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Abstract: Whether economic agglomeration can promote improvement in environmental 
quality is of great importance not only to China’s pollution prevention and control plans but 
also to its future sustainable development. Based on the COD (Chemical Oxygen Demand) 
and NH3-N (Ammonia Nitrogen) emissions Database of 339 Cities at the city level in China, 
this study explores the impact of economic agglomeration on water pollutant emissions, in-
cluding the differences in magnitude of the impact in relation to city size using an econometric 
model. The study also examines the spillover effect of economic agglomeration, by conduct-
ing univariate and bivariate spatial autocorrelation analysis. The results show that economic 
agglomeration can effectively reduce water pollutant emissions, and a 1% increase in eco-
nomic agglomeration could lead to a decrease in COD emissions by 0.117% and NH3-N 
emissions by 0.102%. Compared with large and megacities, economic agglomeration has a 
more prominent effect on the emission reduction of water pollution in small- and me-
dium-sized cities. From the perspective of spatial spillover, the interaction between economic 
agglomeration and water pollutant emissions shows four basic patterns: high agglomera-
tion–high emissions, high agglomeration–low emissions, low agglomeration–high emissions, 
and low agglomeration–low emissions. The results suggest that the high agglomeration–high 
emissions regions are mainly distributed in the Beijing–Tianjin–Hebei region, Shandong 
Peninsula, and the Harbin-Changchun urban agglomeration; thus, local governments should 
consider the spatial spillover effect of economic agglomeration in formulating appropriate 
water pollutant mitigation policies. 

Keywords: economic agglomeration; water pollutant emissions; emission reduction effect; city size; bivariate 
spatial autocorrelation; spatial spillover effect 
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1  Introduction 
In the past 40 years, high-speed and ultra-high-speed economic growth has put increasing 
pressure on China’s environmental system (Wang et al., 2018; Liang and Yang, 2019). In 
particular, the carrying capacity of the water environment has reached, or approached, the 
upper limit (Chen et al., 2018a). By 2016, the quality of some rivers in China continued to 
deteriorate. For example, because of the high degree of economic and population agglom-
eration in the Haihe River Basin, the water environment in northern China was seriously 
polluted, and the proportion of inferior V water quality sections accounted for 35.7% of the 
whole region (Zhao, 2017). Some rivers flowing through urban areas have a heavily polluted 
water body that is black and smelly due to a lack of oxygen, which has caused many com-
plaints from the public (Ji et al., 2017). The problem of water pollution seriously restricts 
improvement in the quality of human settlements and poses a threat to the health of residents 
(Hu and Cheng, 2013). To solve the problem of environmental capacity overload, it is nec-
essary not only to increase environmental protection and rectification, but also to transform 
the traditional mode of economic development driven by pollution-intensive industries (Lu, 
2015; Fang et al., 2017). Therefore, it is important to fully understand the coupling rela-
tionship between economic development and environmental pollution, and to systematically 
analyze the impact of economic agglomeration on water pollutant emissions. In this regard, 
this paper not only provides a reference for comprehensive measures against water pollution 
but also forms a sound basis for environmentally friendly development. 

At present, with regard to the relationship between economic growth and pollutant emis-
sions, scholars have conducted extensive investigations from different perspectives that have 
focused on the impacts of the factors driving pollutant emissions, including the level of eco-
nomic development, economic structure, foreign trade performance, capital investment, and 
household consumption. The relationship between economic growth and pollutant emissions 
generally presents an “inverted U-shaped” curve (Grossman and Kuerger, 1995; Churchill et 
al., 2018). However, studies in China have found that both economic growth and pollutant 
emissions are still increasing, and environmental quality is not improving with economic 
growth (Yu et al., 2003; Hao et al., 2018). Some studies have also confirmed that there is a 
spillover effect of environmental pollution between regions, and it has been found that the 
simultaneous agglomeration of pollutant emissions and economic activities has aggravated 
environmental degradation (Frank et al., 2001; Hossein and Kaneko, 2013; Zhao et al., 
2017). Economic agglomeration, a typical form of economic activity, can generate spillover 
benefits and economies of scale (Ellison and Glaeser, 1999). Therefore, it has been 
commonly regarded as a coherent policy to promote regional economic growth by forming 
industrial clusters. However, due to the uncertainty regarding the impact of economic 
agglomeration on the environment, in recent years, scholars have expended much effort in 
studying the issue. 

In view of the impact of economic agglomeration on pollutant emissions, existing studies 
have mainly focused on theoretical analysis of the impact mechanism and empirical study of 
the impact. The former uses the theoretical derivation and equilibrium model of environ-
mental variables to describe the relationship between economic agglomeration and pollutant 
emissions, highlighting their external characteristics (Han et al., 2018; Thisse, 2018). Em-
pirical research generally addresses this issue from two different perspectives. On the one 
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hand, it is believed that, on a provincial level, economic agglomeration has led to environ-
mental degradation (Liu et al., 2017a; Liu et al., 2017b; Frank et al., 2001; Verhoef and Ni-
jkamp, 2002). Micro-level analysis has also confirmed a correlation between manufacturing 
agglomeration and water pollution (Hosoe and Naito, 2006; Cheng, 2016). However, given 
that economic agglomeration can accelerate technological progress and diffusion and pro-
vide pollution mitigation facilities (Guo et al., 2016; Wang et al., 2018), some scholars have 
found that economic agglomeration has had an emission reduction effect. Moreover, ag-
glomeration is also conducive to the improvement of labor productivity and economic de-
velopment, as well as the promotion and implementation of stricter environmental regula-
tions to reduce pollution (Xu and Cheng, 2006; Wang and Yu, 2017; Li et al., 2018). In short, 
due to regional economic disparity, there may be vast regional differences with regard to the 
impact of economic agglomeration. 

In light of the above, there are several research gaps in the literature. Firstly, the spatial 
units of existing studies are mostly at the national or provincial level, with scant empirical 
evidence at the city level. Compared with macro-level studies using indicators such as the 
Herfindahl index, spatial Gini coefficient, and the Theil index, a city-level economic ag-
glomeration can relatively accurately reflect an agglomeration of economic activity in a 
geographical space, and it is easier to capture the spatial spillover effect. Secondly, most 
existing studies focus solely on the impact of economic agglomeration on pollutant emis-
sions as a whole, regardless of differences arising from city size. Lastly, in most cases, 
scholars only use spatial econometric models based on univariate spatial correlation to re-
veal the spillover effects of economic agglomeration on environmental pollutants. However, 
bivariate spatial correlation makes it possible to obtain more accurately the spatial correla-
tion effect of economic agglomeration and water pollutant emissions, but few studies have 
taken it into consideration. To fill these gaps, this study aims to investigate the heterogene-
ous relationship between economic agglomeration and water pollutant emissions from the 
perspective of spatial spillover at city level. Based on the COD and NH3-N emissions data-
base of 339 cities in China, this study constructs an econometric model to explore the impact 
of economic agglomeration on water pollutant emissions and examines the differences in 
magnitude of this impact between different-sized cities. Further, the method of bivariate 
spatial correlation is used to analyze the spillover effects of economic agglomeration on wa-
ter pollutant emissions. 

2  Data and methodology 

2.1  Data source 

The data used in this study include water pollutant emissions and socio-economic statistics. 
According to the 13th Five-Year Plan for Economic and Social Development of the People’s 
Republic of China (2016–2020), two indicators, including Chemical Oxygen Demand (COD) 
and Ammonia Nitrogen (NH3-N) are selected. COD is the amount of chemical oxidants de-
mand for the oxidation of oxidizable substances in water, which can accurately reflect or-
ganic pollution in water. NH3-N refers to the most harmful type of nitrogen in water that can 
increase the probability of eutrophication (Scholten et al., 2005; Ferard and Blaise, 2013). 
Data on water pollutant emissions are obtained from the China Environmental Statistics 
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Yearbook and China Environmental Yearbook; socio-economic statistics are mainly derived 
from the China Regional Economic Statistical Yearbook and China Urban Statistical Year-
book. Some of the missing data are supplemented through other relevant statistical year-
books. If not specified, the data in this study are all taken from 2015. Due to a relatively 
slow urbanization rate in 2015, considering that urbanization rates are relatively stable in the 
short term (Chen et al., 2018b), data on the proportion of urban population are collected 
from the Sixth National Population Census in 2010, which is regarded as an urbanization 
level index. In addition, administrative division data are obtained from the National Basic 
Geographic Information System website (http://www.ngcc.cn/), with a total of 339 cities. 
Due to the lack of data, Taiwan Province, Hong Kong, and Macau are not included. 

2.2  Methodology 

2.2.1  Econometric model 
The basic model of this study is based on the stochastic impacts by regression on population, 
affluence, and technology (STIRPAT) model. York et al. (2003) proposed a random effect 
model for population, affluence, and technological level based on the IPAT model, STIRPAT, 
which is a multivariable nonlinear model. The STIRPAT model allows for estimation based 
on the use of various coefficients as parameters, which makes it possible to examine the im-
pact of each driving factor of environmental stress (Xu and Lin, 2016; Li et al., 2018; Liu 
and Xiao, 2018). Here, COD and NH3-N emissions are selected as dependent variables, 
while the degree of economic agglomeration is used as an independent variable. Drawing on 
relevant existing research (Liu et al., 2015; Wang et al., 2017; Zhang et al., 2017; Su et al., 
2018), we also select economic level, emission intensity, industrial structure, population size, 
and urbanization level as control variables. In order to reduce heteroscedasticity and 
non-stationarity among the variables, the variables are transformed into logarithmic form. 
Finally, the econometric model for exploring influencing factors is as follows: 

 1 2 3 4 5 6Ln ln ln ln ln ln lnEM EA WI PGDP POP IS URB                (1) 

where EM represents COD or NH3-N emissions, reflecting the scale of water pollutant emis-
sions in each city; EA refers to the degree of economic agglomeration, reflecting the con-
centration of economic activity in the geographical space. However, the indicators com-
monly used in much of the literature do not take into account the spatial error caused by the 
difference in land area at the microscopic scale. In this regard, the GDP of the unit urban 
land area is widely used to measure the level of agglomeration of urban economic activities 
(Ciccone and Hall, 1996; Zhang and Zhang, 2016). Meanwhile, considering the GDP con-
tains the agricultural output value produced in agricultural space, we deduct the agricultural 
output from GDP. Finally, economic agglomeration is expressed as the non-agricultural 
output value divided by the urban land area. 

PGDP denotes per capita GDP, reflecting the economic level of each city; WI is the emis-
sion intensity, reflecting the technological level of each city, where WIC represents COD 
emitted per unit GDP, and WIN is NH3-N emitted per unit GDP; POP is the number of urban 
residents at the end of the year, reflecting the population size; IS refers to the proportion of 
added value of the secondary industry to GDP, reflecting the industrial structure and indus-



ZHOU Kan et al.: The impact of economic agglomeration on water pollutant emissions 2019 

 

 

trialization level; URB is an indicator of the urbanization level; and εi is the error term. The 
statistical description of variables with logarithmic form is shown in Table 1. 

 

Table 1  The statistical description of variables with logarithmic form 

Variables Unit Mean Std. dev. Median Min Max 

COD Ton 10.240 0.850 10.32 6.220 12.54 

NH3-N Ton 8.190 0.910 8.320 4.170 10.690 

EA 10000 yuan / km2 10.56 0.560 10.60 8.510 12.23 

WIC Ton / 100 million yuan 3.480 0.740 3.520 1.450 5.330 

WIN Ton / 100 million yuan 2.330 0.610 2.410 0.147 4.730 

PGDP Yuan 10.450 0.600 10.420 8.860 12.120 

POP 10000 person 4.860 1.000 4.950 0.780 7.630 

IS Percentage 3.880 0.250 3.930 2.840 4.410 

URB Percentage 3.790 0.370 3.790 2.540 4.610 

 
2.2.2  Exploratory spatial data analysis 

In order to explore the spatial spillover effects of economic agglomeration and water pollut-
ant emissions, we jointly use univariate and bivariate spatial autocorrelation analysis meth-
ods. 

(1) Univariate spatial autocorrelation 
The univariate global spatial autocorrelation is used to measure the degree of spatial cor-

relation of the attribute values as a whole, which is commonly measured by Moran’s I (Zhou 
et al., 2019), and can be expressed by equation (2): 
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samples (n = 339); Yi  and Yj are the water pollutant emissions of city i and city j, respec-
tively; Wij is the spatial weight matrix, determined by the proximity criterion. The spatial 
pattern of pollutant emissions and economic agglomeration is characterized by the local spa-
tial autocorrelation index (Getis-Ord G*), exploring whether there are statistically signifi-
cant high-value clusters (hot spots) and low-value clusters (cold spots). The formula for Gi* 
is: 
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When i is not equal to j, the standard form of *
iG  is * * * *( ) [ ( )] / ( )i i i iZ G G E G Var G  ; 

*( )iE G  and  *
iVar G  are the expected values and variances of Gi*, respectively. 

If *( )iZ G  is positive and significant, it indicates that the value around city i is relatively high, 
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which is a hot spot where high value is concentrated; if *( )iZ G  is negative and significant, 
it indicates that it is a cold spot with low value. 

(2) Bivariate spatial autocorrelation 
In order to investigate the spillover pattern between economic agglomeration and water 

pollutant emissions, an analysis of global and local bivariate spatial autocorrelation is used 
(Zhang et al., 2018), which is defined as: 
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where   /p p
l ll lZ X X   ,   /q q

m m m mZ X X   ; p
lX is the attribute value l of the spatial 

unit p;  q
mX  is the attribute value m of the spatial unit q; lX and mX  are the average values 

of the attributes l and m, respectively; l and m are the variances of the attributes l and m, 
respectively;  pqW is the spatial connection matrix between spatial units p and q. 

3  Regression results and explanation 
In this study, the parameters are estimated using the ordinary least-squares (OLS) method. 
The estimation process is divided into two steps. Firstly, we carried out a nation-wide esti-
mation based on a whole sample, regardless of differences in city size. In order to investi-
gate the robustness of the regression coefficient, the samples of coastal and inland regions 
were also estimated. Secondly, the whole sample was divided into three groups according to 
city size: large and megacities, medium-sized cities, and small-sized cities. Referring to na-
tional criteria for the classification of city size in China, and taking into account the number 
of samples, cities with a permanent population of less than 0.5 million are classified as 
small-sized cities; cities with a permanent population of between 0.5 million and 1 million 
are classified as medium-sized cities; and cities with a permanent population of 1 million or 
more are classified as large and megacities (Qi et al., 2016). 

3.1  Sample of whole country 

A variance inflation factor (VIF) was applied to test for multicollinearity between inde-
pendent variables; these results show that the maximum univariate VIF value for our dataset 
is 3.84, far less than the critical value (10), indicating that there is no obvious multicollin-
earity problem between the variables. In the estimation results of the whole sample, coastal 
sample, and inland sample, the probability values of the variance analysis are all 0.000, and 
significant at the 1% level. Meanwhile, the values of the adjusted R2 indicate that all the 
OLS models are statistically significant, and the regression results (Table 2) show that eco-
nomic agglomeration decreases water pollutant emissions to some extent in the whole sam-
ple. Whether the independent variable is lnCOD or lnNH3-N, coefficients of economic ag-
glomeration are all negative in the whole sample and the regional samples, and all except the 
coastal regions are significant at the 5% level. 

Specifically, a 1% increase in economic agglomeration leads to a decrease in COD emis-
sions by 0.117% and in NH3-N emissions by 0.102%, indicating that economic agglomera- 
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Table 2  Estimation results for whole sample and regional samples 

Whole sample Coastal sample Inland sample 
 

lnCOD lnNH3-N lnCOD lnNH3-N lnCOD lnNH3-N 

LnEA –0.117** –0.102*** 0.190 –0.019 –0.128** –0.123*** 

 (–1.28) (–2.31) (1.73) (–0.25) (–1.72) (–2.22) 

LnWIC 0.019***  0.038***  0.018***  
 (23.45)  (12.93)  (23.16)  

LnWIN  0.146***  0.239***  0.145*** 

  (24.05)  (8.47)  (26.48) 

LnPGDP 0.369*** –0.028 –0.461*** –0.347*** 0.545*** –0.155 

 (7.28) (–0.27) (–4.17) (–4.39) (9.03) (–0.74) 

LnPOP 0.924*** 0.958*** 0.908*** 0.944*** 0.963*** 0.982*** 

 (42.88) (62.16) (21.99) (25.85) (41.69) (63.26) 

LnIS 0.339*** 0.178*** 0.109 0.0955 0.213** 0.073 

 (5.54) (4.03) (0.93) (0.89) (2.95) (1.50) 

LnURB –0.190 0.337*** 0.0556 0.194** –0.063 0.156* 

 (–1.64) (6.68) (0.29) (3.39) (–2.47) (3.42) 

Constant 2.406*** 0.185 –0.287 –0.929 1.860*** –0.633 

 (5.47) (0.57) (–0.32) (–0.93) (3.72) (–1.83) 

F value 247.91 609.36 52.24 119.26 172.11 391.67 

P value 0.000 0.000 0.000 0.000 0.000 0.000 

Adj R2 0.787 0.901 0.719 0.855 0.785 0.894 

Notes: ***, ** and * indicate significance at the 1%, 5%, and 10% confidence levels, respectively; t values in 
parentheses. 

 
tion has a significant pollution reduction effect. An increase in the level of economic ag-
glomeration helps to improve resource consumption and energy use, as well as creating a 
spillover of pollution control technologies. Agglomeration is also conducive to the govern-
ment’s centralized supervision of the emission process, which can effectively reduce the cost 
of pollution control and promote the specialized division of labor. Ultimately, the goal of 
reducing the intensity of pollutant emissions is achieved. For inland regions, economic ag-
glomeration can significantly reduce pollutant emissions. For every 1% increase in eco-
nomic agglomeration, the COD and NH3-N emissions will be reduced by 0.128% and 
0.123%, respectively. Therefore, increasing the level of economic agglomeration is an effec-
tive means to improve regional environmental quality, especially in the case of low eco-
nomic agglomeration in inland regions (435.8 million yuan/km2). However, in coastal re-
gions with high economic agglomeration (696.2 million yuan/km2), economic activity is 
mainly concentrated in a limited space, especially for manufacturing industries that are 
prone to pollution. The total amount and intensity of water pollutant emissions accompany-
ing the production process also increase. In these regions, in order to improve the quality of 
the water environment, it is necessary to adjust the industrial structure and gradually form an 
industrial system with low energy consumption and low emissions. 

In addition to economic agglomeration, factors such as industrialization, population size, 
and emission intensity are positively driving water pollutant emissions. The whole estimate 
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shows that for every 1% increase in the proportion of secondary industry, COD emissions 
and NH3-N emissions will increase by 0.339% and 0.178%, respectively; for every 1% in-
crease in population size, COD emissions and NH3-N emissions will increase by 0.924% and 
0.958%, respectively. These results indicate that high pollution and high emissions have not 
been reversed in the current industrialization development process, and the increase in 
population size has also significantly increased water pollutant emissions. The impact of 
urbanization on COD emissions is not significant but has a positive impact on NH3-N emis-
sions. For every 1% increase in the urbanization level, NH3-N emissions from whole sample, 
coastal sample, and inland sample will increase by 0.337%, 0.194%, and 0.156%, respec-
tively, indicating that China’s NH3-N emissions are predominantly from urban areas. Under 
rapid urbanization, in order to cope with NH3-N pollution, it is necessary to strengthen the 
construction of pollution mitigation facilities. Notably, the coefficient of emission intensity 
is positive in all models and is significant at the 1% level, indicating that technological pro-
gress is an important factor affecting water pollutant emissions. Hence, improving the level 
of technological innovation is also an important way to control water pollutant emissions in 
the future. 

It is worth noting that the impact of the economic development level on national water 
pollutant emissions is positive, and a 1% increase in per capita GDP increases COD emis-
sions by 0.369%. This indicates that the driving force of economic development on water 
pollutant emissions still exists, especially in inland regions. Only in coastal regions does the 
economic level have a negative impact on NH3-N emissions, and its coefficient is –0.461, 
indicating that the inhibitory effect of the economic development level on NH3-N emissions 
in coastal regions has already occurred. Further statistical analysis shows that the per capita 
GDP of coastal cities (57,700 yuan) is higher than the national average (41,900 yuan) and is 
also significantly higher than that of inland cities (35,100 yuan). According to the environ-
mental Kuznets curve law of economic development and pollutant emissions, unlike the 
inland region, the coastal regions with relatively high per capita GDP have entered the back 
end of the inverted U-shaped curve. This phenomenon is mainly attributable to the growing 
demand for environmental regulation in the form of high economic development, increasing 
investment in environmental technology, and rapid transformation of polluting industries. 

3.2  Samples of different city sizes 

The regression results of the three types of cities are shown in Table 3. The empirical results 
indicate that all models have passed the significance test, and there is no heteroscedasticity 
or multicollinearity. The value of adjusted R2 also shows a relatively high fitness. In the 
models, with lnCOD as the dependent variable, the coefficients of economic agglomeration 
are –0.089, –0.142, and –0.119 in large and megacities, medium-sized cities, and small-sized 
cities, respectively, all of which are significant at the 10% level. It can be seen that the in-
hibitory effect of economic agglomeration in small- and medium-sized cities on water pol-
lutant emissions is not only higher than that of large and megacities but also higher than that 
of the whole sample. 

The positive impact of economic agglomeration on COD emissions reduction is more 
significant in small- and medium-sized cities due to a clear tendency of manufacturing in-
dustries to gather in such cities, where there is huge potential for pollution mitigation. 
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However, as city size continues to expand, the negative externalities of industrial agglom-
eration and population growth appear, increasing the environmental impact. The estimation 
results also confirm this finding, namely that the emission reduction effect of economic ag-
glomeration in large and megacities is smaller than that in small- and medium-sized cities. 
The results also show that there is no statistically significant association between NH3-N 
emissions and economic agglomeration. 

Furthermore, due to the difference in city size, the explanatory power and significance of 
other control variables for water pollutant emissions are quite different. For COD emissions, 
the economic development level and population size have a significant impact in the three 
types of cities, but the magnitude of this impact in small- and medium-sized cities is more 
prominent than in large and megacities. An increase in the per capita GDP and in the popu-
lation size by 1% causes 0.844% and 1.098% increase in COD emissions in medium-sized 
cities, respectively, and an increase in COD emissions by 0.850% and 1.032% in small-sized 
cities, respectively. Meanwhile, the level of urbanization shows a negative impact in large 
and megacities (the regression coefficient is –0.682), but presents a positive impact in 
small-sized cities (the regression coefficient is 0.749). Population size and urbanization level 
significantly drive NH3-N emissions increase, and their coefficients are all positive in the 
estimates of the three types of cities. As the results show, a 1% increase in the urbanization 
level will cause NH3-N emissions in large and megacities increase by 0.542% and in  

 
Table 3  Estimation results for samples of different city sizes 

Large and megacities Medium-sized cities Small-sized cities 
 

lnCOD lnNH3-N lnCOD lnNH3-N lnCOD lnNH3-N 
LnEA –0.089* 0.0286 –0.142** –0.107 –0.119** –0.085 
 (–2.04) (0.81) (–3.06) (–1.02) (–2.68) (–0.64) 

LnWIC 0.031***  0.018***  0.015***  

 (19.38)  (14.52)  (14.56)  

LnWIN  0.205***  0.157***  0.123*** 

  (17.22)  (15.95)  (15.61) 
LnPGDP 0.575*** 0.152 0.844*** 0.381 0.850*** 0.065 
 (8.43) (0.80) (8.00) (1.39) (7.58) (0.29) 
LnPOP 0.880*** 0.905*** 1.098*** 0.961*** 1.032*** 1.048*** 
 (27.82) (35.67) (8.44) (10.69) (19.07) (26.86) 
LnIS 0.204* 0.146* 0.018 –0.101 –0.0579 –0.032 
 (2.42) (2.14) (0.13) (–0.98) (–0.55) (–0.39) 
LnURB –0.682*** 0.542*** 0.620 0.267 0.749* 0.771* 
 (–7.98) (7.41) (2.58) (1.43) (2.21) (2.64) 
Constant –0.182 –1.143* 0.895 –1.568 –0.216 –1.110 
 (–0.30) (–2.24) (0.82) (–1.96) (–0.23) (–1.60) 

F value 687.06 458.74 214.75 44.01 499.32 142.06 

P value 0.000 0.000 0.000 0.000 0.000 0.000 

Adj R2 0.851 0.827 0.846 0.779 0.885 0.852 

Notes: ***, ** and * indicate significance at the 1%, 5%, and 10% confidence levels, respectively; t values in 
parentheses. 
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small-sized cities increase by 0.771%. Overall, urbanization significantly drives COD emis-
sions increase in small- and medium-sized cities, but it has a strong inhibitory effect in large 
and megacities, indicating that solving water pollution problems in small- and medium-sized 
cities is key in reducing water pollutant emissions in the processes of urbanization. 

4  Spillover effects of economic agglomeration on water pollutant emissions 

4.1  Analysis of global spatial autocorrelation  

This study uses Moran’s I of univariate and bivariate spatial autocorrelation to assess the 
global spillover effects of economic agglomeration on water pollutant emissions. Moran’s I 
has a minimum value of –1 and a maximum value of 1; if it exceeds 0, there is a spatial 
positive correlation; if it is less than 0, there is a negative correlation; if it is equal to 0, there 
is no spatial correlation. As shown in Table 4, the Moran’s I of COD and NH3-N emissions 
are 0.258 and 0.254, respectively, and both pass the significance test at 1% level with note-
worthy differences, indicating that water pollutant emissions show a significant spatial cor-
relation at the national level. Furthermore, by calculating the Getis-Ord G* index, the G* 
index is divided into four types: hot spot, sub-hot spot, sub-cold spot and cold spot. Based 
on this division, hot-spot maps of COD and NH3-N emissions are generated (Figure 1). The 
high-value and low-value clusters of COD and NH3-N emissions are found to be significant. 
Among them, 19 cities are both hot spots for COD and NH3-N emissions, which are located 
in Shandong and Jiangsu provinces. 
 

 
 
Figure 1  Hot-spot maps of COD and NH3-N emissions in China 

 
The COD and NH3-N emissions are taken as the variables of central units, and the eco-

nomic agglomeration is used as the variable of surrounding units to calculate the global 
bivariate Moran’s I. As shown in Table 4, the bivariate Moran’s I of the economic agglom-
eration and NH3-N emissions are 0.2025 and 0.2737, respectively, both of which pass the 
significance test ate 1% level. This indicates that there is a significant difference in the de-
gree of spatial correlation between economic agglomeration and water pollutant emissions; 
that is, the higher the level of economic agglomeration, the more prominent the water pol-
lutant emissions. In addition, the Moran’s I index of economic agglomeration and NH3-N 
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emissions is larger than that of COD emissions, which means that the high-intensity NH3-N 
emissions tend to be distributed in cities with a higher economic agglomeration level. A 
comparative analysis of the bivariate Moran’s I index of economic level and pollutant emis-
sions shows that the economic agglomeration has a greater spillover effect on water pollut-
ant emissions than does the economic development level. 

 
Table 4  Moran’s I of univariate and bivariate spatial correlations for water pollutant emissions 

Bivariate analysis Pollutant  
emissions 

Univariate  
analysis With economic agglomeration With economic level 

Moran’s I 0.2575 0.2025 0.1469 
COD 

P value 0.0010 0.0100 0.0010 

Moran’s I 0.2542 0.2737 0.1188 
NH3-N 

P value 0.0010 0.0100 0.0030 

 

4.2  Analysis of local spatial autocorrelation 

Based on the z-test (P = 0.05), bivariate LISA cluster maps are formed to identify the main 
spatial correlation pattern of economic agglomeration and water pollutant emissions (Figure 2), 
including high agglomeration–high emissions (High–High), high agglomeration–low emis-
sions (High–Low), low agglomeration–high emissions (Low–High), low agglomeration–low 
emissions (Low–Low). Additionally, the bivariate LISA cluster maps also include a random 
pattern with no significant spatial correlation (Not sig.). 
 

 
 
Figure 2  Bivariate LISA cluster maps of water pollutant emissions 

 

(1) High–High regions. Both the levels of economic agglomeration and the water pollut-
ant emissions are relatively high in these regions. The regions with high economic agglom-
eration and high COD emissions, including 24 cities across the country, are mainly distrib-
uted in northern and northeastern China, emanating from the Harbin–Changchun urban ag-
glomeration and Beijing–Tianjin–Hebei region to the Shandong Peninsula. The regions of 
high economic agglomeration and high NH3-N emissions are distributed in Beijing, Tianjin, 
southwestern Shandong, central and northern Jiangsu, Fujian, and the Pearl River Delta ur-
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ban agglomeration, including 28 cities. In these regions, the levels of economic agglomera-
tion and industry density are particularly high, and large-scale economic agglomeration ac-
celerates pollutant emissions. Among them, Beijing, Tianjin, Xuzhou, Zaozhuang, Jining, 
Rizhao, Linyi, and Yiyang are classified as High–High regions in terms of two kinds of wa-
ter pollutant emissions at the city level. It can be seen that in order to alleviate regional wa-
ter pollution in Beijing, Hebei, and southwestern Shandong, it is very important to control 
the scale of economic agglomeration and accelerate the formation of an environmentally 
friendly industrial structure. 

(2) High–Low regions. The number of cities in this group is relatively small. Specifically, 
the regions of high economic agglomeration and low COD emissions mainly include Lüli-
ang, Panzhihua, Liangshan, and Qujing. The regions of high economic agglomeration and 
low NH3-N emissions consist of Baotou, Erdos, Yulin, Panzhihua, Liangshan, and Nanning. 
Compared with the High–High regions, the water environmental pollution in this group is 
not very severe, but with a further increase in industrial agglomeration, these may be the 
regions where the water pollutant emission will increase rapidly in the future. 

(3) Low–High regions. In these regions, the level of economic agglomeration is relatively 
low, but the water pollutant emissions are relatively high. The regions with low economic 
agglomeration and high COD emissions, including 14 cities, are mainly distributed around 
the high agglomeration–high emissions regions in northeastern and northern China. The re-
gions with low economic agglomeration and high NH3-N emissions include Lianyungang, 
Jingzhou, Xianning, Shaoyang, Shaoguan, Huizhou, Hengshui, Kaifeng, and Xinyang. Al-
though the level of economic agglomeration of these cities is relatively low, due to the high 
proportion of agricultural production involving livestock and poultry breeding, and aqua-
culture and crop production, the pollutant emissions of the cities, due to the agricultural 
sources, are quite large. The average proportions of agricultural COD and NH3-N emissions 
in Low–High regions are 68.15% and 40.04%, respectively, which are significantly higher 
than those in other types of cities. It can be seen that agricultural nonpoint source pollution 
should be mitigated through green prevention and control in these regions, including im-
proving the efficiency of agricultural water use and reducing the use of pesticides and fertil-
izers. In addition, water pollutant emissions are increasing faster due to the spillover effects 
of adjacent high-emission cities. 

(4) Low–Low regions. In these regions, both the levels of economic agglomeration and 
the water pollutant emissions are relatively low. These regions are widely distributed and 
concentrated in the Qinghai-Tibet Plateau and its marginal areas, including provincial-level 
areas of Tibet, Qinghai, Xinjiang, Gansu and Ningxia, and the cities in western Inner Mon-
golia, northwestern Yunnan, and western Sichuan. Most of these cities are located in the 
northwest of the “Hu Huanyong Population Line”, where the population is sparse and the 
economic density relatively low. Large-scale undeveloped resources and spaces and tradi-
tional agricultural production and living patterns result in relatively low levels of water pol-
lutant emissions. The average COD and NH3-N emissions are 23,500 tons and 2200 tons, 
respectively, which are only 1/5 and 1/6 the average emissions of High–High regions. Gen-
erally, this group should control the emissions from urban residents and industries in the 
future. 
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5  Conclusions and policy implications 
Based on the COD and NH3-N emissions Database of 339 Cities at city level in China, this 
study explores the impact of economic agglomeration on water pollutant emissions and the 
differences in magnitude of the impact on different-sized cities. The study also analyzes the 
spillover effect of economic agglomeration on water pollutant emissions. The results show 
that economic agglomeration can effectively reduce water pollutant emissions and is nega-
tive in all estimates of the whole, coastal, and inland samples. For the whole sample, a 1% 
increase in economic agglomeration reduces COD emissions and NH3-N emissions by 
0.117% and 0.102%, respectively. These findings indicate that as economic activity in-
creases the external spillover effects of capital investment, production technology, and emis-
sion reduction processes become more pronounced, increasing the efficient regional use of 
resources and energy and promoting the improvement of regional water environments. In 
addition, water pollutant emissions are mainly driven by factors such as industrialization and 
population growth and urbanization, reflecting that the current coupling pattern of industri-
alization and high emissions does not change. Both population growth and rapid urbaniza-
tion accelerate water pollutant emissions. 

Compared with large and megacities, economic agglomeration have a more prominent 
effect on the emission reduction of water pollution in small- and medium-sized cities. With a 
substantial increase in city size, the negative externalities of economic agglomeration and 
population expansion become cumulatively enlarged, resulting in an increase in the envi-
ronmental load of the industrial layout. In other words, economic agglomeration plays a sig-
nificant role in decreasing COD emissions in small- and medium-sized cities, indicating that 
solving water pollution problems in these types of areas is key to reducing emission inten-
sity in the processes of urbanization. Therefore, differentiated policies should be formulated 
to guide industrial agglomeration and diffusion in the process of industrialization and ur-
banization. On the one hand, small- and medium-sized cities should be actively developed, 
and the emission reduction effect of economic agglomeration should be further enforced. 
The government should spatially promote moderate agglomeration of economic activity to 
achieve economies of scale and produce technology spillover effects. On the other hand, it is 
necessary to reasonably control the pollution-intensive industry scale and population scale of 
large and megacities, and to accelerate the adjustment of industrial structures to eliminate 
backward production capacity, which has high energy consumption and high pollution out-
put. Additionally, the threshold for environmental access and control of the total amount of 
pollutant emissions must be raised substantially. 

There is a significant spatial correlation between economic agglomeration and water pol-
lutant emissions. The bivariate Moran’s I index of economic agglomeration and COD emis-
sions (or NH3-N emissions) is 0.2025 (or 0.2737). Regions with high-intensity emissions 
tend to be distributed in areas with higher levels of economic agglomeration. The bivariate 
LISA cluster map shows that the spatial spillover effect of economic agglomeration and wa-
ter pollutant emissions is significant, and it is characterized by four spatial correlation modes: 
high agglomeration–high emissions, low agglomeration–low emissions, low agglomera-
tion–high emissions, and high agglomeration–low emissions. The high agglomeration–high 
emissions regions are mainly distributed in Beijing–Tianjin–Hebei region, and the Harbin– 
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Changchun urban agglomeration. Among them, Beijing, Tianjin, and southwestern Shan-
dong are both high agglomeration–high emissions regions with two kinds of water pollutant 
emission. Low agglomeration–low emissions regions are mainly distributed in the Qing-
hai-Tibet Plateau and its marginal areas. Low agglomeration–high emissions regions are 
mainly distributed in the periphery of the high agglomeration–high emissions regions in 
northeastern and northern China. In the future, it will be necessary to strengthen environ-
mental protection and governance cooperation across administrative regions by focusing on 
the joint prevention and control of high agglomeration–high emissions regions and low ag-
glomeration–high emissions regions. For different water pollutant emissions, a multi-scale 
coupled water environment integrated control unit, where watersheds and administrative 
districts are nested within each other, should be formed to minimize the spatial spillover ef-
fects of economic agglomeration and water environmental pollution. 

Overall, this study is conducive to a firmer understanding of the relationship between eco-
nomic agglomeration and water pollutant emissions. However, there are still some areas that 
require further research: (1) exploring in depth the different critical thresholds of economic 
agglomeration affecting water pollutant emissions; (2) revealing the feedback mechanism of 
water pollutant emissions on economic agglomeration; (3) further analyzing the en-
vironmental properties and conjugation effects of various water pollutants, which can pro-
vide a reference for determining the factors’ weights and integrating them into wa-
ter–environment capacity assessments. 
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