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Abstract: Spatio-temporal patterns of drought from 1961 to 2013 over the Bei-
jing-Tianjin-Hebei (BTH) region of China were analyzed using the Palmer Drought Severity 
index (PDSI) based on 21 meteorological stations. Overall, changes in the mean-state of 
drought detected in recent decades were due to decreases in precipitation and potential 
evapotranspiration. The Empirical Orthogonal Functions (EOF) method was used to decom-
pose drought into spatio-temporal patterns, and the first two EOF modes were analyzed. 
According to the first leading EOF mode (48.5%), the temporal variability (Principal Compo-
nents, PC1) was highly positively correlated with annual series of PDSI (r=+0.99). The vari-
ance decomposition method was further applied to explain the inter-decadal temporal and 
spatial variations of drought relative to the total variation. We find that 90% of total variance 
was explained by time variance, and both total and time variance dramatically decreased 
from 1982 to 2013. The total variance was consistent with extreme climate events at the in-
ter-decadal scale (r=0.71, p<0.01). Comparing the influence of climate change on the annual 
drought in two different long-term periods characterized by dramatic global warming (P1: 
1961–1989 and P2: 1990–2013), we find that temperature sensitivity in the P2 was three 
times more than that in the P1. 

Keywords: PDSI; spatial and temporal patterns; sensitivity analysis; global warming 

1  Introduction 
Drought, one of the most widespread natural hazards, is caused by a long-term shortage of 
precipitation and increase in evaporation (Sheffield et al., 2012; AghaKouchak et al., 2014). 
Positive temperature, wind speed, radiation, and low relative humidity anomalies play a sig-
nificant role generating extreme drought events (Diffenbaugh et al., 2015; Wang et al., 2015; 
Huang et al., 2017). In recent years, a higher frequency of extreme drought events has been 
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observed concurrent with dramatic global warming at global and regional scales (Dai, 2013; 
Zhang et al., 2013; Griffin and Anchukaitis, 2014; Schwalm et al., 2017). The long-term 
shortage of water resources can lead to drought disasters (Wang et al., 2015; Huang et al., 
2017). In particular, China has suffered more frequent drought events in the early 21st cen-
tury (Yu et al., 2014) and previous studies have highlighted the severe droughts in North 
China since 1960, with a higher frequency after the 1990s (Qin et al., 2015; Wang and He, 
2015; Zhang et al., 2017). With a soaring economy and population growth, the risk and in-
fluence of drought disasters have increased significantly in North China (Cai et al., 2015). 
For example, the Haihe River Basin has been subject to increasing drying-out events due to 
high-intensity water resource utilization in recent decades. Even more serious, the ground-
water table sharply declined from 3–4 m depth in the 1950s to greater than 30 m depth in the 
1990s (Liu and Xia, 2004). Thus, extreme drought events have received more attention in 
most regions over China, including North China (Wu et al., 2018).  

Despite trends in global warming and climate change, previous studies have noted that 
drought trends have shown negligible increases worldwide or in China (Sheffield et al., 
2012; Zhang et al., 2016). The impact of global warming on drought has been almost com-
pletely offset by declining evaporation (Chen et al., 2005; Zhang et al., 2016) due to de-
creasing wind speeds (‘global stilling’, Young et al., 2011) and radiation reductions (‘global 
dimming’, Wild et al., 2005). As a result, the variance in drought is increasing with global 
warming with little change in tendency (Rajah et al., 2014).  

Exploring the spatio-temporal patterns of drought can help us better understand the im-
pact of climate change and human activity on drought (Sun et al., 2012; Greve et al., 2014). 
To evaluate drought characteristics, a series of indices, including the widely used Standard-
ized Precipitation Index (SPI) (McKee et al., 1993), Standardized Precipitation Evapotran-
spiration Index (SPEI), and Palmer Drought Severity Index (PDSI) (Palmer, 1965), have 
been proposed. These indices have proven useful in exploring the factors driving extreme 
drought events, i.e., based on monthly precipitation and potential evapotranspiration datasets, 
and quantifying drought characteristics, i.e., the severity, intensity, and duration of drought 
(Yang et al., 2017; Zhai et al., 2017). Among them, PDSI is most widely used because of the 
clear physical mechanism (Palmer, 1965; Zhang et al., 2016; Yang et al., 2017). More re-
cently, a series of variance decomposition methods, combined with drought indices, were 
introduced to diagnose and separate the spatio-temporal patterns of drought (Santos et al., 
2010).  

Drought characteristics over the Beijing-Tianjin-Hebei region have been investigated us-
ing various drought indices. He et al. (2015) noted that, based on the comprehensive drought 
index, the risk of severe and extreme drought events has increased in the early 21st century. 
Using SPI, the most serious drought was identified as occurring from 2005 to 2007 (Qin et 
al., 2014). In terms of future drought, SPEI projections have been forecast based on outputs 
from regional climate models under 1.5 and 2.0℃ global warming scenarios, and the fre-
quency of drought under the 2.0℃ warming scenario will increase due to reduced precipita-
tion and increases in evaporation demand (Sun et al., 2017). However, research focusing on 
drought characteristics still lack detailed spatio-temporal characteristics on inter-decadal 
scales. To address this limitation, this study focuses on the spatio-temporal pattern of 
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drought evolution and sensitivity analysis over the Beijing-Tianjin-Hebei region for 
1961–2013.  

2  Study area, data, and methods 

2.1  Study area and data 

In this study, we focus on the Beijing-Tianjin-Hebei region (hereafter the BTH region), generally 
located in North China (Figure 1). The BTH region is approximately 185,000 km2 in area and is 
both one of the major grain producing areas and largest urban agglomerations in China. To better 
understand the spatio-temporal pattern of drought, we used a daily meteorological dataset to cal-
culate the PDSI for 1961–2013; the dataset includes precipitation (denoted P), air temperature 
(mean, maximum, minimum) (de-
noted T), wind speed (denoted Ws), 
sunshine duration (denoted Sd), and 
relative humidity (denoted Rh). Data 
were obtained from 29 stations and 
subject to quality-control measures 
before release from the Natioal Cli-
mate Center of the China Meteoro-
logical Administration to the scien-
tific community (http:// www. nmic. 
gov. cn/). In this study, we also chose 
data for temporal consistency using 
available data length; for inclusion, 
missing data had to be less than 5% 
and the longest continuous missing 
days less than 10 days. With these 
quality control measures, 21 out of 
the 29 meteorological stations had 
enough data with continuous measre-
ments.  

2.2  Methods 

2.2.1  Palmer Drought Severity Index (PDSI) 

We selected PDSI as a quantifiable evaluation indicator, which considers both precipitation 
and evaporation. PDSI is a simple-double layer water balance model originally designed by 
Palmer (1965), which indicates the balance between water supply and atmospheric evapora-
tive demand on monthly time scales. 

The PDSI is calculated using the difference between the observed monthly precipitation 
and most-optimum “precipitation”, which are estimated based on monthly Climatically Ap-
propriate For Existing Conditions (CAFEC). To estimate the most-optimum “precipitation” 
under CAFEC, we selected the FAO (Food and Agricultural Organization) Penman-Monteith 
reference evaporation, as recommended by previous studies instead of the original Thorn-
thwaite approach, which only considers mean near-surface temperature (Thornthwaite, 

 
 
Figure 1  Location of the study area and selected sites in the BTH
region 
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1948). The drought classifications using PDSI are shown in Table 1. 
 

Table 1  Drought classifications using PDSI 

Drought class PDSI values Drought class PDSI values 

Extreme wet PDSI>4 Extreme drought PDSI<–4 

Severe wet 3<PDSI≤4 Severe drought –4<PDSI≤–3 

Moderate wet 2<PDSI≤3 Moderate drought –3<PDSI≤–2 

Mild wet 1<PDSI≤2 Mild drought –2<PDSI≤–1 

Normal –1<PDSI≤1   

 
We used a standard algorithm to estimate potential evapotranspiration (PET) as recom-

mended by the FAO (Allen et al., 1998); the FAO-Penmen-Monteith (PET_pm) approach is 
given by: 
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where Rn is net radiation, Δ is slope of the vapor pressure curve, G is soil heat flux, U2 is the 
wind speed (Ws) at 2-m height, γ is the psychometric constant, es is saturation vapor pressure 
at a given air temperature, Rh is the relative humidity, and es(1–Rh/100) is the vapor pres-
sure deficit.  

2.2.2  Empirical Orthogonal Function (EOF) 

For a large or complex dataset, the Empirical Orthogonal Function (EOF) can reduce the 
dimensionality; therefore, it is widely used to extract useful information. Here, the EOF 
method (Perry and Niemann, 2008) was applied to analyze the spatio-temporal pattern of 
drought over the BTH region. In this study, the annual and seasonal series PDSI, containing 
a 52-year sample length from 1962 to 2013 and 1961 as a warm-up year, was considered as a 
21×52 matrix. Using empirical orthogonal decomposition, a set of orthogonal functions to 
represent a time series of drought was obtained as follows: 
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where Z(x,y,t) is the original time series dataset as a function of time (principal components, 
PCs) and space (EOF modes, EOFs) and n is sample size of space (here, n=21). To elimi-
nate the influence of multicollinearity between time and space, the orthogonal transforma-
tion was used to investigate the spatio-temporal pattern of droughts. 

2.2.3  Decomposition of time-space variance 

Changes in precipitation and evapotranspiration impact the intensity and severity of drought. 
In general, drought indices, such as PDSI, perform well as a quantitative drought assessment. 
However, it is difficult to separate the space and time components of variances because of 
their interaction within the whole system. Here, we used a variance decomposition method 
(Sun et al., 2010; Sun et al., 2012) to quantify the separate effects of spatio-temporal 
drought variability relative to total variability. A 10-year moving window was used to indi-
cate the inter-decadal change. Hence, a set of decade PDSI series (1962–1971, 1963– 
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1972, ... , 2004–2013) including the 21 stations over the BTH region was analyzed. 

2.2.4  Sensitivity analysis using multiple linear regression 

Multiple linear regression was used to quantify the contribution of meteorological variables 
in drought (Karnieli et al., 2010; Li et al., 2014). In this sensitivity analysis, relative humid-
ity (Rh) was eliminated because of multicollinearity between P and Rh (Hardwick et al., 
2010). To compare all independent variables, we first normalized the annual series of each 
variable as a dimensionless series with large sample size (μ=0; σ=1): 
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where x is original annual series, i.e., P, T, Ws, and Sd, and X is the dimensionless series. In 
this study, the trend of the time series was quantitatively evaluated using Sen’s slope in the 
non-parametric Mann-Kendall test (Mann, 1945; Kendall, 1975) 

3  Results 

3.1  Changes in recent decades of drought 

Within the PDSI, P and PET are two of the most important components, so were analyzed 
first over recent decadal periods. As shown in Figure 2a, 1964 had over 800 mm of annual 
precipitation, which sharply reduced to less than 400 mm in the early 2000s. Over the BTH, 
annual precipitation shows an insignificant decreasing trend of about 8 mm·10a–1 (P=0.12) 
and the PET (Figure 2b) shows a significant decreasing trend (–10 mm·10a–1, P<0.01). 
 

 
 

Figure 2  Changes in P and PET over the BTH region from 1961–2013 (the shaded range in both of subplots are 
estimated from / n , where n is 21) 
 

To better understand the characteristics of drought, we prepared a long-term series of an-
nual PDSI over the BTH region. We found an insignificant decrease in drought over recent 
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decades (PDSITrend= –0.04, P>0.05), as shown in Figure 3a. To investigate spatial differ-
ences in drought, we evaluated the trends in P and PET (Figures 3b-3c). Clear spatial dif-
ferences were found in both P and PET analyses. Precipitation has drastically decreased in 
the eastern BTH region (Figure 3b) and a dramatic decreasing trend (about –25 mm·10a–1) 
was quantified in the southern BTH region. Incorporating both P and PET, a different 
PDSI spatial pattern was found, as shown in Figure 3d; a dramatic decrease in PDSI (drier, 
from –0.2·10a–1 to –0.27·10a–1) was detected in the northern and southern BTH region. 
The drier trend in the southern BTH region accompanied a dramatic decrease in precipi-
tation, whereas the drier trend in the northern BTH region accompanied a decrease in 
precipitation and slight increase in PET. A significant increase in PDSI was found in the 
northwestern BTH region (wetter, from 0.16·10a–1 to 0.21·10a–1) due to a significant 
decrease in PET (Figure 3c).  

 

 
 

Figure 3  Drought analyses for 1960–2013, time series of annual PDSI (a) and spatial patterns for P trends (b), 
PET trends (c), and PDSI trends (d) 

3.2  Agreement between inter-annual and seasonal scales 

Previous studies have indicated that drought analysis results can be quite different on in-
ter-annual and seasonal scales (Wang et al., 2015). To ensure that results for inter-annual 
scales match the seasonal scale, we calculated the four seasonal PDSIs using the same 21 
stations: PDSIspring from March to May; PDSIsummer from June to August; PDSIautumn from 
September to November, and PDSIwinter from November to February of the following next 
year. The results comparing the annual and seasonal trends using Pearson Correlation Coef-
ficient (r) are shown in Figure 4. With respect to agreement with the annual trends, the sea-
sonal trends rank from high to low as PDSIwinter (r=0.95) > PDSIspring (r=0.93) > PDSIautumn 
(r=0.91) > PDSIsummer (r=0.85). In addition, the relationships between inter-annual and sea-
sonal series drought fluctuations were explored for each station (Figure 5). All 21 stations  
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Figure 4  Correlation between PDSI trends on annual and seasonal scales (from spring to winter) 
 

 
 

Figure 5  Boxplot of correlation coefficients between seasonal and annual PDSI series 
 

showed a high agreement between fluctuations on seasonal and inter-annual scales (r>0.5, 
r =0.78). The highest agreement was found for summer (0.75<r<0.93, r =0.90) and the 
lowest for winter (0.5<r<0.75, r =0.66). 

3.3  Spatio-temporal patterns of drought using the EOF 

The EOF analysis was performed on the annual and seasonal drought series to define sig-
nificant drought patterns. According to the variance contribution for annual PDSI, the first 
two leading EOFs were selected in this study. The corresponding principal components can 
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be used to explain the main characteristics of the spatio-temporal variation of drought (Table 
2). The first two EOF modes and the corresponding principal components (PCs) explain 
approximately 48.5% and 10.8% of the total variances of drought. 

 

Table 2  Variance contribution (%) of annual PDSI from the first six leading EOFs modes 

 EOF1 EOF2 EOF3 EOF4 EOF5 EOF6 

Contribution (%) 48.2 10.8 9.8 4.9 4.5 4.3 

Cumulation (%) 48.2 59.0 68.8 73.7 78.2 82.5 
 

The first leading EOF mode (EOF1) primarily reflects the spatial pattern in the BTH re-
gion. Because of the overall positive EOF1 value, distinct negative values in the time series 
of PC1, e.g., 1981–1986 and 1999–2003, indicate long-term dry periods (Figures 6a and 6b). 
These two long-term drought periods are easily confirmed using the annual PDSI series 
(Figure 3a); the subsequent drought alleviation after 2006 is indicated in both the PDSI and 
EOF1 (Figures 3a and 6b). 

 

 
 

Figure 6  Spatial (left) and temporal (right) patterns of the first two leading EOFs for annual PDSI. The blue line 
indicates the 10-year moving average of PCs in (b) and (d). 
 

The second leading EOF (EOF2) mainly reflects positive and negative differences corre-
sponding to the northern and southern regions (Figure 8c), which result from the influence 
of atmospheric circulation and topography (Wang et al., 2015). According to the anti-phase 
distribution of EOF2, the positive (negative) values of PC2 are wet (dry) years in 
sub-regions with positive EOF2 values. For example, the positive EOF2 in the northern 
BTH region is associated with the wet period from 1979 to 1980 concurrent with dry years 
found in the southern BTH region. An opposite spatial pattern was detected for 1962–1963, 
indicating the dry (wet) years in the northern (southern) in the same periods, and a highly 
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negative spatial correlation with average annual PET (r= –0.59). 
We further compared the spatio-temporal patterns between annual and seasonal scales and 

found that the spatial distribution of seasonal EOF had the same pattern as the annual EOF. 
For the first leading EOF, the correlation coefficients between annual EOF and seasonal 
EOF are all above +0.93 at station scales (Figures 7a-d). The PC correlation coefficients 
between seasonal (summer) and annual are over +0.7 (rPCs1 = 0.86 and rPCs2 = 0.78, Figure 
8), which indicates that the spatio-temporal patterns at annual scales are similar to those of 
seasonal scales. 

 

 
 

Figure 7  Correlation between annual and seasonal EOF for EOF1 

3.4  Partitioning the spatio-temporal variance of drought 

In this study, we used a decomposition method to separate total drought variance into time 
and space variance; we found that 90% of total variance can be explained by time variance. 
Overall, total variance in PDSI decreased between the 1960s (1962–1971) and 2010s 
(2004–2013), with a particularly dramatic decrease after the 1980s (–0.52·10a–1, Figure 9a). 
Time variance was in agreement with total variance, showing a decreasing trend after the 
1980s (–0.58·10a–1, Figure 9b). However, the increase in spatial variance showed decadal 
oscillations after the 1980s (+0.06·10a–1, Figure 9c). Previous studies have noted that ex 
treme climate events are increasing despite a small change in the mean-state over recent 
decades (Rajah et al., 2014; Donat et al., 2016). Here, we count both drought and wetting (as 
a proxy for potential flood risk) events as extreme events (PDSI<–2 and PDSI>+2) to de-
termine whether total variance can explain changes in extreme events at decadal scales. The 
agreement between total variance and the timing of extreme events is shown in Figure 9d. 
Generally, the change in total variance (or time variance) has a 20-year periodicity, which is 
consistent with the frequency of extreme events (r = +0.71).  
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Figure 8  Correlation between annual PC and summer PC for EOF1 (a) and EOF2 (b) 
 

 
 

Figure 9  Variance decomposition for 10-year PDSI (10-year moving window) from 1982–2013. (a) Total vari-
ance, which decreases (–0.052·a–1). (b) Time variance, which decreases (–0.058·a–1). (c) Spatial variance, which 
increases (0.006·a–1). (d) Comparison between total variance and the frequency of extreme events (PDSI<–2 and 
PDSI>2). 
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3.5  Causes of drought fluctuations identified with multiple linear regression 

Previous studies have highlighted the impact of abnormally high temperatures and shortage 
of precipitation on increasing the risk of extreme drought events. Using anomalous changes 
in precipitation, temperature, wind speed, radiation, and relative humidity, fluctuations in 
meteorological drought can be identified. In the context of dramatic global warming in re-
cent decades, extreme drought events have generally occurred concurrent with long-term 
precipitation deficiencies and abnormally high temperatures. However, a more quantitative 
approach can evaluate the contribution from different causes. The regression coefficient (RC) 
obtained from the multiple linear regression method is an appropriate mechanism for identi-
fying a variable as independent (Karnieli et al., 2010). Here, we prepared a long-term annual 
temperature series (from 1961 to 2013) over the BTH region (Figure 10). We found that the 
annual temperature slowly increased in Period one (P1), from 1961 to 1989, with a mean of 
annual temperature of 9.65℃, followed by a dramatic increase after the early 1990s and de-
cadal warming hiatus after the early 2000s. Period two (P2), from 1990–2013, is thus char-
acterized by a higher annual temperature (mean = 10.65℃) and considered an intensification 
of global warming. 

The influence of climate change on the annual drought in two different long-term periods 
(P1 and P2) was compared in this study. To confirm that the variables were independent, we 
selected P, T, Ws, and Sd; Rh was excluded because of the high interaction effect between 
Rh and P. 

 

 
 
Figure 10  Mean annual temperature from 1961 to 2013 over the BTH region 
 

The contribution from precipitation to drought has the highest positive regression coeffi-
cient, ranging from +0.7 to +1.8 in P1 and P2 (Figure 11a) and the medians are equivalent in 
the two different long-term periods (RCP_P1 = +1.2 and RCP_P2 = +1.3), about 70% of the 
sum of the absolute value in the regression coefficients. The contribution from T is relatively 
insensitive in P1 (median RCT_P1 = –0.14), but more sensitive to drought during P2, with 
dramatic global warming (median RCT_P2 = –0.44). Wind speed is also an important factor 
because it accelerates atmospheric evaporative demand. The contribution from wind speed 
in the two different periods is opposite to the contribution from temperature (median RCWs_P1 
= –0.40, median RCWs_P2 = –0.13). Comparing temperature and wind speed, drought is three 
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times more sensitive to wind speed compared to that of temperature in P1, whereas the op-
posite result was found in P2. In contrast, changes in drought are relatively insensitive to 
radiation, with a slight negative regression coefficient during both P1 and P2 (Figures 11a 
and 11b). 

 

 
 

Figure 11  Drought sensitivity analysis using regression coefficients from multiple linear regression, (a) boxplot 
of regression coefficients and (b) regression coefficient median values 

4  Discussion and conclusions 

PDSI, one of the most widely used drought indices that considers both monthly precipitation 
and potential evapotranspiration, was selected to analyze the spatio-temporal evolution of 
drought patterns over the BTH region for 1961–2013. We separately analyzed annual trends in 
P, PET, and PDSI and found decreasing trends in P and PET in recent decades. The overall 
drought index, PDSI, showed a nonsignificant drying trend (PDSI trend= –0.05·10a–1, p>0.05) 
over the entire study area. The small trend represents a balance between the significant de-
creases in P and PET. Within the study area, large spatial differences were noted: a dramatic 
decrease in PDSI (drier, from –0.2·10a–1 to –0.27·10a–1) in two sub-regions and a dramatic 
increase in PDSI in the northwestern BTH region (wetter, from 0.16·10a–1 to 0.21·10a–1). On 
seasonal scales, PDSI trends were in agreement with those on an annual scale.  

The EOF was applied to explain the spatio-temporal variation patterns on annual and 
seasonal scales. The first two leading EOF modes of PDSI explained 59% of the total vari-
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ability (first mode, 47.5% and second mode, 11.5%). In the first EOF mode, there was a 
similar spatial pattern, wherein all regions showed a positive value, from +0.12 to +0.27. 
The temporal variability of the first mode had a highly positive correlation with the annual 
PDSI series (r=+0.99). For the second leading EOF mode, the spatial distribution showed 
positive values in the north and negative values in the south. 

The variance decomposition method was applied to explain the inter-decadal spa-
tio-temporal pattern of drought. We found 90% of total variance can be explained by time 
variance, and both total and time variance show a decreasing trend from 1982 to 2013. Fur-
thermore, the total variance was consistent with extreme climate events (r=0.71, p<0.01).  

Finally, we used the multiple linear regression method to quantify drought sensitivity to 
several factors. In two periods, P1 (1962–1989) and P2 (1990–2013), 70% fluctuations in 
drought were attributed to changes in precipitation, with similar sensitivity to precipitation 
in both periods. Drought was less sensitive to changes in P1 (median of RCT_P1 = –0.14), but 
relatively more sensitive (over three times) in P2, a time with dramatic global warming (me-
dian of RCT_P1 = –0.44). The sensitivity of drought to wind speed was opposite to that of air 
temperature (median of RCWs_P1 = –0.40, median of RCWs_P2 = –0.13) in both periods. 
Drought was three times more sensitive to wind speed than temperature in P1, while oppo-
site results were found in P2.  
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