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Abstract: We analyzed the spatial local accuracy of land cover (LC) datasets for the Qiang-
tang Plateau, High Asia, incorporating 923 field sampling points and seven LC compilations 
including the International Geosphere Biosphere Programme Data and Information System 
(IGBPDIS), Global Land cover mapping at 30 m resolution (GlobeLand30), MODIS Land 
Cover Type product (MCD12Q1), Climate Change Initiative Land Cover (CCI-LC), Global 
Land Cover 2000 (GLC2000), University of Maryland (UMD), and GlobCover 2009 (Glob-
Cover). We initially compared resultant similarities and differences in both area and spatial 
patterns and analyzed inherent relationships with data sources. We then applied a geo-
graphically weighted regression (GWR) approach to predict local accuracy variation. The 
results of this study reveal that distinct differences, even inverse time series trends, in LC 
data between CCI-LC and MCD12Q1 were present between 2001 and 2015, with the excep-
tion of category areal discordance between the seven datasets. We also show a series of 
evident discrepancies amongst the LC datasets sampled here in terms of spatial patterns, 
that is, high spatial congruence is mainly seen in the homogeneous southeastern region of 
the study area while a low degree of spatial congruence is widely distributed across hetero-
geneous northwestern and northeastern regions. The overall combined spatial accuracy of 
the seven LC datasets considered here is less than 70%, and the GlobeLand30 and CCI-LC 
datasets exhibit higher local accuracy than their counterparts, yielding maximum overall ac-
curacy (OA) values of 77.39% and 61.43%, respectively. Finally, 5.63% of this area is char-
acterized by both high assessment and accuracy (HH) values, mainly located in central and 
eastern regions of the Qiangtang Plateau, while most low accuracy regions are found in 
northern, northeastern, and western regions. 
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1  Introduction 
Land cover (LC) information is basis data for various scientific research endeavors, includ-
ing environmental science and ecology. These data are also key for understanding the sus-
tainable use of land resource as well as for government decision-making and also exert im-
portant impacts on downstream analyses. Classified LC maps have become one of the most 
important products of remote sensing (RS) surveys, enabling environmental and natural re-
sources monitoring, modeling and management from local-to-global scales (Sutherland et al., 
2009; Estes et al., 2018). In concert with the development of RS and GIS technologies, nu-
merous global and regional LC products have emerged that utilize RS images as a data 
source. Indeed, more than 20 global and regional scale LC products were available and 
freely accessible in 2016 (Grekousis et al., 2015). However, due to inconsistencies in classi-
fication systems and technologies as well as image acquisition time and spatial resolution, 
clear differences in accuracy are seen when different data are applied at regional or global 
scales (Herold et al., 2008; Gong et al., 2013). These discrepancies have seriously under-
mined the effective use of LC datasets for research in many fields (Congalton et al., 2014; 
Tsendbazar et al., 2015) and means that it is very important to analyze the accuracy of ex-
isting information in this area (Foody, 2002; Moristette et al., 2002; Wulder et al., 2014).  

Previous researchers have chosen to utilize relative assessment methods to compare over-
all area and spatial consistencies as well as differences between multiple LC datasets 
(McCallum et al., 2006; Herold et al., 2008). Studies conducted to date have also compared 
the spatial consistency of global or regional LC datasets based on different products and 
with various resolutions (Fritz et al., 2011; Kaptué Tchuenté et al., 2011) while others have 
selected a particular product for reference, Global Land Cover 2000 (GLC2000), for exam-
ple, to compare and assess the overall accuracy of other global datasets (Schultz et al., 2015). 
In other research, scholars have utilized sample points for reference in order to assess and 
validate the accuracy of global LC datasets (Stehman, 2009, 2014; Gong et al., 2013; Bai et 
al., 2015; Lei et al., 2016; Wickham et al., 2017).  

Error matrix values as well as those for overall accuracy (OA), producer’s accuracy 
(PA), and user’s accuracy (UA), have proven to be the most precise and therefore com-
monly applied statistical approaches for evaluating LC accuracy. These measures and the 
way in which they are calculated, have, however, been criticized in the past for not pro-
viding any indication of error spatial distribution, because non-stationary error distribu-
tions occur, for example, in the presence of heteroscedastic residual distributions (Comber 
et al., 2012). The appropriateness of information conveyed by an error matrix may there-
fore be limited when specific local conditions vary. In this paper, therefore, we focused on 
spatial variations in classification accuracy at the level of individual pixels (Comber et al., 
2012; Khatami et al., 2017a; Khatami et al., 2017b), and the analyses presented here are 
also based on field points and sample blocks. 

Grassland degradation, glacier retreat, lake expansions, and other eco-environmental 
changes on the Qinghai-Tibet Plateau have received increasing levels of scientific attention 
over the last 30 years (Liu et al., 2008; Yao et al., 2012; Nie et al., 2017). Indeed, land cover 
change (LCC) on the Qiangtang Plateau, the hinterland of the Qinghai-Tibet Plateau, plays a 
key role in the regional eco-environment and is thus an important component of the overall 
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plateau ecosystem. It is therefore necessary for us to take full advantage of existing data as 
well as the accuracy of currently available numerical simulations in tandem with RS inver-
sion data in order to develop comprehensive assessments (Zhang et al., 2013). A limited 
number of scientific investigations have, however, been conducted in this region because of 
the extremely harsh natural environment of the Qiangtang Plateau, and basic research data is 
therefore lacking for the development of accurate spatial predictions. 

The analyses presented in this study are based on 923 sampling points from across the 
Qiangtang Plateau as well as seven large-scale LC datasets. These datasets comprise the In-
ternational Geosphere Biosphere Programme Data and Information System (IGBPDIS) 
compilation, Global Land cover mapping at 30 m resolution (GlobeLand30), the MODIS 
Land Cover Type product (MCD12Q1), Climate Change Initiative Land Cover (CCI-LC), 
Global Land Cover 2000 (GLC2000), data collected by the University of Maryland (UMD), 
and GlobCover 2009 (GlobCover). We utilized GWR to assess local spatial accuracy and 
sought to address a number of research questions including what is the overall spatial accu-
racy of LC data available for the Qiangtang Plateau? Which areas are characterized by high 
levels of local accuracy? And which LC data compilations are more accurate for particular 
local areas on the plateau? 

2  Study area 

The Qiangtang Plateau is located between 3210–3632N and 7942–9205E and encom-
passes the northern flank of the Gangdise-Nyainqentanglha mountains, the southern Kunlun 
Mountains, the eastern Karakoram Mountains, and the western Tanggula Mountains (Figure 
1). A series of complex landforms and a cold-dry climatic regime characterizes this region. 
The Qiangtang Plateau has an average altitude of 5025 m, ranging between 4153 m and 
6854 m, an annual rainfall of 154.9 mm (Li et al., 2017), and an average temperature below 
zero degree centigrade (Yao et al., 2015). This region encompasses a vast area of alpine de-
sert grassland, being characteristic as simple vegetation type and low fractional cover of 
vegetation. In addition, the vegetation of the Qiangtang Plateau is extremely fragile because 
of the harsh weather conditions that characterize this region, and once threatened, this bio-
tope cannot be restored. 

3  Data sources and methods 

3.1  Sampling points 

The sampling points used for this analysis are uniformly distributed across the entire region 
of interest. However, because of the uneven distribution of each class and field condition 
limitations, we are unable to guarantee that the same numbers of sampling points occur 
within each category. We utilized a total of 923 sampling points, of which 163 are derived 
from previous research (Gong et al., 2013; Yang et al., 2017), alongside 152 water bodies 
data points based on Google Earth images and Panoramio photographs that are each 2 km by 
2 km in size. We also included 110 glacier samples extracted from the Second Glacier In-
ventory Dataset of China published by the Cold and Arid Regions Scientific Data Center 
(Guo et al., 2014) that are also 2 km by 2 km in size. The remaining 498 sample points used 
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here are the result of field investigations carried out by our research team between 2013 and 
2016. Our sample spatial distribution is summarized in Figure 1 while detailed descriptions 
of these data are presented in Table 1.  
 

 
 
Figure 1  Map showing the study area discussed in this analysis as well as the distribution of sampling points on 
the Qiangtang Plateau 
 

3.2  Land cover datasets 

Although more than 20 global LC products are currently available within 10 data series 
(Grekousis et al., 2015), seven were selected for this analysis (Table 2). Five of these data 
series, GlobeLand30, CCI-LC, GlobCover, MCD12Q1, and Global Land Cover 250 m 
China (GLC250 m_CN), comprise 22 datasets for different years, and one (GLC250 m_CN) 
is not currently shared publicly. We therefore selected four datasets that capture the most 
recent years from the remaining four compilations above (i.e., those released publicly prior 
to December 2016) alongside three others that comprise different series (i.e., UMD, 
IGBPDIS, and GLC2000) that have been widely applied for long-term LCC research. How-
ever, the International Satellite Land Surface Climatology Project Initiative II (ISLSCP II) 
dataset was not utilized as it actually comprises 12 distinct datasets. A further available data 
series (Geo-Wiki) was also not selected for analysis because of inherent temporal uncertain-
ties. The LCCS (Land Cover Classification System) includes FAO (Food and Agriculture 
Organization, FAO), USGS (United States Geological Survey, USGS), IGBP, Simplified 
IGBP and UN (United Nations, UN). 

3.3  Land cover data processing 

Projections based on the seven LC datasets utilized here were initially converted to Albers 
projection (Albers_Conic_Equal_Area). Next, because the classification criteria used for LC 
types were different in each case and therefore restrict direct comparisons, correspondence 
was assessed using the approach developed by Giri (2005), Herold (2008), and Ran (2010) 
to establish linkage between different classification systems. We referred to existing linkages 
between classification systems (Giri et al., 2005; Ran et al., 2010; Kaptué Tchuenté et al.,  
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Table 1  Class description of field sample points over the Qiangtang Plateau* 

LC type Number of 
sample points Definition LC type Number of 

sample points Definition 

Grassland 219 

Region mainly covered with a 
community of cold-tolerant peren-
nial herbaceous plants. In this re-
gion, this LC type mainly comprises 
meadows covered with Kobresia 
littledalei and K. pygmaea, a plant 
coverage area dominated by taxa 
with some cold tolerance, especially 
xerophytic perennial herbaceous 
species. 

Wetland 80 

Broad areas covered with 
herbs or woody plants, 
usually transitional zones 
between land and water. 

Sparse 
vegetation 53 

Plants comprise continuous vegeta-
tion that extends up to the perma-
nent snow line, as well as a zone 
encompassing coverage between 
5% and 40% of total surface that 
consists of cold-adapted plants such 
as cold habitat perennial axis-shaft 
root grasses, cushion plants, and 
lichens. One area, for example, 
contains cushion plants such as 
Arenaria serpyllifolia and An-
drosace tapete. 

Urban area 26 Land covered with  
buildings. 

Desert 45 

Desert areas are widely distributed 
in this region and are characterized 
by the presence of semi-shrubs and 
their dwarf counterparts (e.g., 
Ceratocarpus latens, Ajania 
pallasiana) as well as C. compacta.

Barren land 142 

Barren land, sand, rock, 
and saline areas with 
vegetation coverage less 
than, or equal to, 10%. 

Water  
bodies 152 

Long-strip depressions that natu-
rally form along the ground surface 
as well as land below the perennial 
water level developed under natural 
conditions. 

Glacier and 
snow 110 

Land that is perennially 
covered with snow or 
ice. 

Total 923     

*We selected locations for sampling based on vegetation type investigations in order to encompass uniform land 
cover, neighborhood consistency, and good representation. Representative spatial range varies according to the distribu-
tion of LC types, however; in the case of large areas of grassland or desert, a circular area with a radius between 500 m 
and 1,000 m was selected and sampling was carried out at a central point. Sampling points in each case can therefore be 
represented by a circular area between 30 m and 50 m in diameter. 

 
2011) in combination with the specific definitions utilized by various data products and field 
investigations to develop a LC type classification system of the Qiangtang Plateau that is 
based on a sample point survey encompassing eight primary types. The corresponding rela-
tionships between our classification system and the four utilized in the seven datasets we 
evaluated are discussed elsewhere (Liu et al., 2017). Finally, we resampled and matched cell 
locations between CCI-LC and MCD12Q1, CCI-LC/GlobCover and MCD12Q1, and 
CCI-LC/MCD12Q1 and GlobeLand30, in order to compare similarities and discrepancies in 
LC dataset spatial patterns. 

3.4  Spatial variation analysis of boolean classification data 

The number of samples (or patches) is always far smaller in actuality than the number of 
pixels within an entire study area. At the same time, however, random single point accuracy 
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Table 2  LC dataset characteristics 

Dataset OA 
(%) 

Verification 
method Sensor Classification 

method 
Reso-
lution Time 

Classifica-
tion system
(Number of 

types) 

URL for down-
load 

Refer-
ence 

GLC2000 68.6 Confidence value 
statistical sampling

SPOT4 
VEGETA
TION 

Unsupervised 
classification 1 km 1999-2000

FAO LCCS
(23 classes)

http://bioval.jrc.
ec.europa.eu/pr
oducts/glc2000/ 
products.php 

Bar-
tholom et 
al., 
2005 

IGBPDIS 66.9 
Statistical sampling 
by validation wor-
king group 

AVHRR Unsupervised 
classification 1 km 1992-1993

USGS 
IGBP 
(17 classes)

http://edc2.usgs.
gov/glcc/tabgo-
ode_globe.php 

Loveland 
et al., 
2000 

UMD 65.0 
Evaluated using 
other digital da-
tasets 

AVHRR

Unsupervised 
classifica-
tion, decision 
tree classifi-
cation 

1 km 1992-1993
Simplified 
IGBP 
(14 classes)

http://www.land
cov-
er.org/data/land-
cover/index.sht
ml 

Hansen 
et al., 
2000 

MCD12Q1 74.8 Cross-validation MODIS

Supervised 
classifica-
tion, decision 
tree classifi-
cation, neural 
network 

500 m 2001-2016
IGBP 
(17 classes)

http://e4ftl01.cr.u
sgs.gov/MOTA/
MCD12Q1.006/ 

Friedl  
et al., 
2010,2011 

GlobCover 67.5 Statistical sampling 
expert’s judgement

MERIS 
FR 

Supervised 
classifica-
tion, un- 
supervised 
classification

300 m 2009 
UN LCCS
(22 classes)

http://due.esrin.e
sa.int/globcover/ 

Bon-
temps  
et al., 
2011 

CCI-LC 74.1 Sampling-based 
labeling approach 

MERIS 
Full and 
Reduced 
Resolu-
tion/ 
SPOT 

Unsupervised 
classification 300 m 1992-2015

UN LCCS
(22 classes)

http://maps.elie.
ucl.ac.be/CCI/vi
ewer/index.php 

Belgium 
et al., 
2016 

GlobeLand30 80.0 
Knowledge-based 
interactive  
verification 

Landsat 
TM, 
ETM7, 
HJ-1A/b/

Integration of 
pixel- and  
object-based 
methods with 
knowledge 
(pok-based)

30 m 2000, 2010 11 classes http://www.glob
allandcover.com 

Chen  
et al., 
2015 

 
is both accidental and often wrong. For these reasons, spatial analysis can be used to deter-
mine how single, whole-map global measures of accuracy vary. We utilized GWR to esti-
mate OA at specific locations (i, j) with no existing samples calculated. A GWR approach is 
similar to an ordinary logistic regression model but coefficient estimates are allowed to vary 
geographically using a kernel function (Comber et al., 2012). A moving window then allows 
a local regression analysis to be computed in each case with points further away from the 
specific location under consideration contributing less to the solution. 

Local spatial accuracy based on Equation (1) is weighted OA based on geographically 
constrained samples. This means that Equation (2) enables samples that are further away 
from a given location (i, j) to less significantly influence accuracy, rather than making an 
equal contribution. In other words, a weighted regression is performed out in cases where 
the weight ( ( , )k i jW ) associated with each location (i, j) is a decreasing function of di, the 
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distance from the window center to (i, j) (Comber et al., 2012; Yang et al., 2017). These re-
lationships are expressed as follows: 
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where ( , )i jOA denotes local spatial accuracy, while ( , )k i jW is the contribution made by the 

reference point to location (i, j), di refers to the distance between the reference point and 
location (i, j), b is a binary variable, and 1 indicates that the sample type is the same as that 
approximated by LC data at the reference point (otherwise b will be denoted 0). In addition, 
N denotes the number of samples used for local accuracy assessment at location (i, j) where 
h refers to the bandwidth of GWR calibration. This latter measure can either be fixed or 
adaptive to a subset of the nearest n sample points and different kernel functions (shapes) 
can be used for distance weighting. As larger bandwidths generally result in a greater degree 
of spatial smoothing (Gollini et al., 2015), an adaptive value of 15% was applied in 
Bi-squared kernel function. 

We also applied an estimated kappa coefficient to further explore accuracy in this study, 
with ( , )i jKappa defined as follows (Comber et al., 2017): 
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where N denotes the total number of observations in the matrix, r is the number of rows, xii 
denotes the number of observations in row i and column i, while ix  and ix are the mar-
ginal totals of row i and column i, respectively. 

4  Results 

4.1  Spatial distribution characteristics and area comparisons 

Field surveys and related literature (CIG, 1988; Zheng, 1999; Ding et al., 2015) show that 
while grasslands, deserts, and barren land are the main primary LC types on the Qiangtang 
Plateau, the former is the most widely distributed (Figure 2). The data presented in Figure 2 
shows that grassland, barren land, deserts, and water bodies can be clearly differentiated. 

Data from CCI-LC, GlobeLand30, and GLC2000 suggest that grassland covers the entire 
Qiangtang Plateau, while MCD12Q1 data imply a mainly southeastern distribution (Figure 
2). In GlobCover, IGBPDIS, and UMD datasets, the spatial distribution of grassland is much 
smaller than suggested by the other four datasets. The spatial difference is most apparent in 
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terms of barren land which is mainly distributed in the northwestern transitional grassland in 
MCD12Q1, but appears in the middle of the GlobCover data. The proportion of barren land 
remains small and are scattered across the Qiangtang Plateau in other LC datasets, in con-
trast. The desert type in IGBPDIS is mainly distributed in the northeast, coincident with the 
spatial distribution seen in MCD12Q1, while the LC type covers almost the entire Qiangtang 
Plateau based on UMD data. The visual characteristics of water bodies are mainly distrib-
uted in the south, southeast, and northwest of the study area, and no significant regional dif-
ferences are apparent between the seven LC datasets. 

 

 
 
Figure 2  Map showing the spatial distribution of primary LC types within seven Qiangtang Plateau datasets 

 
We compared the area occupied by each LC class in all datasets (Figure 3). The compari-

son shows that all LC types encompass areas less than 1 × 104 km2, with the exception of 
sparse vegetation and urban areas. The largest grassland area was recovered on the basis of 
GlobeLand30 data, as much as 21 times the smallest area recovered on the basis of UMD 
data. The discrepancy of grassland area is very similar between GlobeLand30, CCI-LC, and 
GLC2000 data sources as well as between GlobCover and MCD12Q1 compilations, respec-
tively. In contrast, however, grassland areas reconstructed on the basis of GlobCover and 
MCD12Q1 data are much less than that estimated on the basis of CCI-LC, GlobeLand30, 
and GLC2000 compilations. However, the area of barren land estimated based on Glob-
Cover and MCD12Q1 datasets is much higher than in other cases. The area of barren land is 
directly related to the vegetation canopy definition threshold for this LC type. Results show 
that the threshold vegetation canopy for barren land is less than 20% based on GlobCover 
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data, wider than that for other LC datasets which are less than 10%.  
Largest areas of desert are found in the study area based on IGBPDIS data (Figure 2) even 

though the main LC class should actually be barren land. Based on IGBPDIS and UMD data, 
desert areas are four times larger than in other cases. This overestimation of desert based on 
IGBPDIS and UMD data is strongly related to the very weak spectral differences between 
barren land and desert LC types and is even less differentiation on coarser resolution images. 
Unsurprisingly, variance in the area of water bodies reconstructed from the seven LC data-
sets is much smaller than other classes as the LC type is easy to classify. Areas of glacier and 
snow are also close to one another in most datasets, with the exception of IGBPDIS and 
UMD. One reason is the fact that UMD was designed based on the Simple Biosphere (SiB) 
model which does not include snow and glacier types. The areas of glacier types in both 
IGBPDIS and UMD data are closely related to the over-mapping of barren land in other 
datasets. 

 

 
 

Figure 3  LC class areas in each of the seven Qiangtang Plateau datasets 

 
Grassland area based on CCI-LC data generally exhibits an upward trend although an 

overall downward trend was seen in MCD12Q1 data. Results show that although both LC 
datasets are characterized by an upward trend between 2004 and 2010, rates are different in 
both cases. Grassland area based on CCI-LC data increased rapidly but remained stable and 
slightly decreased when based on MCD12Q1 data. These outcomes both contrast with recent 
research that suggests no obvious changes in the above ground net primary productivity of 
grassland between 1983 and 2014 on the Tibetan Plateau (Liu et al., 2018).  

At the same time, however, changes in barren land and wetland area based on CCI-LC 
data are in accordance with results from MCD12Q1 over the period between 2001 and 2010. 
These results both imply a rapidly decreasing trend, although the rate based on MCD12Q1 
data was faster than CCI-LC. Changes in barren land within this area also conform to an 
inverse trend between 2010 and 2015. Specially, the area continues to decrease rapidly based 
on CCI-LC data while switching from a reduction to an increase when based on MCD12Q1 
data with a turning point around 2010.  

Trends and rates of change in water bodies between the two datasets are not obviously 
different, but the total area of water bodies in CCI-LC is higher than that in MCD12Q1.  

Areas of glacier and snow based on CCI-LC data did not change between 2001 and 2015, 
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a result that is obviously in conflict with the result of general retreat of glaciers (Yao et al., 
2012). It is therefore clear that CCI-LC data exhibits weaker classification accuracy when 
used to reconstruct glacier areas. In contrast, MCD12Q1 data suggest that the areas of 
glaciers and snow rose rapidly within the study area between 2001 and 2009, another result 
which conflicts with our knowledge about glacial retreat (Yao et al., 2012).  

Urban land types based on MCD12Q1 data did not change between 2001 and 2015, in 
conflict with enhanced human activities on the Qiangtang Plateau (Venter et al., 2016). The 
reason is that the distribution of urban land is not concentrated and the patch is broken. It 
remains difficult to identify smaller-scale construction land in coarse resolution images. It is 
the case that prior to 2013, the area of urban land reconstructed based on CCI-LC data was 
small and no distinct change was evident. Since 2013, however, the area of this LC type has 
risen dramatically.  

MCD12Q1 data suggest the absence of sparse vegetation types across the study area 
while CCI-LC data suggests a rapid increase in this LC type between 2001 and 2008. Indeed, 
subsequent to 2008, the area of sparse vegetation across this region increased rapidly but 
decreased more and more rapid prior to this inflection point. The result is coincident with the 
accelerated reinforcement of the grazing pressure within this area as sparse vegetation is 
influenced to a greater extent by the factors (Figure 4). 

 

 
 
Figure 4  Time series changes of eight LC classes based on CCI-LC and MCD12Q1 data over the Qiangtang 
Plateau 

 
Discrepancies between MCD12Q1 with CCI-LC LC data can also be explained by dif-

ferences in classification definitions in thematic legends. It is the case that legend class de-
scriptions are not always unique or totally clear and can therefore result in classification un-
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certainties. Unclear LC class descriptions can also severely hamper the conversion and join-
ing of legends between the seven LC products and therefore further result in map uncertain-
ties and losses in correspondence. 

4.2  Spatial agreements and disagreements 

Results show that high levels of spatial agreement occur mainly in the homogeneous south-
eastern region of the Qiangtang Plateau. Reconstructions based on MCD12Q1 (2009 and 
2010), CCI-LC (2009 and 2010), MCD12Q1/CCI-LC, and GlobeLand30 data all exhibit 
high levels of agreement within this region as it mainly contains grasslands and lakes that 
are easy to differentiate compared with other LC types. However, results also show that 
GlobCover data exhibit a low level of accuracy in this region, and that levels of consistency 
between MCD12Q1/CCI-LC and GlobCover reconstructions are similarly low.  

Results also show that low levels of spatial agreement are widely distributed across het-
erogeneous northwestern and northeastern parts of the Qiangtang Plateau. These regions 
mainly contain barren land and grassland. Indeed, grasslands within alpine areas are sparsely 
distributed and are usually withered in the autumn and winter. These features are very hard 
to distinguish from images and are often easily confused with barren land. 

 
 

 
 

Figure 5  Maps showing spatial agreements and disagreements between different LC datasets over the Qiang-
tang Plateau 

 
The results of this study show that the consistency of data for adjacent years within the 

same LC dataset series tends to be higher, for example, CCI-LC (2009 and 2010) and 
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MCD12Q1 (2009 and 2010). Indeed, between the two LC datasets, the consistency of 
CCI-LC (99.87%) is higher than that based on MCD12Q1 (86.00%). It is the case that re-
gions characterized by low MCD12Q1 data consistency tend to mainly contain barren land 
and grassland. As these two LC types are easily mixed, the fact that MCD12Q1 data is based 
on a single MODIS image means that this source is less accurate than CCI-LC which is de-
veloped based on multiple image sources. Data show that CCI-LC and GlobeLand30 data in 
their consistency are relatively highly in agreement (71.68%) within different series, even 
though these values are generally low amongst in other compilations. 

4.3  Analysis of spatial variation accuracy 

4.3.1  Assessing the accuracy of land cover datasets 

Taking the seven LC datasets as a set, an assessment value greater than equal to five implies 
a high data assessment (H), but when this value is less than or equal to four, data assessment 
is low (L). The accuracy value interval was defined the same as for assessment. 

The data presented in Figure 6 shows that amongst the 923 sample points, the ratio be-
tween low assessment and low accuracy (LL) is 77.14% while the ratio between high as-
sessment and high accuracy (HH) is just 5.63%, less than the ratio between high assessment 
and low accuracy (HL) (17.23%). This means that from the perspective of different HL types, 
the ratio between desert and barren land is 4.12%, greater than either water bodies (3.79%) 
or grassland (2.71%). These results are indicative of a more widespread phenomenon that 
assessment is high across the field area but that accuracy is very low. Therefore, we can 
know that there is no consensus between assessment and accuracy.  

 

 
 

Figure 6  Assessment and accuracy frequencies of different LC categories over the Qiangtang Plateau 
 
 
 
 
 
 

4.3.2  The spatial accuracy of boolean classification datasets 

Local accuracy derived from our use of the GWR varies markedly across the study area. 
Data show that OA values for the seven LC datasets considered here range between 20% and 
60% while their local accuracy values range from zero to 100%. Mean OA suggests that the 
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highest local accuracy value seen within the seven LC datasets is for GlobeLand30 (42.08%), 
followed by CCI-LC (34.92%). The order of other sets is GLC2000 (34.55%), IGBPDIS 
(31.42%), MCD12Q1 (28.12%), GlobCover (27.62%), and UMD (26.47%). Maximum OA 
values also vary between the seven LC datasets, and the order of maximum OA values for 
datasets is GlobeLand30 (77.39%), GlobCover (74.11%), GLC2000 (66.12%), CCI-LC 
(61.43%), MCD12Q1 (59.76%), IGBPDI (50.76%), and UMD (47.07%). Data show that 
discrepancies between the seven LC datasets in terms of both mean and maximum kappa 
coefficients are almost the same as OA values (Table 3). 

The highest OA values recovered in this analysis occur in the center (H1) and the south-
east (H2) of the Qiangtang Plateau, both areas are characterized by higher proportions of 
lakes and grassland. It is also generally the case that OA values exhibit an apparent rela-
tionship with degree of landscape heterogeneity. This region is generally characterized by 
relatively low landscape complexity as it is adjacent to an alpine area and human influence 
remains relatively weak. At the same time, data accuracy in the north (L1), northeast (L2), 
and west (L3) of the Qiangtang Plateau is relatively low across our datasets because of the 
higher landscape complexity of these regions. Large areas of desert, barren land, and grass-
land are also found within the L2 region. Results show that desert and barren LC types are 
often misclassified as grassland and that this is one key factor influencing classification ac-
curacy. Indeed, accuracy values recovered for the southern (U) region of the Qiangtang Pla-
teau are also quite uncharacteristic as both local maximum and minimum precision record 
are distributed within this area. Numerous lakes, marshy wetlands, and grasslands occur 
within the U region and the first two of these are easily confused. 

It is not surprising that landscape heterogeneity has been regarded as the major factor 
contributing to the accuracy of LC datasets. This variable can significantly complicate our 
understanding of ground surface spectral characteristics and make RS classifications in-
creasingly problematic. Landscape heterogeneity explains the marked discordance between 
data products reported in this analysis. The results show that CCI-LC, GlobeLand30, 
GLC2000, and GlobCover data are all highly locally accurate for the H1 region, but that 
MCD12Q1, IGBPDIS, and UMD data have low accuracy values. Precision of GlobCover 
and UMD data is low across the H2, while the other five LC datasets considered here yield 
high local accuracy values. Our results show that GLC2000 and IGBPDIS data are highly 
precise for the L1 region while the other five LC datasets yield low local accuracy values. 
Barren lands and desert are the dominant LC class in this region but were seriously misclas-
sified as grassland based on CCI-LC and MCD12Q1 data. Results show that CCI-LC, 
GlobeLand30, and GlobCover data can be used to classify a small area of the L3 region with 
high precision as the altitude is high in L3 area and so most LC is labeled as glaciers. Clas-
sifications of remaining areas based on the other four LC datasets generate low accuracy 
values. 

Our synthesis of OA and kappa coefficients for the seven LC datasets shows that areas 
characterized by higher data classification accuracy on the Qiangtang Plateau are mainly 
located centrally alongside a small region in the east. Kappa coefficients show that the LC 
area classified with a high degree of accuracy is small and mainly occurs in the center of the 
Qiangtang Plateau (Figure 8). 
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Figure 7  Maps showing OA spatial variation within the seven LC datasets over the Qiangtang Plateau 
 

 
 

Figure 8  Maps showing the spatial distributions of OA values (a) and kappa coefficients (b) over the Qiangtang 
Plateau 

 
Table 3  OA values and kappa coefficients for the seven LC datasets over the Qiangtang Plateau 

Datasets Mean OA Max OA Min OA Mean kappa Max kappa Min kappa 

GLC2000 34.55% 66.12% 12.27% 0.11 0.32 0.00 

IGBPDIS 31.42% 50.76% 9.07% 0.04 0.26 0.00 

UMD 26.47% 47.07% 6.53% 0.04 0.18 0.00 

MCD12Q1 28.12% 59.76% 3.69% 0.05 0.37 0.00 

GlobCover 27.62% 74.11% 3.52% 0.08 0.40 0.00 

CCI-LC 34.92% 61.43% 2.9% 0.15 0.45 0.00 

GlobeLand30 42.08% 77.39% 9.83% 0.21 0.61 0.00 

Summary 32.17% 52.05% 12.82% 0.10 0.31 0.00 
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5  Discussion 
The results of this analysis show that data accuracy was influenced by the conversion be-
tween different classification systems as well as the principles and connotations of these 
categories which result in different interpretations of RS data across the study area (Zhang et 
al., 2017). Comparing our results with those previously reported by Yang et al. (2017), we 
agree that spatial accuracy values for CCI-LC and GLC2000 Qiangtang Plateau datasets are 
higher than those derived from either UMD or IGBPDIS compilations (Yang et al., 2017). 
At the same time, the OA values reported by Yang et al. (2017) are much higher than our 
results. This discrepancy can be explained by the fact that we used eight LC types in this 
analysis while Yang et al. (2017) utilized just three, that is, grasslands, wetlands, and water-
bodies. It is also noteworthy that the bandwidth parameter used for the spatial accuracy 
evaluation method applied here is based on the adaptive value of a connected area, which 
means that the rougher the classification, the larger the bandwidth, and therefore more sam-
ple points of the same LC type will lead to a higher value. Classification accuracy shows 
large deviations are also the result of limited field measurement data. Future investigations 
and corrections will be needed in order to more precisely design classification systems. 

The interpolation method used here to predict accuracy at unsampled locations should al-
so take more factors into account in future work, especially terrain characteristics instead of 
just spatial distance. Additional research will therefore be necessary to examine whether, or 
not, error maps can be used directly to improve classifications. Indeed, as these comprise 
classification errors, it might be possible to subtract them from corresponding LC maps and 
generate enhancements. This will require ensuring that the error maps utilized are of ac-
ceptable quality. 

The vegetation types and environmental characteristics of the Qiangtang Plateau signifi-
cantly influence LC data classifications. The results of this analysis show that the vegetation 
types in this region that are particular to Qiangtang Plateau (i.e., grasslands, barren lands, 
and desert) exhibit limited differences in spectra, image color, and texture which can easily 
result in confusions over their classification. The Qiangtang Plateau environment itself also 
exerts a significant impact on LC data classifications as the vegetation growing season here 
is mostly restricted to the summer and is much shorter than in low altitude areas (Oteros et 
al., 2013; Zhang et al., 2013). This means that it is difficult to monitor vegetation types out-
side of the short growing season and images within LC datasets may have been captured at 
different times of the year. An image acquired outside of the growing season is likely to be 
much less accurately interpreted. 

The fact that the sample points evaluated in this analysis were collected subsequent to RS 
data might also influence accuracy assessments. The sample data used here were collected in 
field investigations between 2013 and 2016, while the seven LC datasets were acquired over 
20 years between 1992/1993 and 2013. Field investigations show that the Qiangtang Plateau 
mostly comprises uninhabited regions and is mainly influenced by natural factors such as 
precipitation, temperature, evaporation, radiation, and soil moisture, which means that over-
all variation in LC types is actually quite small. Indeed, because of extreme environmental 
conditions, the sample point data fields collected for this study are mainly from areas where 
there is acceptable ground transportation and are thus not evenly distributed spatially. The 
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data presented here are nevertheless an important component of the first basic investigation 
on this region and therefore do provide an important reference for LC classification accu-
racy. 

6  Conclusions 
We report a number of clear spatial discrepancies amongst LC datasets in this study. High 
spatial agreements within the field area are mainly seen within the homogeneous southeast-
ern region of the Qiangtang Plateau that is covered by grassland and lakes, while low spatial 
agreements are widely distributed across heterogeneous northwestern and northeastern areas 
covered with deserts, barren land, and grasslands. Data show that deserts and barren lands 
are more difficult to identify correctly, and that water bodies are easily confused with grass-
lands. We demonstrate clear time series changes discrepancy in LC data (with the exception 
of waterbodies) over the period between 2001 and 2015 comparing CCI-LC and MCD12Q1 
compilations and highlight the existence of opposite trends in barren lands and wetlands. 
These results mean that LC changes across this region might not be the result of external 
factors in all cases, but rather due to data errors. 

Calculating ratios of assessment and accuracy based on sample points and LC datasets 
shows that the area proportion of HL (17.23%) is higher than HH (5.63%). Therefore, it is 
unreasonable to use assessment method to determine classification accuracy even though 
low corresponding values are synchronous. 

Spatial local accuracy prediction results show that OA values for the seven LC datasets 
range between 20% and 60%. Specifically, local accuracy values for GlobeLand30 (mean 
OA: 42.08%; max OA: 77.39%; mean kappa: 0.21; max kappa: 0.61) and CCI-LC (mean: 
OA 34.92%; max OA: 61.43%; mean kappa: 0.15; max kappa: 0.45) are higher compared 
with other datasets. High OA values are mainly located in the center and southeastern re-
gions of the Qiangtang Plateau where grasslands and lakes occur, while low OA values tend 
to be observed in the northern, northeastern, and western regions where a mixture of deserts, 
barren land, and grassland are seen.  
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