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Abstract: Urbanization can profoundly influence the ecosystem service for biodiversity con-
servation. However, few studies have investigated this effect, which is significant for main-
taining regional sustainable development. We take the rapidly developing, mountainous and 
biodiversity hotspot region, Jinghong, in southern Yunnan Province as the case study. An 
integrated ecosystem service model (PANDORA) is used to evaluate this regional BESV 
(ecosystem service value for biodiversity conservation). The modeled BESV is sensitive to 
landscape connectivity changes. From the 1970s to 2010, regional urban lands increased 
from 18.64 km2 to 36.81 km2, while the BESV decreased from $6.08 million year1 to $5.32 
million year1. Along with distance gradients from the city center to the fringe, BESV varies as 
an approximate hump-shaped pattern. Because correlation analysis reveals a stronger in-
fluence of landscape composition on spatial BESV estimates than the landscape configura-
tion does, we conclude that the projected urban expansion will accelerate the BESV reduction. 
Of the projected urban land, 95% will show a decreasing BESV trend by approximately $2 m2 
year1. To prevent this, we recommend compact urban planning for the mountainous city. 
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1  Introduction 
Land use changes can affect the provision of ecosystem service (ES) (Lawler et al., 2014). 
The conversion of natural vegetation (e.g., native grasslands and forests) to arable land, 
plantations, and urban land will contribute to enriching food, timber, housing, and the pro-
duction of other commodities. However, conversion also causes reductions in many other 
ESs, especially those that support biodiversity. Urbanization is one of the most important 
land use changes in China (Song et al., 2015). Since the implementation of China’s reform 
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and opening-up policy in 1978, urban lands have dramatically encroached on native and ar-
tificial vegetation in most of China’s regions (Peng et al., 2015; Tan et al., 2005).  

The effect of urban landscape changes on biodiversity and ES has scale effects and re-
gional characteristics (Eigenbrod 2016; Kindu et al., 2016). Also, landscape changes have 
significant impacts on biodiversity, such as natural habitat loss and natural habitat fragmen-
tation. Habitat loss is considered a stronger factor than habitat fragmentation (Eigenbrod, 
2016). The greater uncertainty may be attached to the response of ESs to landscape changes, 
and the habitat loss effect on ESs, whether positive or negative, is determined by the con-
version of different land use types (Zhang et al., 2013). Mitchell et al. (2015) concluded that 
the habitat fragmentation effect on ES flow could be positive or negative, because, for many 
ESs, including pollination and biological control, the flow depends on the movement of or-
ganisms, matter, and energy across fragments of the landscape (Mitchell et al., 2015).  

The unit value-based approach (Costanza et al., 1997) and InVEST (Integrated Valuation 
of ESs and Tradeoffs) model were both applied for calculating ESs (Costanza et al., 1997; 
Jiang, 2017; Ochoa et al., 2017). The ES of the unit value-based approach is the sum of ser-
vice values of all land use types obtained by multiplying the area of each type by the value 
coefficient of the corresponding type (Costanza et al., 1997; Xie et al., 2003). While this 
approach is more dependent on empirical information for the value coefficient, the InVEST 
model relies more on observational data. These two approaches chiefly focused on features 
of individual patches (the composition) and could not adequately consider interactions be-
tween patches (the configuration), e.g., the landscape connectivity (Ng et al., 2013). A 
well-connected landscape ensures greater stability for biotic functions and also for ES deliv-
ery (De Montis et al., 2016; Liu et al., 2017; Zurlini et al., 2013). Thus, the ES value for 
biodiversity conservation (BESV) is closely related to landscape connectivity (Pelorosso et 
al., 2017). The PANDORA (procedure for mathematical analysis of landscape evolution and 
equilibrium scenarios assessment) is an improved model that introduced landscape connec-
tivity as the weight factor for evaluating ES values (Pelorosso et al., 2016). The evaluated 
BESV is regarded as a combination of several ESs, i.e., pollination, biological control, habi-
tat, and genetic resources (Costanza et al., 1997; Ng et al., 2013; Pelorosso et al., 2016; Xie 
et al., 2003). Different configurations of urban land will inevitably lead to different effects 
on the services for biodiversity regulation (Estoque et al., 2016; Lawler et al., 2014). Al-
though PANDORA allows for speculating about urban expansion effects on BESV regarding 
urban landscape patterns, it lacks efficient validation and uncertainty analysis for the newly 
developed PANDORA model. Such analysis is essential for taking into account the ES value 
(Ochoa et al., 2017). 

Xishuangbanna Dai Autonomous Prefecture in southernmost Yunnan Province, a local 
eco-cultural tourist resort in Southwest China and the core city of southwestern Yunnan, has 
a high value of biodiversity. However, rapid urban expansion and population growth are 
threatening the natural environments of the fragile mountainous landscape. The habitable 
land in mountainous cities is scarcer than that in plain areas. Thus, the negative effects of 
inefficient urban development will be more pronounced (Shen et al., 2016; Ying et al., 2014). 
Rational development of the urban land is, therefore, critical for maintaining and coordinat-
ing sustainable ecological and socio-economic development of Xishuangbanna. While land-
scape management studies in the area have focused primarily on the negative effects on the 
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regional ecosystem’s component and function induced by human activities, such as rubber 
plantation and road network expansion (Cao et al., 2017; Fu et al., 2010a; Fu et al., 2010b; 
Liu et al., 2014a; Liu et al., 2011; Liu et al., 2014b; Liu et al., 2017; Liu et al., 2006; Yi et 
al., 2014b; Ziegler et al., 2009), few studies have investigated ES change in response to ur-
ban expansion. 

This study was designed to explore the relationship between the changes in urban land-
scape patterns and those of the BESV in Jinghong County, the urban center of Xishuang-
banna. The evaluation is achieved by analyzing the synchronous changes between urban 
land and ES to better understand their linkages and the consequences of urban expansion. 
Specifically, the objectives of this study are to (1) analyze the uncertainty of the PANDORA 
model to better evaluate the BESV, (2) explore relationships between urban pattern changes 
and BESV variations, and (3) discuss implications of the BESV changes for future urban 
development planning.  

2  Methods 
2.1  Study area 

Located on the southwest frontier of China, Xishuangbanna belongs to a transitional zone 
from the tropical to subtropical region. Approximately 95% of the region is covered by hills 
and mountains, with an elevation ranging from 477 m to 2429 m (Cao et al., 1997). Natural 
forces of climate and geography in Xishuangbanna create a transitional zone with adequate 
flora and fauna (Cao et al., 1997). The region is not only a critical biogeographic area for 
biodiversity but also popular with tourists. With a massive influx of visitors, the urbanization 
of this region has grown considerably, especially in Jinghong County.  

Jinghong is the political, economic, and cultural center of Xishuangbanna (Figure 1). 
Rapid urbanization, gross domestic product (GDP), the proportion of the agriculture output 
value in GDP (AOV), the proportion of tertiary industry in GDP (TI), and the proportion of 

urban population in the total population 
(UP) of Jinghong have all increased signi-
ficantly from the 1970s to 2010 (Table 1). 

Jinghong County includes the center of 
Jinghong and part of Gasa town (Cao et al., 
2017). It was treated as the study case, and 
a circle of radius 16.5 km from the city 
center was drawn to cover the entire urban 
land of Jinghong (Figure 1). 

2.2  Methods 

The method flow chart contains four main steps (Figure 2a): analyses of the uncertainties of 
the PANDORA model, variations of urban land and BESV, the effects of urban expansion on 
the BESV, and the potential effect of projected urban expansion on the BESV. 
2.2.1  Data input 

Historical urban land maps were interpreted from a series of Landsat TM/ETM+ imagery 
(http://glovis.usgs.gov). One MSS image (Path/Row: 139/44, 139/45, 140/44, and 140/45) 

Table 1  The socio-economic development of Jinghong 
County from 1970 to 2010 

Year GDP  
(thousand $) 

AOV 
(%) 

TI  

(%) 
UP  

(%) 

1970 0.074 46.98 30.28 11.27 

1990 0.26 59.83 27.48 22.76 

2010 2.11 25.34 42.71 40.57 
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Figure 1  Location of Jinghong County and its urban land expansion during three periods 
 
and two TM images (130/44 and 130/45) were acquired for the urban land map in 1976, 
1990 and 2010, respectively. Supervised classification, a technique frequently used for the 
quantitative analysis of remote sensing image data, was applied to classify the images; the 
maximum likelihood algorithm was also used. Eight land use types were classified as forest, 
urban land, water, wetland, open space (bare land), plantation, scrub, and arable land. The 
visual modification was used to improve the accuracy of classification. For each map, we 
created 500 stratified random samples to check the accuracy. Overall accuracies of the clas-
sified maps were 85% or higher. The urban land map of 2030 was obtained by digitizing a 
detailed urban planning map of Jinghong, provided by the Housing and Construction De-
partment of Yunnan Province.  

Road data were digitized from the transportation map of Yunnan Province (Fu et al., 
2010a). We divided the roads into three levels. The first, second, and third level roads were 
expressways and state roads, roads between cities and counties, and small roads between 
towns and villages, respectively. Digital elevation model (DEM) was derived from the Na-
tional Geomatics Center of China with 25 m resolution (Yi et al., 2014a). Soil map was digi-
tized using 1:500,000 soil maps of Yunnan Province (Wang et al., 1982).  
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Figure 2  Schematic framework of the study (a) and the framework of the PANDORA model (b) (Pelorosso et 
al., 2017). BESV represents the ES for biodiversity conservation. The full line represents the steps of the study, 
the dashed line represents the indexes and methods used in this study, and the dotted line represents the original 
data and the implementation of PANDORA model. 
 
2.2.2  PANDORA model 

THEORETICAL ASSUMPTION: the model assumes that the ecosystem exchanges en-
ergy to achieve the low entropy metastable state (Kleidon et al., 2010; Vallino, 2011). So-
lar energy is fed into the ecosystems, which release energy through vegetative metabolism, 
i.e., bioenergy (Brunsell et al., 2011). Within the ecosystems, bioenergy can flow between 
sub-ecosystems (landscape units) and within a sub-ecosystem (between patches). The di-
vision of sub-ecosystem/landscape units depends on the distribution of barriers. In accor-
dance with the blocking effect from large to small, the barriers are urban (0.75), roads 
(0.5), hills (< 700 m) to mountain (> 700 m) zones change (0.16), and rivers (0.01), re-
spectively (Gobattoni et al., 2011). The metastable state is obtained by iterative computa-
tion. The number of iterations is determined by a balance between the logical growth of 
bioenergy and the reduction of bioenergy due to barriers. When the metastable state is 
reached, the patch with high bioenergy has a higher capacity for energy flow, and its con-
tribution to the landscape connectivity is greater. The PANDORA model accounts for the 
BESV based on the unit value-based approach and weighted by the contribution to con-
nectivity. 

Variables and functions: the BESV of the jth patch belonging to the kth land use type is 
calculated as: 

 
max

BESV 1 kj
kj k j

dMtot
VC A

dMtot
 

    
 

                     (1) 
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where VCk is the value coefficient for the kth land use type according to the modified coef-
ficient used by Ng et al. (2013) in China; Aj is the area of the jth patch. dMtotkj represents 
the contribution of the jth patch with the kth land use type in the maintenance of overall 
system connectivity, and the patch with a higher dMtotkj value has a greater contribution to 
connectivity. The formula of dMtotkj calculates the change in the overall connectivity be-
fore (Mtotj

as, the asymptotic bioenergy of the overall system in the metastable state) and 
after (Mtotj

as’) changing the jth patch into an area with zero bioenergy; dMtotmax represents 
the maximum value of dMtot among all landscape patches and ignores the difference be-
tween land use types.  

The asymptotic bioenergy of the overall system in the metastable state ( )
tot

asM  can be 

calculated as follows: 
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                    (4) 

where Mi
as represents the asymptotic bioenergy of the ith landscape unit in the metastable 

state; Bji represents the standardized BTC (Biological Territorial Capacity, which repre-
sents the ecosystem metabolism and is connected to land use types) of the jth patch be-
longing to the ith landscape unit (Ingegnoli 2011); sji represents the area of the jth patch 
of ith landscape unit; K is a dimensionless quantity that depends on four parameters, Kec, 
Khu, Kse, and Ksoil, with each parameter defined within the range of 0–1 and associated 
with characteristics of patch ecotones, climate, solar exposition, and soil property of 
each landscape unit, respectively.  

Framework: the framework of the PANDORA model was shown in Figure 2b. The 
model contains three modules, “Base parameters,” “Model,” and “dMtot/BESV.” The opera-
tion of the first module (Base parameters) requires all data to be entered, contains land use 
maps, the landscape unit map, the barrier penetration, and the K value of each landscape unit. 
The second module, “Model,” could simulate the final metastable state. The third module, 
“dMtot/BESV,” could output the BESV of each patch. The PANDORA model was released 
on the QGIS plugin platform as an open-source plugin (https://plugins.qgis.org/plugins/ 
pandora/). 

2.2.3  Validation and uncertainty analysis of the PANDORA model 

The efficiency of the PANDORA model is performed primarily in two steps: validation and 
uncertainty analysis. 

Validation: because few studies have evaluated the BESV in the study area and there is a 
lack of validation data, we adopted two other ES models to assess the PANDORA BESV. One 
is the unit value-based approach and the other the carbon storage of the InVEST model. These 
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two methods are also widely used in the ES assessment (Jiang 2017; Ochoa et al., 2017).  
The calculation of the unit value-based approach is as follows: 

 BESVkj k jVC A                              (5) 

where VCk is the value coefficient for the kth land use type. The value of VC of the unit 
value-based approach is consistent with that of the PANDORA model. Aj is the area of the jth 
patch.  

The carbon storage data based on the InVEST model were acquired from Liu et al. (2017). 
In this model, the carbon storage contains four “carbon pools” in terrestrial ecosystems, i.e., 
soil, belowground biomass, dead organic matter, and aboveground biomass. The related data 
for the parameterization were collected from previous vegetation research in this area (Chen 
et al., 2002; Lv et al., 2007; Song et al., 2010; Liu et al., 2017).  

Uncertainty analysis: the landscape connectivity of the PANDORA model refers to the 
flow of bioenergy. This flow is determined by the intrinsic land use types and barriers of 
bioenergy. The identification of the barriers is accomplished manually, and there may be 
human errors. To better understand how the barriers affect the results of the model, we de-
signed four scenarios as follows: Scenario 1 is the original sample, Scenario 2 reduces the 
barriers (roads), Scenario 3 adds barriers (roads), and Scenario 4 increases the local frag-
mentation. Details are shown in Figure 4. 

2.2.4  Indexes used and analytical methods 

This study applied multiple indexes to characterize spatiotemporal variations and land-
scape pattern changes. Indexes used to characterize the former were annual change ve-
locity (ACV), annual change intensity (ACI), Shannon’s entropy, and landscape expan-
sion index (LEI). Eight landscape pattern metrics were used to characterize the compo-
sition and configuration of the landscape. Calculations and explanations of all indexes 
are listed in Table 2. 

ACV and ACI were used to depict the total change in urban land area and the BESV; 
Shannon’s entropy, LEI, and the standard deviational ellipse were used to demonstrate the 
change of urban land pattern for the whole region.  

For this study, we applied class-level landscape pattern metrics (Table 1), since at this 
level they can provide specific information about variations of landscape patterns at the local 
level (Estoque et al., 2013; Estoque et al., 2016). The selection of metrics was based on pre-
vious works on urban expansion (Su et al., 2012; Estoque et al., 2013; Liu et al., 2014b; Su 
et al., 2014a; Su et al., 2014b; Estoque et al., 2016; Cao et al., 2017; Li et al., 2017; Liu et 
al., 2017). All metrics (Table 2) were obtained using Fragstats 4.2 by moving the window 
strategy. The calculation of metrics involved an ambiguous parameter, i.e., the size of the 
moving window. The width of the window was set from 200 m to 1,000 m in studies in-
volving the urban effective influence range (Estoque et al., 2013; Estoque et al., 2016; Sub-
asinghe et al., 2016; Cao et al., 2017). In studies involving biodiversity analysis, the window 
width ranged from 25 m to hundreds of meters (Angel et al., 2005; Angel et al., 2007). 
Based on these studies, we set up three sizes of the moving window, i.e., circles with an area 
of 0.1 km2, 1 km2, and 5 km2, respectively. The corresponding radius was 0.18 km, 0.56 km, 
and 1.26 km, respectively. 
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3  Results 

3.1  Validation and uncertainty analysis of the PANDORA model 

Figure 3 shows that, although three models had similar BESV patterns, there were differ-
ences in distributions of BESVs evaluated by PANDORA with the land use map, especially 
for northern forests and southern plantations. Only limited parts of the northern forests 
showed the higher BESV while most of the southern plantations showed the same. Results 
of the unit value-based approach were similar to the land use map.  

The service values of forest and water were the highest, followed by the plantation and 
arable land, and the BESVs of the urban and industrial area were the lowest. The carbon 
storage of the InVEST model was also similar to the unit value-based approach. However, 
BESV of InVEST was slightly different from that of the unit value-based approach, since the 
carbon storage of arable land was low. Therefore, it is clear that the distribution of different 
land use types affected the BESVs across three models, and the PANDORA model is more 
robust considering the connectivity of certain land use. 

 

 
 
Figure 3  Land use map of the study area in 2010 (a), and the comparison of the performance of the PANDORA 
model (b), a unit value-based approach (c), and the InVEST model to evaluate the BESV (d). UL, IU, OP, SC, AV, 
AL, PL, FO, WA, and WE separately represent urban fabric, industrial units, open spaces, scrub, green space, 
arable land, plantation, forests, inland water, and inland wetland. b, c, and d represent the BESVs evaluated by 
PANDORA model ($·m2 year1), by the unit value-based approach (Costanza et al., 1997a; Ng et al., 2013) 
($·m2 year1), and the carbon storage evaluated by the InVEST model (mg ha1) in 2010, respectively. The clas-
sification of low, medium and high level applies the equal interval method.  
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We designed four scenarios to assistant barrier effects on BESV simulations in 
PANDORA. The total BESV of Scenario 1 was the highest, followed by Scenario 3, and 
Scenarios 2 and 4 were the lowest. The overall BESV in Scenarios 2 and 4 were comparable. 
Differences between Scenarios 1 and 3 reveal that the increase in roads would reduce the 
BESV. The existence of urban land within a landscape unit would reduce the BESV unit re-
vealed by comparisons of Scenarios 1, 2, and 3. The decreasing effect was higher than in-
creasing the road effect. By comparing Scenarios 2 and 4, the PANDORA model was found 
to be insensitive to changes in the fragmentation within a landscape unit. 

 

 
 

Figure 4  The uncertainty analysis of the PANDORA model. a, b, c, and d represent the Scenario 1 (the original 
sample), Scenario 2 (reduces roads based on the original sample), Scenario 3 (adds roads based on the original 
sample), and Scenario 4 (increases the local fragmentation based on the original sample), respectively. e, f, g, and 
h represent the BESV of Scenario 1, the BESV of Scenario 2, the BESV of Scenario 3, and the BESV of Scenario 
4, respectively. 
 

3.2  Spatiotemporal variation of urban land and the BESV 

3.2.1  Total change in urban land area and the region’s BESV 

The urban land expanded from 18.64 km2 in the 1970s to 36.81 km2 in 2010. The expansion 
was in patterns of ‘sprawling’ (Figure 5a). The regional BESV decreased gradually, with a 
9% decrease in total. Also, the corresponding ACV and ACI of urban expansion increased 
from 0.21 km2 year1 and 0.02% to 0.76 km2 year1 and 0.08%, respectively (Figure 5b).  

Shannon’s entropy of the urban land increased from 0.61 to 0.68. The regional BESV de-
creased from $ 6.08 million year1 to $ 5.32 million year1. Its ACV and ACI decreased from 
–0.0035 $ million year1 to –0.0153 $ million year1 and from –0.0004% to and –0.0018%, 
respectively. Also, changes in both urban land and the BESV during 1990–2010 (Period 2) 
were larger than during the 1970s–1990 (Period 1).  
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Figure 5  Annual variation of both urban land and the region’s BESV. ACV and ACI represent annual change 
velocity and annual change intensity, respectively.  
 

3.2.2  The change of urban land pattern in the region 

The transformation of land use in Period 1 was not noticeable; the Fuzzy Kappa Index be-
tween land use maps of the 1970s and 1990 was 0.96, which indicated that their landscape 
patterns were close. The Fuzzy Kappa Index between land use maps of 1990 and 2010 in 
Period 2 was just 0.18, indicating the dramatic change in land use.  

Shannon’s entropy of urban land in Period 2 was only 1.1 times that of Period 1. The ex-
pansion center and range of the whole urban land had a low deviation (Figure 6a). The 
newly grown urban land showed a different pattern between two periods (Figure 6b). In Pe-
riod 1, the urban land expanded along the NW-SE, and the expansion type was 
edge-expansion (69%) and filling (31%). In the last 20 years, the urban land expanded rap-
idly, and the outlying expansion type increased to 18%. 

 

 
Figure 6  Distributions of urban land and its expansion from the 1970s to 2010 (a. The distribution of urban land; 
b. The distribution of the newly grown urban land) 
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3.2.3  The urban expansion and BESV changes along a distance-gradient 

Three typical relationships exist between urban expansion and BESV variations along with 
the distance from city center (Figure 7). Relationship (I) appeared within 6 km, in which 
urban expansion and BESV variations were both apparent. Relationship (II) appeared from 4 
to 8 km, in which the urban land expanded slightly and always accompanied by the BESV 
increase. Relationship (III) appeared further than 8 km, in which the urban land expanded 
slightly and the BESV clearly decreased. The urban expansion and the BESV variation of 
Period 2 were in a higher degree than Period 1 (Figure 7).  
 

 
 

Figure 7  The distance gradients for the difference between urban land areas (∆Area) and the difference between 
BESVs (∆BESV) in different periods. The left longitudinal axis shows the standardized ∆Area, and its value in-
creases from bottom to top along the axis. The right longitudinal axis shows the standardized ∆BESV, and its 
value decreases from bottom to top. The 0 in the X-axis represents the city center. Because of the normalization, 
the plus-minus state in the Figure is not the same as those in the raw data while the fluctuated trends of these data 
were consistent with those of the raw data. 
 

3.3  The effect of urban expansion on BESV 

3.3.1  The effect of urban landscape pattern changes on BESV 
Variation of BESVs was highly related to urban landscape pattern changes, and their rela-
tionship strengthened with a decrease in the moving window size (Table 3). In both Periods 
1 and 2, the ∆ of all selected landscape metrics was significantly correlated with its corre-
sponding ∆BESV (p<0.01). Overall, the landscape metrics representing the landscape com-
position (∆LP, ∆ME, and ∆PL) were negatively correlated with ∆BESVs, while metrics that 
represent the landscape configuration (∆DI, ∆EN, ∆PD, and ∆SH) were positive.  

The absolute value of correlation coefficients between ∆landscape composition indexes 
and ∆BESVs was often higher than the coefficients between ∆landscape configuration in-
dexes and ∆BESVs. ∆AI showed a negative correlation with ∆BESV at 0.1 km2 of the mov-
ing-window, while any such correlation between them became positive as the size of the 
moving-window increased to 0.56 km2. In addition, if the size of the moving-window was 
set to a minimum (such as 0.1 km2), the correlation coefficients of most metrics showed 
their highest value. Consequently, we used 0.1 km2 as the appropriate size of the mov-
ing-window for the subsequent analyses.  
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Table 3  Pearson correlation coefficients between the difference (∆) of BESVs and the difference (∆) of land-
scape metrics 

Period Moving-window 
size/km2 ∆AI ∆DI ∆EN ∆LP ∆ME ∆PD ∆PL ∆SH 

0.1 –0.13 0.35 0.14 –0.65 –0.62 0.14 –0.65 0.15 

1 0.10 0.22 0.06 –0.43 –0.40 0.19 –0.42 0.20 
∆BESV 

(1970s–1990) 

5 0.09 0.12 0.02 –0.21 –0.21 0.11 –0.26 0.15 

0.1 –0.16 0.19 0.14 –0.55 –0.45 0.08 –0.55 –0.01 

1 0.07 0.14 0.10 –0.31 –0.24 0.10 –0.30 0.07 
∆BESV 

(1990–2010) 

5 0.01 0.04 0.03 –0.18 –0.14 0.06 –0.16 0.04 
 

The correlations between ∆landscape metrics and the corresponding ∆BESVs are all sig-
nificant (0.01 significant level). AI aggregation index; DI landscape division index; EN 
Euclidean nearest neighbor distance; LP largest patch index; ME effective mesh size; PD 
patch density; PL percentage of landscape; SH area-weighted mean shape index.  

3.3.2  The potential effect of future urban planning on BESV 

Considering the apparent difference between urban expansion in Periods 1 and 2, regression 
models between ∆BESV and ∆landscape metrics of these two periods were constructed 
separately. ∆AI, ∆DI, ∆LP, ∆SH, and ∆PL were added to the regression model of Period 1, 
while ∆PL was replaced by ∆ME in Period 2 (Table 4).  

Based on the regional urban planning map, the study area’s urban land will grow sig-
nificantly until 2030, reaching 91.04 km2 by that year. The ACV and ACI will reach about 
2.71 km2 year1 and 0.32%, respectively. The Shannon’s entropy will also rise to 0.82, pre-
senting urban land that is significantly fragmented.  

In these projected urban patches, the outlying type will increase to 22%, while the infill-
ing type will fall to 7%. Overall, the projected urban landscape pattern is similar to the urban 
landscape in 2010, both of them sprawling rapidly. Hence, we applied the model of Period 2 
in Table 4 to predict the potential changes in BESV in the projected urban land. 

 

Table 4  The stepwise regression analysis for the difference (∆) of BESVs and the difference (∆) of landscape 
metrics 

Period R2 p Regression model 

1970s–1990 0.480 <0.001 ∆BESV=0.053+0.005∆AI–1.624∆DI–0.038∆LP–0.019∆PL+1.552∆SH 

1990–2010 0.327 <0.001 ∆BESV=0.001+0.003∆AI–0.902∆DI–0.063∆LP+0.226∆ME+0.890∆SH 
 

Hence, 95% of the projected urban land shows a decreasing trend of BESV, while 5% of 
the area shows an increasing trend (Figure 8). In areas with decreasing BESV, the BESV of 
51% of the area will decrease by $2–3 m2 year1, 26% of the area will decline by $1–2 m2 

year1, and the remaining areas will lose less BESV.  
Although the increment of the BESV will be limited, ranging from $0 to $1 m2 year1, 

the BESV of the projected urban land closest to the existing urban land will fall significantly, 
decreasing as the distance from it increases. Further, BESV of the area on the fringe of pro-
jected urban land is predicted to have an upward trend. 
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Figure 8  Statistics of BESV changes (∆BESV) of projected urban land in 2030. Different colors represent the 
different range of variations in BESV. The small figure with different colors above represents the spatial distribu-
tion that the color represents below. 

4  Discussion 

4.1  Validation and uncertainty analysis of the PANDORA model 

Generally, the results derived by PANDORA were consistent with the two referenced models 
(Figure 3). The similarity is mainly because all the models were highly affected by the dis-
tribution of land use types. In Figure 3b, the distribution of BESVs in the south and north 
indicate that the PANDORA model was also affected by the distribution of the bioenergy 
barriers; and Figure 4 shows that the existence of urban land might negatively affect the 
evaluation of BESV. The PANDORA had a weak ability to identify the fragmentation 
changes within a landscape unit.  

The impact of urban land on BESV might be reflected in the following ways: (1) because 
urban land cannot provide the BESV, its existence would reduce the bioenergy of the whole 
landscape; and (2) the barrier effect level of urban land was set to maximum in the 
PANDORA model. Thus, the barrier of urban land had a more obvious effect on bioenergy 
reduction.  

Since the bioenergy reduction transformed the bioenergy of the landscape unit to a lower 
metastable state, the total BESV of the unit became correspondingly lower. Comparisons 
over Scenarios 1, 2 and 3 indicate that the existence of urban land was more effective than 
the increase of road barriers to the BESV reduction. Also, the comparison between Scenarios 
2 and 4 show that the dispersed urban and compact urban land had similar effects on the re-
duction of BESV. Therefore, when using the PANDORA model to estimate BESV, the urban 
land should be divided into as few landscape units as possible. 

We also found PANDORA was insensitive to urban landscape fragmentation changes 
within landscape units revealed by Scenarios 2 and 4. Although the effect of fragmentation 
on ecosystem services has both positive and negative effects (Mitchell et al., 2015), the 
fragmentation associated with barriers in PANDORA negatively affected the bioenergy flow 
between landscape units (Gobattoni et al.). Hence, the fragmentation effect by roads could 
be revealed during model calculation while the effect of urban fragmentation within the 
landscape unit on BESV could not be manifested.  
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4.2  Spatiotemporal variations of urban land and BESV 

Figures 5 and 6 indicate that changes in the urban land pattern were more evident in the 
newly grown urban land than reflecting urban land as a whole. Overall, the changes of the 
whole regional BESV were closely related to the increment of urban land. The rapid rate of 
urban expansion was also implied in previous studies of this region (Cao et al., 2017). Fur-
thermore, our results were consistent with previous findings that the BESV decreased as a 
consequence of dramatic changes in land use in the study region (Liu et al., 2017; Smajgl et 
al., 2015). The increased urban land was chiefly transformed from arable land, plantation, 
and shrub (Cao et al., 2017). Further, arable land and plantation expanded into natural vege-
tation to replenish losses (Fu et al., 2010b; Li et al., 2008). Such changes in land use type 
lead to a reduced BESV.  

We classified the city into three parts – hinterland, periphery, and nonurban – (Benza et 
al., 2016; Wu et al., 2015) in which the three relationships in Figure 7 occurred, so that the 
BESV of the hinterland and nonurban land decreased significantly, while the BESV of the 
periphery increased equally significantly. The BESV variations along the urban-nonurban 
gradient coincided with the results of most previous studies (Benza et al., 2016; Kroll et al., 
2012; Radford et al., 2013; Wu et al., 2015; Zhou et al., 2011).  

The fluctuation of the BESV along with the gradient was chiefly related to net land use 
changes. In the inner city, the net land use change was primarily manifested by the en-
croachment of urban land onto arable land (Cao et al., 2017; Fu et al., 2010b; Li et al., 2008). 
Since the 1970s, arable land along the city’s periphery was gradually replaced by plantations 
(Cao et al., 2017), the BESV of which was higher than that of arable land. Thus, the in-
creased plantation in the outer city contributed to the increased BESV. Although the periph-
eral BESV increase might be related to increased cover of green lands in urban fringes 
(Radford et al., 2013), the BESV change in the nonurban land was caused primarily by 
changes in arable land and plantation.  

4.3  The effect of urban expansion on BESV 

The results show that the correlation between ΔBESV and Δlandscape metrics decreases 
with the increasing moving-window size. In our study, the changes of all selected metrics 
were significantly correlated with ΔBESV and complied with several previous studies (Cai 
et al., 2016; Liu et al., 2017; Su et al., 2012). Further, the correlation between the 
Δlandscape composition indexes and ΔBESVs is higher than that between Δlandscape struc-
ture indexes and ΔBESVs. Such a result was consistent with the effect of landscape pattern 
change on biodiversity (Eigenbrod, 2016).  

Because in this study we introduced the urban class instead of all classes into the models 
in Cai et al., 2016, the contribution of landscape metrics to the BESV change (Table 4) was 
lower relatively than in previous studies (Cai et al., 2016). Moreover, the effect of land use 
changes on the BESVs differed among land use types (Kindu et al., 2016).  

During two-time intervals, AI, DI, LP, and SH were all inputted into the model of ΔBESV 
and Δlandscape metrics, while PL and ME were inputted into the model only during Periods 
1 and 2, respectively. These metrics represented three landscape aspects: AI and DI indicated 
the fragmentation; AI, ME, LP, and PL represented the proportion of urban land, and SH 
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presented the complexity of urban patch shape. Therefore, we attributed changes of BESVs 
in grains to the net urban expansion (landscape composition changes) and landscape con-
figuration changes. 

The development of Chinese cities is regulated by government policies. The government’s 
urban planning map was involved in simulating future urban land. We applied changes in 
landscape patterns to predict the potential changes in the BESV due to projected urban ex-
pansion. The prediction model shows that the fragmentation, the proportion of urban patches, 
and the complexity of urban patch shape would affect the effect of urban expansion on the 
BESV.  

The inference of fragmentation in the prediction model differed with the result of correla-
tion analysis, which was due to the suppression effect of the multiple regression analysis 
(Friedman et al., 2005; Lipovetsky et al., 2004; Mayer et al., 2016). Although the relation-
ship between the independent and dependent variables in the multiple regression analysis 
was controlled by other variables, it was normal that the result of correlation analysis was 
inconsistent with that of regression analysis. Considering the inevitability of urban expan-
sion, we could change only the landscape fragmentation and the complexity of urban patch 
shape to ameliorate the BESV in the region. 

The compact urban clusters were conducive for maintaining the BESV, and the higher 
complexity of urban patches also facilitated its support. Considering these two factors, we 
suggest that the urban land in our study should be built as a compact, high-density residen-
tial area. This will further improve the utilization of existing infrastructures and reduce re-
lated external costs due to urban expansion (Estoque et al., 2016; Gagné et al., 2010). How-
ever, a dense urban pattern is not consistent with the planning development theme of Jing-
hong, which is designed as a tourist attraction. The high-density pattern will lead to an in-
crease in traffic congestion and to crowded services (Estoque et al., 2016). 

The effects of urban expansion on ecosystem services are still uncertain. Although the di-
rection or magnitude of urban land changes differs between cities, most of the available 
cases are locally specific. Because ecosystem services occur in bundles rather than in iso-
lated landscapes, our cases focus on one of the several ecosystem services to explain its 
general response to land use changes. We tried, as a result, to construct a framework to op-
timize urban planning for biodiversity conservation and apply it to a biodiversity hotspot. 

5  Conclusions 
Using the PANDORA model, we determined BESV for both land use types and landscape 
connectivity, which enables it to establish the relationship between the BESV variation and 
urban expansion from the perspectives of landscape composition and landscape configura-
tion. Over the last 40 years, we see in Xishuangbanna an accelerated trend of the reducing 
rate of the BESV, which, as of 2010, has decreased to $5.32 million year1 with an annual 
loss of $0.02 million. Our results show that both landscape composition and landscape con-
figuration can affect the regional BESV and that the improvement of the landscape configu-
ration is closely associated with regulating the urban land expansion rate. We believe that 
although the compact urban land with complexity patch shape could spare land and prevent 
a reduced BESV, such urban patterns reduce the city’s social services quality. Future work in 
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urban planning should focus on a trade-off between compact and landscape sprawl, so im-
portant for maintaining the regional BESV. 
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