
J. Geogr. Sci. 2016, 26(6): 750-767 

DOI: 10.1007/s11442-016-1297-9 

© 2016    Science Press    Springer-Verlag 

                    

Received: 2015-11-10  Accepted: 2015-12-15 
Foundation: Major Project of High-resolution Earth Observation System 
Author: Liu Xianfeng (1986–), PhD Candidate, specialized in resource and environmental remote sensing and disaster 

remote sensing. E-mail: liuxianfeng7987@163.com 
*Corresponding author: Pan Yaozhong (1965–), PhD and Professor, specialized in statistics and disaster remote sensing 

research. E-mail: pyz@bnu.edu.cn 

   www.geogsci.com   www.springerlink.com/content/1009-637x 

Agricultural drought monitoring: 
Progress, challenges, and prospects 

LIU Xianfeng1,2, ZHU Xiufang1,2, *PAN Yaozhong1,2, LI Shuangshuang1,3, 
LIU Yanxu4, MA Yuqi2 

1. State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 
100875, China; 

2. College of Resources Science & Technology, Beijing Normal University, Beijing 100875, China; 
3. Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing 100875, 

China; 
4. College of Urban and Environmental Sciences, Peking University, Beijing 100871, China 

 

Abstract: In this paper, we compared the concept of agricultural drought and its relationship 
with other types of droughts and reviewed the progress of research on agricultural drought 
monitoring indices on the basis of station data and remote sensing. Applicability and limita-
tions of different drought monitoring indices were also compared. Meanwhile, development 
history and the latest progress in agricultural drought monitoring were evaluated through 
statistics and document comparison, suggesting a transformation in agricultural drought 
monitoring from traditional single meteorological monitoring indices to meteorology and re-
mote sensing-integrated monitoring indices. Finally, an analysis of current challenges in ag-
ricultural drought monitoring revealed future research prospects for agricultural drought 
monitoring, such as investigating the mechanism underlying agricultural drought, identifying 
factors that influence agricultural drought, developing multi-spatiotemporal scales models for 
agricultural drought monitoring, coupling qualitative and quantitative agricultural drought 
evaluation models, and improving the application levels of remote sensing data in agricultural 
drought monitoring. 
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1  Introduction 

Global climate change, which is both the biggest problem and the most complicated chal-
lenge faced by human beings, has attracted the attention of the public and governments 
worldwide (Ye, 1992). The frequency and intensity of extreme climate events like drought 
have increased significantly since the 1970s. Since extreme climate events tend to be more 
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abnormal, unexpected, unpredictable, and sensitive to climate change, they are considered 
the main source of terrestrial ecosystem instability and have a substantial impact on sus-
tainable development of both ecosystems and human economy (Liu et al., 2015; Stocker et 
al., 2013). Moreover, according to the earth system model, the risk of global drought will 
further increase in the 21st century (Dai, 2011). Therefore, how to react to and reduce 
drought and its impact has become an urgent scientific issue. Among the various adverse 
effects of drought, its influence on agriculture is most significant and direct. According to 
statistics, economic loss due to global meteorological disasters accounts for 85% of that due 
to all natural disasters, and economic loss due to drought accounts for more than 50% of that 
due to all meteorological disasters. Agriculture, which is related to national food security 
and social stability, is severely constrained by the climate and weather (Dai, 2012). There-
fore, research on agricultural drought has become the focus of governments and scholars 
worldwide. 

Past experiences in dealing with major natural disasters have shown that risk aversion is 
more rewarding than disaster relief with respect to reducing hazard risks (Wu et al., 2015), 
and the 3rd UN World Conference on Disaster Reduction also emphasized the importance 
and urgency of disaster monitoring and loss preventing when establishing the goals and pri-
orities of disaster reduction. Although agricultural drought monitoring is important for re-
ducing disaster loss and impact, it is still poorly understood. Organizations and scholars 
worldwide have performed a series of fruitful research projects on the cause of drought and 
monitoring methods and influence of agricultural drought. For example, the Group on Earth 
Observations (GEO) has developed the Global Agricultural Monitoring (GLAM) initiative to 
evaluate agricultural drought monitoring (Fan et al., 2014). Some scholars have also sum-
marized the concept of drought and its monitoring methods and developing trends system-
atically and comprehensively (AghaKouchak et al., 2015; Chen et al., 2009; Heim, 2002; 
Mishra et al., 2010; Wang et al., 2005; Zhang et al., 2011; Zhang et al., 2014). Since agri-
cultural drought is associated with various subjects like agriculture, meteorology, hydrology, 
and plant physiology and it is an interaction field for natural systems and artificial systems, 
research on agricultural drought monitoring is faced with many difficulties both theoretically 
and technically (Li et al., 2012). Previous reports have mostly summarized agricultural 
drought studies with respect to drought indices, but a comprehensive understanding of agri-
cultural drought monitoring field remained unclear. Therefore, it is necessary to sort out the 
monitoring methods and development history of agricultural drought. 

Since agriculture provides the foundation of China’s economy and climate change will 
directly influence our food security and sustainable development (Zhao et al., 2010), break-
throughs are needed in the study of agricultural drought, both theoretically and technically, 
to help us deal with the negative influence of complicated climate change on agricultural 
production. In particular, summarizing the current status of agricultural drought monitoring 
is an important step for further theoretical studies and evaluation of novel methods. There-
fore, the aim of this study was to summarize the concept, monitoring indices for agricultural 
drought, and review the development history and recent progress of agricultural drought 
monitoring through document statistical analysis and citation of important papers. Further-
more, challenges and weaknesses of previous studies and the future prospects have both 
been discussed to meet the practical need of the government to monitor agricultural drought. 
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2  Agricultural drought and monitoring methods 

2.1  Concept of agricultural drought 

Generally, drought is classified into meteorological drought, agricultural drought, hydro-
logical drought, and socio-economic drought. Meteorological drought refers to the water 
deficit caused by an imbalance between precipitation and evaporation. Agricultural drought 
reflects the extent to which soil moisture is lower than the least requirement of plants by 
analyzing the characteristics of soil moisture and morphology of plants during growth. Hy-
drological drought occurs when river flow is lower than the normal value or when the water 
level of an aquifer decreases; and socio-economic drought is the phenomenon in which pro-
duction and consumption are affected by the lack of water in both the natural system and 
human socio-economic system (Chen et al., 2009). Although the definitions of the four types 
of droughts are different, they are all water-deficit phenomena caused by the lack of pre-
cipitation, and they are all connected (Figure 1). When precipitation decreases, meteoro-
logical drought occurs first, followed by agricultural drought and hydrological drought, 
which gradually occur because of continuous water evaporation. Since agricultural drought 
is mainly concerned with water deficit in crops because of a reduction in water supply in the 
soil, loss of soil moisture caused by the decreases in precipitation is the earliest phenomenon. 
Because of transpiration, water in crops cannot meet the basic needs for physiological ac-
tivities, and crop growth is suppressed, resulting in a reduction in crop yield or even failure. 
The influence of drought on different stages of plant growth is significantly different. Hy-
drological drought mainly causes a reduction in water resources in rivers and reservoirs and 
a decline in groundwater levels. Socio-economic drought is triggered when agricultural and 
hydrological droughts develop to a certain degree. Therefore, here is a simple understanding 
of the connection between all types of droughts: agricultural drought and hydrological 
drought refer to the influence of meteorological drought on agriculture and the hydrological 
system separately, and socio-economic drought refers to the influence of meteorological 

 

Figure 1  Drought transfer processes and interactions 
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drought on the socio-economic system (Christopher et al., 2012; Zhang et al., 2014). 

2.2  Assessment methods for agricultural drought monitoring 

Drought events are normally characterized by drought indices because the phenomenon is 
very complicated and the time, development process, and scope of influence are difficult to 
observe directly (Dai, 2011; Heim et al., 2002; Solomon et al., 2007). Currently, there are 
hundreds of indices to characterize drought, and they can be divided into site-based and re-
mote sensing-based indices (Heim et al., 2002). Site-based indices include the standardized 
precipitation index (SPI), Palmer drought severity index (PDSI), and crop moisture index 
(CMI). Remote sensing-based indices are divided into indices based on bare surface (in-
cluding thermal inertia and microwave moisture inversion) and indices based on vegetation 
cover. Vegetation-based drought monitoring indices can be further classified into crop mor-
phological indices (like condition vegetation index and normalized vegetation index), crop 
physiological indices (like canopy temperature and canopy moisture content), and crop 
comprehensive indices (like vegetation supply water index and temperature-vegetation- 
drought index) (Figure 2 and Table 1). 

 

Figure 2  Development process of drought monitoring indices 

 
2.2.1  Site-based drought monitoring 

Research on drought monitoring initiated in the US in the early 20th century, and most early 
indices only took precipitation into consideration (Gibbs, 1967; Henry, 1906; Kincer, 1919; 
Marcovitch, 1930; McGuire et al., 1957; McQuigg, 1954; Munger, 1916; Van Rooy, 1965) 
until Palmer raised the concept of the current climate suitable precipitation (Palmer, 1965) 
and proposed PDSI in 1965. This index became a milestone for drought monitoring and was 
used both in America and other parts of the world and by governments and scholars as a 
drought monitoring tool. Palmer took the water demand of crops into consideration and de-
veloped CMI, which was broadly applied for agricultural drought monitoring (Palmer, 1968). 
Scholars gradually understood the limitations of PDSI (Alley, 1984; Heddinghaus et al., 
1991), and Wells (2004) reported self-calibrated PDSI to overcome the limitations. The big-
gest advantage of this improved index is that it decides different calibration parameters ac-
cording to the local climate characteristics and therefore improves the ability of PDSI to  
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Table 1  Main meteorological and agricultural drought monitoring indices 

Indices 
Proposed 

time 
Main author Indices description 

PA 1906 Henry (1906) 
Drought occurs when precipitation during 21 days or a longer 
period is equal to or less than 30% of the normal precipitation. 

PDSI 1965 Palmer (1965) 
Water deficit of actual water supply continues to be less than the 
local climate water supply in a period. 

CMI 1968 Palmer (1968) 
Mainly used for agricultural drought monitoring and analyzing 
conditions of crop drought on the basis of a water balance model. 

CWSI 1988 Jackson (1988) 
Determines crop water deficit by considering the relationship 
between soil moisture and farmland evapotranspiration on the 
basis of the water and energy balance principle. 

Z 1990 Me (1990) 
Assumes that rainfall conforms to Person III distribution, and 
through precipitation normalization to determine drought index. 

SPI 1993 McKee (1993) 
Reflects the probability of precipitation occurring during a certain 
period, which is suitable for monthly or even longer-scale 
drought monitoring. 

WDI 1994 Moran (1994) 

This index is established by a combination of the differences 
between air and land surface temperature and vegetation index, 
considering the nearly linear relationship between vegetation 
cover and the most theoretical parameter in the crop water stress 
index. 

VCI 1995 Kogan (1996) 
Overcomes the shortage of anomaly vegetation and normalized 
vegetation index, which can effectively monitor the spatiotempo-
ral variation in drought. 

NDWI 1996 Gao (1996) 
This index can effectively detect water content in vegetation 
canopy and respond promptly when vegetation undergoes water 
stress by introducing shortwave infrared bands. 

CI 1998 Zhang (1998) 
Integrates the standardized precipitation index and relative hu-
midity index, which is suitable for near real-time and historical 
meteorological drought. 

TVDI 2002 Sandholt (2002) 
Characterizes crop water stress through the dry and wet equation 
determined by vegetation cover and surface temperature. 

VSWI 2004 Haboudane 
This index, combined with the land surface temperature index 
and vegetation index, is used for agricultural drought monitoring. 

SC-PDSI 2004 Wells (2004) 
This index is self-calibrated PDSI, which can determine model 
calibration parameters according to local climate characteristics. 

K 2007 Wang(2007) 
This index, used for meteorological and agricultural droughts, is 
defined as the ratio of the relative variability in seasonal rainfall 
and relative variability in evaporation. 

VegDRI 2008 Brown (2008) 
This is a synthesized drought index that includes information on 
vegetation, meteorology, and soil water capacity by using data 
mining. 

SPEI 2010 
Vicente-Serrano 
(2010) 

This index is a modified SPI, which introduces evapotranspira-
tion data for calculating drought. 

 
regions. However, PDSI still had limitations because of the fixed time scale. In terms of ag-
ricultural drought monitoring, Shafer (1982) and Jackson (1988) proposed the surface water 
supply index (SWSI) and crop water stress index (CWSI), respectively, after comprehensive 
consideration of surface water supply and crop water demand, and they both worked well. In 
1993, McKee (1993) found that the observed precipitation has a skewed distribution rather 
than a normal distribution and proposed SPI; SPI has become one of the most popular indi-
ces because the calculation is simple and can achieve multi-scale monitoring for different 
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types of drought. However, since it only considers precipitation and neglects the influence of 
evaporation on drought, the method was also incomplete. To integrate the effects of precipi-
tation and evaporation on drought, Vicente-Serrano (2010) established the standardized pre-
cipitation and evaporation index (SPEI), which had the multi-scale advantage of SPI and the 
advantage of considering evaporation of PDSI. SPEI has become one of the ideal drought 
monitoring tools. Then, Vicente-Serrano (2012) compared the performances of SPI, SPEI, 
and PDSI with respect to global drought monitoring and found that SPI and SPEI were bet-
ter than PDSI for hydrological and agricultural drought monitoring and that SPEI was ex-
cellent for monitoring summer drought. A recent study established the standardized relative 
humidity index (SRHI) by applying relative humidity data, and this index can detect the on-
set start of a drought earlier than SPI and is considered an ideal index for drought warning 
(Farahmand et al., 2015). 

In China, scholars made considerable efforts to build drought monitoring indices con-
tinuously and have tried to integrate various meteorological indices to improve monitoring 
ability. Zhang (1998) proposed the comprehensive index (CI), which made weighted sum-
mation of the standardized precipitation index and relative humidity index, and this index is 
widely used for drought monitoring in meteorological departments of China. Wang (2007) 
proposed the K index, which is defined as the ratio of the relative variability in seasonal 
precipitation and the relative variability in evaporation; it is suitable for monitoring mete-
orological and agricultural droughts. In summary, the above review indicated that site-based 
drought monitoring indices have been developed over a long period, and it has become the 
main method for drought monitoring. In terms of data source, site-based indices mainly rely 
on the data records of meteorological stations. However, uncertainties still exist with respect 
to observed datasets, including uneven distribution in space and inconformity in time-series 
induced by site migration. Although a series of methods have been implemented to enhance 
observation station network density, such as addition of automatic weather stations, and de-
velop data homogenization methods to correct abnormal sequences caused by non-climatic 
factors, there are few data records of new time series data and a shortage of stations in key 
ecological regions, especially in agricultural ecosystems. 

2.2.2  Remote sensing-based drought monitoring 

Since agricultural drought is closely connected to soil moisture and crop water deficit, re-
mote sensing of water inversion in soil and vegetation is an effective way for large-scale 
agricultural monitoring. Data assimilation methods are generally used to estimate soil mois-
ture (Kumar et al., 2014). Among these methods, thermal inertia models of different soil 
textures, established by Chen (1999), improved the accuracy of water inversion by intro-
ducing parameters of topography and wind field; however, the parameters are difficult to 
determine in practice. Then, Zhang (2001) integrated the thermal inertia model, heat balance 
model, and temperature difference model by using temperature differences of the soil and 
leaves facing the sun and away from the sun, developing a new method of soil moisture in-
version on the basis of multi-angled remote sensing data. In addition, by applying the im-
proved IEM model, Rajat Bindlish (2006) obtained an inversion result whose correlation 
with actual soil moisture was 0.95. Although microwave remote sensing can work continu-
ously without being influenced by clouds, it is only capable of inverting the soil moisture of 
the surface (2–5 cm), while crop roots are usually 10–20 cm under the surface. Hence, water 



756  Journal of Geographical Sciences 

 

stress in crops cannot be examined accurately, and the result is highly uncertain (Chen et al., 
2012). However, accurate estimation of soil moisture at different depths is very important, 
since it is a key parameter for agricultural drought monitoring. Therefore, despite the limita-
tions of the applying remote sensing method to agricultural monitoring, further studies are 
still required; the microwave inversion results should be coupled with the terrestrial surface 
model, and field survey data should be collected to increase inversion accuracy and depth 
(AghaKouchak et al., 2015). 

With respect to crop water deficit, CWSI was developed by analyzing the empirical rela-
tionship between air vapor and temperature differences of the canopy and air (Idso et al., 
1981). Later, Moran (1994) developed the water deficit index (WDI) on the basis of the 
two-layer model of the energy balance model, while Gao (1996) proposed the normalized 
difference of water index (NDWI). To eliminate the influence of both Normalized Difference 
Vegetation Index (NDVI) spatial variation and other parameters of geography and ecosystem, 
Kogan (1995) proposed the vegetation condition index (VCI) for drought monitoring, and 
then Wang (2003) developed the vegetation temperature condition index (VTCI) in 2003. On 
basis of this, Kogan proposed the vegetation health index (VHI) by linear integration of TCI 
and VCI (Boken et al., 2004; Kogan et al., 2013), which was proven to be effective in re-
flecting the drought situation of crops (Mu et al., 2007). In 2004, Haboudane proposed the 
vegetation supply water index (VSWI), which is a relatively simple synthesis index for ve-
getation and temperature (Haboudane et al., 2004). Previous studies have shown that VSWI 
is appropriate for regions with high vegetation coverage, and it is widely applied in practice 
(Liu et al., 1998). Sandholt (2002) proposed the temperature vegetation drought index 
(TVDI) to estimate soil moisture on the basis of the relationship between land surface 
temperature (LST) and vegetation index (VI), which is an important method to reflect agri-
cultural drought conditions through soil moisture monitoring. A hypothesis of TVDI is that 
NDVI is negatively correlated with LST (Karnieli et al., 2010). However, NDVI is nega-
tively correlated with LST when water is the limitation factor of vegetation growth, whereas 
NDVI is positively correlated with LST when energy is the limiting factor of vegetation 
growth. Moreover, TVDI can well explain regions with drought episodes, but failure in per-
formance of agricultural monitoring and earlier warning. 

2.2.3  Comprehensive drought monitoring on the basis of both meteorological and remote 
sensing data 

With the introduction of multi-source data, considerable efforts for drought monitoring were 
made to integrate meteorological and remote sensing data. By a review of recent studies on 
comprehensive drought monitoring indices, Hao (2015) pointed out that the US drought 
monitoring (USDM) model is a relatively successful model. However, application of USDM 
at a regional scale has many uncertainties because of its limited spatial resolution. Based on 
the classification and regression model, Brown (2008) proposed the vegetation drought re-
sponse index (VegDRI) by combining meteorological drought indices (SPI and PDSI), the 
vegetation index, and DEM. The index can provide near real country-scale drought informa-
tion and has become a model for comprehensive drought monitoring indices. Wu established 
an integrated drought monitoring model for different growth stage of crops in China (Wu et 
al., 2013; Wu et al., 2015). Du (2013) developed a synthesis drought index by using TRMM 
precipitation data, LST data, and VI data in Shandong Province, and it has achieved good 
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results. By linear combination, Rhee (2010) proposed a drought monitoring index suitable 
for arid and humid regions by using a linear combination of LST, NDVI, and TRMM data-
sets, whereas Zhang (2013) established a meteorological drought index based on satel-
lite-derived precipitation, AMSER-E soil moisture, and NDVI data. In addition, Mu (2013) 
developed a satellite-based near real drought severity index (DSI) by using land surface 
evapotranspiration and VI data, which could successfully detect the drought episode in Eu-
rope in 2003 and the Amazon drought in 2005 and 2010. Moreover, estimation by DSI is 
highly correlated with the results of PDSI at a site scale. By comparing different drought 
indices, Hao and AghaKouchak (2014) proposed the multi-variable drought index (MSDI), 
which combined precipitation and soil moisture data and is considered a valid drought 
monitoring index. In addition, AghaKouchak (2015) modified MSDI through introduced 
ensemble runoff prediction and carried out drought monitoring and early warning in East 
Africa. Deepthi (2015) proposed the multi-variable drought index (MDI), which compre-
hensively considers precipitation, runoff, evapotranspiration, and soil moisture and can si-
multaneously monitor meteorological, agricultural, and hydrological droughts. In addition, 
scholars recently attempted to assimilate historical data and real-time data to establish a data 
drive for near real drought monitoring indices (Shah and Mishra, 2015). On the basis of the 
aforementioned analysis, scholars have made considerable efforts to establish comprehen-
sive drought monitoring indices and obtained valuable results. It should be noted that al-
though several comprehensive drought indices have been proposed, the research is still in 
the infant stage. Moreover, multi-spatiotemporal scale drought monitoring indices are still 
required, and comprehensive drought monitoring indices have limitations. For example, al-
though the linear combination method integrated multiple factors, it is difficult to explain 
the physical implication, whereas the copula function can obtain probability, facilitating risk 
analysis; however, it only considers the statistical characteristic of data and lacks a descrip-
tion of the physical process. 

2.3  Review of previous studies on agricultural drought monitoring 

To better understand the development stages of studies on agricultural drought monitoring, 
we searched for papers in the ISI Web of Science by using the terms “agricultural drought” 
and “drought monitor” on June 26, 2015. Statistics showed that both the number of papers 
and citations of them increased exponentially (Figure 3), and we also observed an increasing 
trend when we searched for “agricultural drought” and “drought monitor” in CNKI. The 
results showed that research on agricultural drought monitoring has become the focus of 
scholars worldwide, and the trend is significant after 2000. 

Since drought is associated with various disciplines, scholars in different areas, such as 
geography, ecology, meteorology, and disaster have performed systematic studies on drought. 
To better analyze the studies, we searched the ISI Web of Science with the term “Drought” 
and obtained a total of 52376 papers (period: 1990–2014, search time: 6/26/2015).Through a 
literature review, we found large differences in the number of papers of different research 
orientations. The top three were botany, agronomy, and ecological environment, and they 
accounted for 25.97%, 22.68%, and 20.48%, respectively, of the total number of papers; and 
water resources and meteorology accounted for 7.98% and 7.72%, respectively; and geog-
raphy only accounted for 6.82%.This distribution indicates that vegetation, agriculture, and 
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ecological environment are most heavily and directly impacted by drought, and they have 
attracted worldwide attention (Figure 4). 

 

Figure 3  Statistics of issued and citation literatures in agricultural drought monitoring during 1990–2014 
 

 

Figure 4  Statistics of issued literature relevant to drought in different subjects 

 
We observed four main characteristics of the studies on agricultural drought monitoring 

on the basis of the paper review and citation. First, the distribution of research orientation 
for drought is diverse. Majority of the papers are about the influence of drought on the eco-
system, like on vegetation growth, production, and the fluctuation in carbon storage. In ag-
riculture, previous studies mainly focused on assessing the impact of drought on crop growth 
and production. The IPCC report pointed out that the production of rice, maize, and wheat in 
Asia has decreased in the past decades because of increasing drought, mainly reflecting cli-
mate warming, frequent ENSO, and an increase in dry days (IPCC, 2007). Geographical and 
disaster studies focused on the spatial and temporal distribution, mechanism, and reduction 
of disasters. While papers on disaster spatiotemporal distribution are comparatively abun-
dant and there are also profound studies on the cause of drought with respect to an analysis 
of the climate, there are few studies on drought monitoring, which is significant for disaster 
reduction (Du et al., 2013; Mishra and Desai, 2005; Mishra and Singh, 2009; Mishra et al., 
2009). Second, the method suggested a transformation of agricultural drought monitoring 
from traditional single meteorological monitoring indices to meteorology and remote sens-
ing-integrated monitoring indices, and new data mining methods, including classification 
and regression tree, linear weighting, copula, and Bayes network, were introduced. For ex-
ample, Brown (2008) integrated VI, meteorological drought index, and auxiliary data to de-
velop the vegetation drought response index, which is widely used in the US for drought 
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assessment. Rhee (2010) and Zhang (2013) discussed the performance of drought monitor-
ing from different linear combinations of precipitation, vegetation, and LST in meteorologi-
cal and agricultural droughts. Anderson (2012) proposed a drought monitoring method by 
combining multiple soil moisture datasets through the triple collocation analysis method, 
while Hao (2013) established multi-variable drought monitoring indices by using precipita-
tion and soil moisture data. Third, with respect to the data collection method, traditional 
ground-based observation cannot reflect spatial characteristics because of its uneven distri-
bution. A combination of gauged data and remote sensing data has become popular in recent 
studies, especially for remote sensing-based drought monitoring, because of the increase in 
different types of sensors and enhancement in spatial and temporal resolution. However, 
relatively short data records have limitations. Thus, we should highlight the construction of 
long-term surface parameter products by assimilation of multi-source datasets. In addition, 
development of satellite-based drought monitoring models are needed to enhance our ability 
to forecast drought, for example, the microwave remote sensed drought model (Kongoli et 
al., 2012; Rott et al., 2010). Fourth, in terms of drought monitoring products, several 
global-scale products were widely used, including the PDSI product developed by Dai 
(2004), SPEI products with a 0.5°×0.5° resolution developed by Vicente-Serrano (2010), and 
remote sensed global terrestrial drought severity index products developed by Mu (2013). 
Recently, Hao et al. (2014) released the global integrated drought monitoring and prediction 
system (GIDMaPS), including the near real-time drought monitoring model and seasonal 
prediction model, and it can provide global-scale meteorological drought and agricultural 
drought products. Together, the aforementioned drought products provide data support for 
global drought monitoring and assessment. 

3  Challenges and prospects of agricultural drought monitoring 

Compared with indices for meteorological drought monitoring, simple indices for agricul-
tural drought monitoring can hardly show the influence of drought on crops and provide a 
warning in advance by reflecting the drought mechanism. Recently, development of remote 
sensing has provided opportunities for agricultural drought monitoring. Some studies that 
tried to monitor drought by means of integrating vegetation index, land surface temperature, 
precipitation, and other auxiliary data achieved some progress (Du, 2013; Rhee et al., 2010). 
However, whether the conclusions of these studies on specific regions can be widely applied 
at different scales still needs to be considered, and we can hardly compare results that ig-
nored the resistance and lag effect of crops to drought; the predicted trend varies with dif-
ferent indices (Christopher, 2012). Considerable bias may exist in the assessment of the re-
sults. While previous studies have achieved advance drought warning by using SRHI, results 
show that this index shows better performance for warning than most current indices 
(Farahmand et al., 2015). Nevertheless, analysis of this is still limited in qualitative or uni-
variate studies because the extent to which crop production gets impacted and reduced can-
not be represented, and research on the agricultural drought mechanism is still a big prob-
lem. 

Therefore, considering the urgent demand for agricultural drought monitoring in risk 
management and the developing trend, breakthroughs are needed, both in theory and in 
practice. Specifically, the following five aspects of agricultural drought monitoring may be 
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the main development directions for the future (Figure 5). In theory, we need to further un-
derstand the mechanism and process of agricultural drought and identify the influencing 
factors and feedback mechanism to integrate multiple influencing factors and establish a 
synthesized drought monitoring model. We also need to build drought monitoring and 
warning models at multi-spatiotemporal scales, couple the drought monitoring model and 
crop growth model to bridge the qualitative description to semi-quantitative and even quan-
titative description for agricultural drought monitoring, and establish a new drought index 
that can monitor drought as well as predict crop failure. In practice, we need to use 
multi-source remote sensing data to a greater extent to facilitate agricultural drought moni-
toring. 

 
Figure 5  Key research directions of agricultural drought monitoring in the future 

3.1  Understanding the mechanism underlying agricultural drought 

Soil moisture, a key parameter that integrates the responses of climate, soil, and vegetation 
to water balance and the influence of water balance on vegetation dynamics, plays a very 
important role in the terrestrial water cycle. Agricultural drought reflects the extent to which 
soil moisture is lower than crop demand water, resulting in crop wilting and even failure. 
Since the tolerance to soil water deficit is different among crops and regions, time lags to 
precipitation shortage and soil moisture deficit also differ, and the difference varies with the 
growing stage as well. With an increase in water shortage, evaporation decreases and the 
surface temperature increases, forming a positive feedback process. The precipitation model 
that neglects the abovementioned process cannot explain agricultural drought monitoring 
with respect to crop water balance. Currently, the comprehensive response process of crops 
to precipitation and temperature is still unclear, and we should further understand the crop 
drought mechanism. We should also make better use of the time lag between water defi-
ciency and crop drought stress for early warning of drought. 
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In addition, agronomic parameters are the basic parameters for describing crop growth, 
and they are, therefore, an important aspect of research on the agricultural drought mecha-
nism. The crop reflectance spectrum is significantly influenced by agronomic parameters, 
and the red edge, which is closely related to chlorophyll content, is one of the most impor-
tant parameters. When crops are under water stress, the parameters values will change and 
further result in the displacement of the red edge. Therefore, analyzing variations in the crop 
reflectance spectrum by hyperspectral remote sensing provides a new angle for research on 
the agricultural drought mechanism. Since monitoring models can hardly detect the start and 
end time of agricultural drought, studies on the mechanism may be a key to solving the 
problem. Upon understanding the agricultural drought mechanism, we can predict the onset 
of drought in time and establish an agricultural drought remote sensing model on the basis of 
crop physiological and ecological characteristics, facilitating prompt measures for reducing 
drought-related losses and influences. 

3.2  Identify factors that influence agricultural drought 

Agricultural drought is caused by an abnormal decrease in precipitation, and it is influenced 
comprehensively by land surface temperature, evapotranspiration, soil properties, and 
physiological or ecological characteristics of the crop. We should pay more attention to fac-
tors closely related to agricultural drought in the future, understand the interaction mecha-
nism, screen the key influencing factors to cause variations in drought, and create agricul-
tural drought monitoring models based on multiple geological factors. In practice, since sat-
ellite remote sensing can acquire precise spatial and temporal information on the land sur-
face and at a large scale, it is widely used in agricultural drought monitoring. It is considered 
an ideal data source because it provides not only information on the land surface environ-
ment but also information on crop growth, like vegetation index, land surface temperature, 
and precipitation. By using remote sensing as a data source, we can integrate soil character-
istics and topography features and add both environment and crop information in the agri-
cultural monitoring model to achieve the integration of multiple geological factors for 
drought monitoring. 

Currently, some countries have already developed agricultural drought monitoring sys-
tems at country or regional scales, and satellite data-driven comprehensive models are being 
established (Brown et al., 2008). However, integration of remote sensing data with mete-
orological data obtained by stations has not been achieved. It should be noted that even 
though remote sensing data can be an effective supplement for meteorological data, because 
they cover large regions at a high frequency, they cannot fully replace the latter. The reason 
is that although land surface observation stations are few and unevenly distributed, the data 
are precise with a long time series and the most important data source for remote sensing 
data validation. Therefore, it is important to build a bridge between remote sensing moni-
toring models and meteorological observation models, integrating the advantages of both 
model types. To achieve this goal, technologies and methods still need improvement. For 
example, we should build a more complete ground observation network, develop a perfect 
coupling method, and determine a uniform influencing factor framework. 

3.3  Expansion of the spatiotemporal scale of agricultural drought monitoring models 

The concept of scale, both temporal and spatial scales, is frequently mentioned. For agricul-
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tural drought monitoring, there are intrinsic differences among the results at different spatial 
and temporal scales. For example, the monitoring result of months may be different from the 
result of years, and at a different spatial scale, the result may also vary with the input data. 
Previous studies have tried to create agricultural drought monitoring models at different 
temporal and spatial scales and achieved some models with good validation results at a re-
gional scale (Du et al., 2013; Rhee et al., 2010). However, most studies were limited to spe-
cific regions and time scales, and the scale of the models should be further expanded. 
Therefore, how to integrate the existing agricultural drought monitoring models and develop 
new multi-scale agricultural drought monitoring models will be a key question for estab-
lishing a drought monitoring platform with multi-spatiotemporal scales in the future. 

Agricultural drought monitoring provides information on crop growth and production 
worldwide, and it facilitates crop production prediction as well. However, since there are 
differences in the developing stage, technology level, and disaster reduction ability among 
different countries, the request for agricultural drought monitoring information also varies. 
Therefore, building an agricultural drought monitoring platform at multi-spatiotemporal 
scales not only meets the demand of different countries but is also significant for reducing 
the influence of drought and improving the ability to cope it worldwide. More specifically, 
(1) at temporal scales, monitoring models should be able to manage early warning at 10 days, 
a month, a season, a year, and a decade in regular situations, whereas during emergencies, 
the models should be able to monitor near real-time early warning. (2) At spatial scales, the 
model should satisfy the needs of the world, different continents, different countries, and 
different regions. How to achieve a monitoring platform at multi-spatiotemporal scales is a 
key issue for future research on agricultural drought monitoring. 

3.4  Coupling qualitative and quantitative models for agricultural drought monitoring 

Qualitative description accounts for the most in the results of existing agricultural drought 
monitoring model, and the lack of quantitative monitoring and warning assessment limits the 
association between monitoring results and practical loss assessment. Although technologi-
cal methods for drought monitoring are developing fast, attention to methods for qualitative 
assessment of the results is still lacking. With the rapid development of numerical simula-
tions and further understanding of the drought mechanism of crops, the crop growth model 
has made great progress with respect to quantitative assessment of agro-meteorological haz-
ards, and it is considered the core step to push agricultural drought monitoring into the stage 
for quantitative assessment. The advantage of the crop growth model in agro-meteorological 
hazard assessment is that the mechanism is clear and it can reflect the active relationship 
between the growing process; crop production; and temperature, precipitation, and soil 
moisture at every growth stage. Therefore, we should use functions of the crop growth 
model when creating agricultural drought monitoring models in the future. 

In terms of technology, the spatial crop vulnerable model can be drawn from station-scale 
vulnerable models through the scale upscaling algorithm, which is a promising method for 
coupling an agricultural drought monitoring model at a large scale and the crop growth 
model; it will become the core and critical point of agricultural drought monitoring. On the 
basis of spatial information, especially the advantage of remote sensing technology, and by 
improving the integration of indices for crop physiology, morphology, and soil moisture, we 
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can achieve the coupling of an agricultural drought monitoring model at a large scale and the 
crop growth model, and create a remote sensing-based agricultural drought monitoring plat-
form with a clear physical mechanism, multiple factors, and progress and at multiple scales. 
This is an ideal way for realizing the goal of reducing agricultural hazard loss to the largest 
extent.  

3.5  Improving the applications of remote sensing data 

Remote sensing is a very important data source for agricultural drought monitoring, and with 
launching of satellites for different uses, abundant remote sensing data are acquired by 
scholars to analyze land surface processes. Compared with ground observation data, the 
biggest challenge for remote sensing data is the short time sequence, which can barely pre-
sent the variation in drought at a long time scale. The diversified temporal and spatial scales 
of different data sources also limit the comprehensive use of the data. Although we have 
developed transforming technology for multi-scale remote sensing data, comprehensive ap-
plications have not been completely achieved, especially with respect to applications of mi-
crowave remote sensing data for the influence of drought on vegetation (Andela et al., 2013). 
In future, we should enhance the use of remote sensing in drought monitoring by exploring 
more land surface parameters and increasing the applications of remote sensing data (Rodell, 
2012).Uncertainties of remote sensing data are a key problem with respect to their applica-
tions, like the difference in uniformity caused by the change in sensors. Therefore, to de-
velop data assimilation technology, upgrading the comprehensive applications and quantita-
tive estimation of the uncertainties of remote sensing data are important. Finally, successful 
launches of new types of satellites such as the Soil Moisture Active Passive is offering new 
opportunities for agricultural drought monitoring, hence increasing the importance of remote 
sensing data in agricultural drought monitoring (Figure 6). 

 

Figure 6  Current and future satellite missions relevant to drought monitoring 
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