the driving factors at the cell level. Under the 
action of urban flow, the correlation between the cell-level factors and the cell transition 
probability changes, which can weaken, strengthen or even reverse strengthen the influence 
of the driving factors on the cell conversion probability, so that the driving effect of the 
cell-level factors in different cities is different, reflecting the inter-city heterogeneity of the 
driving factors. 

(3) Compared with the traditional logistic-CA model, the OA, Kappa, and FoM values of 
the HGLM-CA model were improved, to a certain extent. Most cities in the local accuracy 
showed higher FoM values. Therefore, by considering the urban flow and hierarchical char-
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acteristics of the urban agglomerations, the simulation results were more accurate. However, 
compared with the BBO-CA model, the accuracy of the HGLM-CA model was slightly low-
er. The artificial intelligence based BBO-CA model has certain advantages in parameter ac-
quisition, and its simulation effect for the spatial expansion of urban agglomerations is better 
than that of linear models such as the HGLM-CA model. However, the aim of the BBO-CA 
model is to improve the simulation accuracy, and some parameters set in the optimization 
process can lack geographical meaning, which is not conducive to the analysis of the evolu-
tion mechanism of an urban agglomeration.  

The HGLM-CA model explains the spatial expansion mechanism of the urban agglomera-
tion by analyzing the correlation between the different levels of driving factors and the spa-
tial evolution of the urban agglomeration, as well as the regulating effect of the high-level 
factors on the low-level factors, which reflects the complex interrelationships between the 
multi-level driving factors in the spatial expansion of urban agglomerations. The HGLM-CA 
model is therefore more suitable for establishing the internal mechanism of the spatial ex-
pansion of urban agglomerations on a scientific basis. 

With the development of information technology, artificial intelligence has highlighted its 
unique advantages in remote sensing image interpretation, cartography, and other geographic 
fields. However, the traditional linear model is not completely without advantages in the 
face of the rapid rise of artificial intelligence in the relevant studies of the spatial expansion 
of urban agglomerations. 

Urban agglomerations are complex evolutionary systems. The original intention of stud-
ying the spatial expansion of urban agglomeration was to simplify the complex urban sys-
tems, to facilitate understanding and research, instead of using more complicated methods 
for simulation and prediction in exchange for a slight improvement in simulation accuracy. 
From this perspective, the improvement of the traditional linear methods and the innovation 
of smart methods are equally valuable for research. How to retain the “simplicity” advantage 
of the traditional linear models, overcome the problem of underfitting, and endow the tradi-
tional linear models with artificial intelligence are issues worth discussing and studying in 
the spatial expansion of urban agglomerations. In addition, according to the experimental 
results obtained in this study for the urban agglomeration in the middle reaches of the Yang-
tze River, the simulation results of the HGLM-CA, logistic-CA, and BBO-CA models still 
had a large gap with the actual land-use status in 2017, and there were many examples of 
unidentified urban land. Urban agglomerations are complex, and the real spatial expansion 
of urban agglomerations tends to be both fragmented and sporadic. How to understand the 
driving mechanism of the spatial expansion of urban agglomerations and the law of spatial 
and temporal differentiation to effectively support model transition rules and overall opti-
mization still needs to be explored in subsequent studies. 
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