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Abstract: Detailed analysis of Land Use/Land Cover (LULC) using remote sensing data in 
complex irrigated basins provides complete profile for better water resource management and 
planning. Using remote sensing data, this study provides detailed land use maps of the Lower 
Chenab Canal irrigated region of Pakistan from 2005 to 2012 for LULC change detection. 
Major crop types are demarcated by identifying temporal profiles of NDVI using MODIS 250 m 
 250 m spatial resolution data. Wheat and rice are found to be major crops in rabi and kharif 
seasons, respectively. Accuracy assessment of prepared maps is performed using three dif-
ferent techniques: error matrix approach, comparison with ancillary data and with previous 
study. Producer and user accuracies for each class are calculated along with kappa coeffi-
cients (K). The average overall accuracies for rabi and kharif are 82.83% and 78.21%, re-
spectively. Producer and user accuracies for individual class range respectively between 
72.5% to 77% and 70.1% to 84.3% for rabi and 76.6% to 90.2% and 72% to 84.7% for kharif. 
The K values range between 0.66 to 0.77 for rabi with average of 0.73, and from 0.69 to 0.74 
with average of 0.71 for kharif. LULC change detection indicates that wheat and rice have 
less volatility of change in comparison with both rabi and kharif fodders. Transformation be-
tween cotton and rice is less common due to their completely different cropping conditions. 
Results of spatial and temporal LULC distributions and their seasonal variations provide 
useful insights for establishing realistic LULC scenarios for hydrological studies. 

Keywords: land use/land cover; remote sensing; normalized difference vegetation index; accuracy assessment; 
change detection; hydrological modeling 

1  Introduction 

Land cover is the most important property of earth’s surface defining its physical condition 
and biotic component; whereas land use is the modification of land cover as per human 
needs and actions (Prakasam, 2010). Similarly, identifying these modifications in Land 
Use/Land Cover (LULC) over times and not over times is known as its change detection 
(Anderson, 1977). Rapid changes in LULC are observed throughout the world especially in 
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developing countries due to their heavy reliance on agricultural production and increasing 
population. These changes necessitate the availability of improved and updated LULC data-
sets (Wardlow et al., 2007) for effective planning and production management, thus facili-
tating both farmers and policy makers (Liang et al., 2013).  

Use of LULC data is highly acknowledged for water resources management (Schilling et 
al., 2008), through their extensive applicability for hydrological modeling studies. Water 
accounting is essential input in hydrological modeling and its accurate assessment is only 
possible with precise LULC mapping (Dappen et al., 2008; Molden, 1997). Moreover, in-
formation on areal extent of crops (especially irrigated crops), their types, and locations is 
very critical for estimating crop consumptive water use having varying crop water demand 
(Zheng and Baetz, 1999). In addition, as the parameters of lumped hydrological models 
cannot explicitly account for the variability within individual sub-basins in watershed due to 
missing spatial input data, this issue can be handled through the use of distributed models. In 
this case, impacts of LULC change represent the overall change as well as its spatial distri-
bution (Kimaro et al., 2005). 

Conventionally, LULC data in many developing countries including the current study re-
gion is available without much detail on their spatial distribution. The use of these data does 
not yield realistic LULC scenarios, thus leading to fussy inferences regarding management 
of total available water resources in different regions. This increasing demand for LULC 
information due to its ability in capturing spatial distribution at higher resolutions cannot be 
fulfilled through intensive ground surveys. Two facts are noteworthy in this regard. Firstly, 
the spatio-temporal changes of LULC are extremely quick particularly for irrigated areas 
which are beyond the scope of ground surveys. Secondly, the ground surveys are compara-
tively expensive, as well. This situation demands development of modern methodologies for 
collection and estimation of different LULC data from larger areas within short time dura-
tions (Osborne et al., 2001). 

The deficiency in LULC data is overcome by the introduction of modern remote sensing 
data for agriculture use. Use of satellite remote sensing data is in practice since the 1970s in 
monitoring LULC changes at coarser spatial scales (Shao et al., 2001). Nevertheless, its use 
in irrigated agriculture has gained much popularity in recent years. For example, extensive 
research work has been done to map rice cultivated areas worldwide in the late 1980s and 
early 1990s for its use in climatic and trace gas emission studies. These datasets were avail-
able at coarser spatial resolution (0.5º to 5º) (Matthews et al., 1983; Oslon, 1994). Mapping 
of global rice area at a spatial scale of 5 arc minutes (Leff et al., 2004) and rice mapping for 
south Asian countries using MODIS data are the new additions in recent past in this field 
(Xiao et al., 2006). Apart from rice mapping, several land cover databases have also been 
developed. These databases classify target areas into a number of classes of interest. The 
most recent development in this regard is the preparation of global land cover map by Gong 

et al. (2013) using 30 m  30 m Landsat Thematic Mapper (TM) and Enhanced Thematic 
Mapper Plus (ETM+) data. Table 1 presents a brief overview of some prominent lo-
cal/regional land cover datasets developed over time. 

The major limitations of using many of these datasets are their coarser spatial resolution 
and missing details on LULC at local or sub-basin level (Portmann et al., 2010) being only 
suitable at regional or global level. Moreover, some crop-specific land use maps do not 
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Table 1  Summary of selected regional to country level Land Use/Land Cover datasets 

Sr. No 
Name of the 

dataset 
Data description Source 

Coverage/ 
Spatial scale 

1 FAOSTAT Agricultural lands http://faostat3.fao.org/home/E Country level 

2 FORIS 
Inland waters, forest and woodland 
 

http://www.fao.org/forestry/si
te/fra/en 

Country level  
 

3 GLCC Built-up areas, water resources, bar-
ren or sparsely vegetated areas, 
grasslands, open shrub lands, forests 

http://edc2.usgs.gov/glcc/glcc.
php 

1 km  I km 

4 GLCC-2000 Forests, cultivated and managed 
areas, bare areas, water bodies, urban 
and built-up areas 

http://forobs.jrc.ec.europa.eu/ 1 km  1 km 

5 MOD12Q1 Land 
Cover and Land 
Cover Dynamics 
products  

Land cover change vectors http://modis.gsfc.nasa.gov/ab
out/ 

500 m  500 m 

6 GISS Forests, cultivated land and grass-
lands 

http://data.giss.nasa.gov/landu
se/ 

1o (≈ 111 km) 

7 GLCF Land tree cover, forest cover change, 
Geo cover 

http://glcfapp.glcf.umd.edu:8
080/esdi/index.jsp 

500 m  500 m 

8 PELCOM Coniferous, deciduous and mixed 
forests, grassland,  
rainfed and irrigated arable land, 
perennial crops, shrub, barren land, 
ice and snow cover, wetlands, inland 
waters, sea and urban area 

www.geo-informatie.nl/projec
ts/pelcom/public/index.htm 

1 km  1 km 
(Covers only 
European 
countries) 

9 
Global land 
cover map 

Cultivated areas, built-up lands, for-
ests, barren lands, etc. 

Yu et al. (2013); Gong et al. 
(2013) 30 m  30 m 

 
cover the current study region including rice maps developed by Xiao et al. (2006) and Shao 
et al. (2001). In addition, regional LULC mapping done in the 1970s and 1980s (Wilson and 
Henderson-Sellers, 1985) is very old and based on diverse data sources. The relatively 
newer mapping of different LULC in Indus Basin has been carried out for the year 2007 by 

Cheema and Bastiaanssen (2010) at a spatial resolution of 1 km  1 km using Satellite Pro-
batoire d’Observation delaTerre (SPOT) vegetation data. At this spatial resolution, problems 
may arise for complex cropping which may not be well-represented even at a spatial resolu-

tion of 1 km  1 km. Under these circumstances, there is a felt need to develop detailed local 
LULC data at higher spatial scales for accommodating crop heterogeneity of complex crop-
ping systems prevailing in the Rechna Doab. 

To date, a number of earth observation satellites have been launched with varying degrees 
of resolution, i.e. Advanced Very High Resolution Radiometer (AVHRR) bearing coarse 
spatial resolution by National Oceanic and Atmospheric Administration (NOAA) while 
MODIS, Land Satellite (Landsat), and Advanced Space-borne Thermal Emission 
and Reflection Radiometer bear fine resolutions (ASTER) (Lu et al., 2013; Xiao et al., 
2006). Some pros and cons are associated with each type of program. Only few images are 
available from Landsat per year, while ASTER charges fee for retrieving data. Many studies 
on LULC mapping have been carried out using a single-date imagery acquired from me-
dium-to-higher resolution optical sensors such as ASTER, Landsat Thematic Mapper (TM), 
and SPOT (Niu et al., 2012; Fisher, 2010; Mitrakis et al., 2011). However, the temporal 
coverage of detailed LULC classes is still unexplored and is accomplishable by using im-
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ages from MODIS that provides cost-free data including NDVI data after each 8 to 16 days 
at a higher spatial resolution of 250 m  250 m. This resolution is high enough in capturing 
almost all major crop classes in the current study region for precise measurement of crop 
water requirements and subsequent water allocation planning for various parts of irrigated 
agricultural regions (Douglas et al., 2013; Jeong et al., 2011; Peng et al., 2011). The LULC 
mapping results by Cheema and Bastiaanssen (2010) exhibit an overlap of NDVI trends 
within different classes at certain crop stages thus making classification process tedious due 
to the use of single day data. This issue complicates further in case of multi-cropping system 
with varying crop scheduling (Gumma et al., 2011). Thus multi-temporal NDVI data not 
only facilitate classification process but also help in identifying various dates of crop stages 
within a growing season (Julien and Sobrino, 2009). With this background, this particular 
study presents a methodology for the classification of major LULC classes within complex 
cropping system of Lower Chenab Canal (LCC), Punjab, Pakistan’s irrigated areas by com-
bining satellite-derived NDVI time series data with 250 m  250 m spatial resolution as well 
as the ground information and agronomist opinion on phenology of the crops. The informa-
tion is applied to identify different cropping patterns for each cropping season from year 
2005 to 2012. This information is further used for assessing real patterns of water use along 
with exploring different LULC change scenarios for major crops by evaluating maximum 
flexibility of change within the study period. The specific objectives of this study are: 

(1) Classification of major LULC and their accuracy assessment in complex irrigated 
lands of LCC at a higher spatial resolution. 

(2) Study of relationship of orography and climatic factors with NDVI and estimation of 
areal extents of different LULC classes for individual cropping seasons.  

(3) Detection of spatial and temporal LULC changes for exploring maximum flexibility of 
change for major classes. (or: in case of major crops). 

The remainder of the manuscript is divided into three main sections. The first section de-
scribes the study area, Lower Chenab Canal (LCC), Punjab, Pakistan. The next section pre-
sents details on different input data types and methodology for LULC classification. The last 
section deals with the discussion on classification results, its accuracy assessment and other 
details including areal coverage and change detection for major LULC classes and its utili-
zation for LULC scenarios generation.  

2  Materials and methods 

2.1  Study area 

The LCC irrigation system was designed in 1892–1898 in the Punjab Province, Pakistan. Its 
command area is about 1.24 million ha (Mha) situated in Rechna Doab, a land between riv-
ers Ravi and Chenab. This area lies between 30°36'–32°09'N and 72°14'–77°44'E. The 
whole LCC area is divided into two parts, i.e., LCC East and LCC West. This study focuses 
on LCC East mainly comprising of Faisalabad (FSD) and Toba Tek Singh (TTS) districts. 
Administratively, the area is further divided into subunits called irrigation subdivisions 
(Figure 1) supervised by a sub-engineer. Ten irrigation subdivisions are studied in the study 
area for this research. A canal network supplies irrigation water to each subdivision sepa-
rately. As water allocation to each irrigation subdivision varies within LCC, there is  
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Figure 1  Map of LCC (East), Rechna Doab, Punjab, Pakistan and ground truthing points 
 

tremendous variability of groundwater and surface water use. 
The climate of the area is characterized by large seasonal fluctuations in temperature and 

rainfall. The summer is hot lasting from April through October with temperatures between 

21–50℃, whereas winter (October-April) temperature ranges between 15–27℃. The area is 

sub-tropical in nature with mean annual precipitation varying from 290 mm in the South to 
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1046 mm in the North. The highest rainfall occurs during the monsoon season in 
July-August accounting for about 60% of the total average annual rainfall. 

2.2  Cropping calendar in LCC 

LCC has two distinct growing seasons, i.e., rabi and kharif respectively falling in winter and 
summer. Wheat and rabi fodder (mainly barseem and oat) are grown in rabi, whereas rice, 
cotton and kharif fodder (mainly sorghum, maize and millet) are grown in kharif season. 
Sugarcane is the annual crop which is mainly cultivated in September and in February as 
well. Figure 2 depicts the crop calendar of major crops grown in LCC. 

 
Figure 2  Crop calendar adopted in LCC 

2.3  Classification, accuracy assessment and change detection of LULC 

Vegetation indices provide possibility to estimate vegetation cover based on large differ-
ences of reflectance between the near infrared (NIR) and the red (R) bands (Tucker, 1979). 
These indices include NDVI and Enhanced Vegetation Index (EVI). NDVI is more sensitive 
to chlorophyll activity, whereas EVI is linked with vegetation structural variation and hence 
useful in mapping of tropical forests (Gao et al., 2000). The present work employs NDVI 
data for the estimation of green biomass of different irrigated crops in the study area. Al-
though NDVI does not directly classify different LULC rather time series NDVI patterns 
help in the demarcation of different classes based on their unique behavior in terms of peak 
trends and duration of phenological stages within a specific agro-ecosystem (Shi et al., 2013; 
Julien and Sobrino, 2009). According to Peng et al. (2011) and Morton et al. (2006), land 
cover changes and their patterns could be successfully mapped with a 250 m  250 m spatial 
resolution although the extraction of these parameters at this spatial resolution is somewhat 
unexplored (Barraza et al., 2013). Therefore, geometrically- and radiometrically-corrected 
NDVI images were retrieved from http://glovis.usgs.gov/ at a spatial resolution of 250 m  
250 m. This portal provides cost-free and duly corrected images from board-Terra and Aqua 
satellites after each 16 days but with a difference of 8 days. Thus, NDVI data for the whole 
study area for the period October, 2005 to March, 2012 were retrieved successfully. 

The retrieved data were preprocessed including image-sub-setting and image-enhance-
ment. Once the product was ready for further processing and analysis, a hierarchical crop 
classification approach was utilized. As a first step in this approach, Iterative Self Organiz-
ing Data Analysis Technique (ISODATA) of unsupervised classification (Tou and Gonzalez, 
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1974) was employed to reduce the spectral confusion among different LULC classes. This 
technique disintegrates the whole image into clusters and each pixel in the image is assigned 
to a particular cluster based on its arbitrary mean vector value. This algorithm also permits 
clusters to change from one iteration to the next, by merging, splitting and deleting. Finally, 
all pixels are re-classified into the revised set of clusters, and the process continues till there 
is no significant change in the cluster statistics or maximum number of iteration is reached 
(Campbell, 2002). For this study, LULC classification was performed with 99% conver-
gence threshold and 100 iterations. Following ISODATA algorithm, further refining of re-
sults was facilitated by seeking agronomists’ opinion considering different cropping patterns 
in the study area. NDVI temporal profiles were utilized to merge some classes and also to 
identify crop growth stages e.g., sowing and harvesting. Significant increase in NDVI rep-
resented initial crop growth stage while decrease in NDVI was identified as the end of 
growing season. Separate LULC classes were generated for both cropping seasons to cater 
for various crops grown during these seasons and to facilitate LULC change detection from 
one cropping season to the other. The details of the classification methodology are portrayed 
in Figure 3.  

 
Figure 3  Flow diagram showing methodological and analytical steps 
 

To explore the accuracy of the classification results, classical confusion matrix approach 
was employed along with comparison of results with ancillary dataset and previous empiri-
cal work in the study area. As confusion matrix approach uses reference data and precise 
information about the ground situation (Latifovic and Olthof, 2004), therefore, ground 
truthing points and polygons of different crops were ascertained with the help from water 
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management officials within each district. GPS positioning of each field and crop-related 
information were recorded using a pre-designed questionnaire in a face-to-face discussion 
with farmers and experts (Figure 4). 

 

Figure 4  Highlights of the field visit in the study area 

 
Similarly, for getting ancillary data on cropping area within the study area was gathered 

from relevant section of the provincial agriculture department. This department maintains 
complete record of cropped area under different crops at sub-district level (Tehsil). The reli-
ability of estimates was corroborated by comparing area fractions of various crops at tehsil 
level with remote sensing data and statistically checked by coefficient of determination (R2). 
Another accuracy assessment was performed by comparing the classification results with the 
findings of relevant work in the study area. 

To evaluate the effects of physical conditions (e.g. soil type, elevation, slope, temperature 
and precipitation) on major LULC classes, soil-type maps were obtained from the local of-
fice of International Water Management Institute (IWMI). The overlay analysis was per-
formed between classified maps and soil maps using ArcGIS. Similarly, the effect of eleva-
tion and slope on LULC was accomplished using digital elevation model (DEM) with a 
resolution of 90 m acquired from http://glcf.umiacs.umd.edu/data/srtm/. Data regarding 
rainfall and temperature were collected for a number of climatic stations from Pakistan Me-
teorological Department (PMD). Average values of elevation, slope, temperature and rainfall 
were extracted for individual major LULC class to examine the spatial variability of these 
parameters in the study area. 

Finally, areal distribution of each LULC class was calculated for both cropping seasons 
over the whole study period. Detection of spatial and temporal LULC changes was carried 
out for various crops to explore maximum range in change. Temporal changes were explored 
on the basis of overall difference of areas for various LULC between two particular cropping 
years, while spatial changes were explored on pixel-by-pixel scale to evaluate intra-class 
changes during these cropping years. 
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3  Results and discussion 

3.1  Classification of major LULC 

About 15 crop classes were identified by visualizing the trends of NDVI temporal profiles at 
first which reduced to nine by merging classes with similar NDVI trends keeping in view the 
crop calendar and expert’s opinion. These classes are treated separately for both rabi and 
kharif cropping seasons. For rabi, wheat is the dominant crop cultivated on a vast area along 
with fodder (mainly berseem and mustard) while other crops are sugarcane, 
sparsely-cultivated orchards and vegetables. Demarcation of rabi fodders could not be at-
tained due to their overlapping growth period with dominating wheat crop and hence NDVI 
exhibited higher overall values and similar trends for fodders and wheat. Furthermore, cul-
tivated area for individual fodder is not available from any source to ensure maximum accu-
racy of classification. Resultantly, all fodders are merged to one class and hence four classes 
are demarcated for rabi seasons comprising of residence/fallow/barren, wheat, sugarcane and 
rabi fodder. Water is hardly distinguishable into a separate class due to its presence in rela-
tively narrow irrigation channels under a spatial resolution of 250 m  250 m. Employing 
ISODATA clustering algorithm at the 250 m  250 m spatial resolution, five LULC classes 
were demarcated for kharif season including rice, cotton, sugarcane, kharif fodder and resi-
dence/fallow/barren. A three period moving average filtering technique suggested by Reed et 
al. (1994) is used for smoothening of NDVI trends for each LULC class (Figure 5). 

Two peaks and two depressions in one cropping year are observed in Figure 5. The first 
peak corresponds to the maximum growth period of wheat during February to March. The 
second peak corresponds to rice at its maximum growth in the mid of August. The two de-
pressions appear at the end of April (at wheat harvesting) and before the start of November 
(before wheat sowing). The individual crops’ starting time and crop-cycle length can be 
visualized easily from NDVI trends as well. Wheat sowing starts after the second week of 
November in the study area while NDVI becomes maximum around mid of February (Wajid 
et al., 2007). Berseem (rabi fodder) is cultivated in late November or in the beginning of 
December and its growth remains suppressed initially and then attains maximum height in 
late February and early March due to relatively increased temperature and rainfall. Sugar-
cane is mostly cultivated in September and sometimes also in February. Its trend remains 
static and low during the rabi season and attains higher values in kharif season due to in-
creased vegetative growth. The ‘Residence/Fallow/Barren’ class has the least NDVI values 
throughout the year owing to low reflectance, which is in accordance with the previous 
findings by Pettorelli (2013). He found very low positive values of NDVI (0.1 or less) for 
barren areas of rock, sand or snow; and 0.1–0.2 for soils. Most vegetation has moderate 
NDVI values (~0.2–0.5) while dense forests show high NDVI values (~0.6–0.9). The class 
‘rice’ in kharif season has a very unique trend. The initial part is a bit slack and lengthy be-
cause of rice nursery growth from end of May to mid of June; whereas the later part attains 
maximum height due to rapid rice growth by the end of August. 

Sugarcane and cotton are difficult to demarcate due to very similar NDVI trends seem-
ingly because of September-sown sugarcane’s height and rapid vegetative growth of cotton 
during mid and later stages of growing season (Wajid et al., 2010). Nevertheless, difference 
in sowing time of cotton from late May to mid-June facilitated the classification process and  
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Figure 5  Mean NDVI temporal trends for major crops: rabi 2005-06 to rabi 2011-12 
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its demarcation from sugarcane. 
Results show that during different cropping years, a number of cropping patterns are 

adopted by the farmers in LCC, which include ‘Wheat-Rice-Wheat’, ‘Wheat-Cotton-Wheat’, 
‘Wheat-Sugarcane-Wheat’, ‘Wheat-Kharif Fodder-Wheat’, and ‘Rice-Kharif Fodder-Rice’. 
This scheme of cropping pattern is comparable with the actually prevailing system within 
the study area as explored during field visits. 

3.2  Assessing classification accuracy 

Accuracy assessment is an important component of LULC classification studies. The classi-
fication process is only considered to be reliable after meeting some accuracy checks as 
LULC maps derived from satellite images may contain some errors due to number of factors 
ranging from techniques in classification to satellite-data retrieval methods. We have em-
ployed a number of methods to ensure accuracy including error matrix, ancillary dataset and 
comparison with previous localized study. 

3.2.1  Error matrix 

Error matrix (also known as confusion matrix, correlation matrix or covariance matrix) is the 
most common and popular means to present accuracy results (Lu et al., 2013; Shi et al., 
2013; Campbell, 2002). Many statistical measures of thematic accuracy can be drawn from 
the error matrix including overall accuracy, percentage of commission and omission error 
and the kappa coefficient (K) which address the error caused by chance (Congalton and 
Green, 1999). Commission error (i.e. user’s accuracy) and omission error (i.e. producer’s 
accuracy) take into account the probability of a particular cell value being similar with ac-
tual ground information and generated classified information, and vice versa, respectively. 
The overall classification accuracy summarizes the overall agreement or disagreement be-
tween classified and reference ground information about land use (Jensen, 1996) and is de-
rived by using the following relationship:  

 
number of sampling classes classified correctly

Overall accuracy = 
number of reference sampling classes

 (1) 

Error matrices are constructed for the classified and actual ground information for differ-
ent LULC classes. These error matrices reveal that overall accuracy for rabi seasons varies 
from 79.52% (minimum value) to 87.39% (maximum value) while for kharif seasons, it 
varies from 76.19% to 80.08%. The overall average accuracy levels for rabi and kharif are 
82.83% and 78.21%, respectively. This range of accuracy is in accordance with the findings 
of Thi et al. (2012) and Wardlow et al. (2007). Moreover, Bastiannssen (1998a) has noted 
that overall accuracy ranges from 49% to 96% depending on the spatial coverage of satellite 
information and the size of the field under consideration. The average accuracies for pro-
ducer and user are 78.62% and 77.87% for rabi and 79.95% and 76.70% for kharif, respec-
tively. User’s accuracy values affirm that 77.87% and 76.70% of all classes identified on the 
classified map for rabi and kharif, respectively, match with the ground information. On the 
other hand, the producer’s accuracy values indicate that 78.62% and 79.95% of the actual 
LULC information matches with the classified results for LULC for rabi and kharif seasons, 
respectively.  

The lowest and highest producer’s accuracy values observed for ‘sugarcane’ are 70.83 % 
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(rabi 2005-06) and 86.15 % (rabi 2010-11). For ‘rabi fodder’ these values are 69.57% (rabi 
2006-07) and 78.18% (rabi 2007-08). Lower values of producer’s accuracies in different 
seasons for ‘sugarcane’ and ‘rabi fodder’ are possibly due to smaller plot sizes given 250 m 

 250 m of spatial resolution and mixed cropping pattern. In contrast, wheat is cultivated on 
large areas and hence has higher accuracy value. For kharif seasons, average producer’s ac-
curacies range between 76.59% for ‘rice’ and 90.24% for ‘residence/fallow/barren’ whereas 
the values for cotton, sugarcane and kharif fodder are 77.16%, 78.96% and 76.76%, respec-
tively. The lower accuracy values for kharif season also stems due to small plot sizes and 
blending of pixels due to mixed cropping pattern (Cheema and Bastiaanssen, 2010). The 
detail of producer’s and user’s accuracies for different LULC classes for each cropping year 
is presented in Table 2. 

 

Table 2  Summary of producer’s and user’s accuracies for different classes of rabi and kharif seasons 

Season & Class 

Producer’s accuracy (%) User’s accuracy (%) Year & 
Accuracy 

2005
-06 

2006
-07

2007
-08

2008
-09 

2009
-10

2010-
11 

2011-
12

Avg.
200
5-06

200
6-07

200
7-08

200
8-09

200
9-10 

201
0-11 

201
1-12 

Avg. 

1 75 83.3 77.8 71.4 81.8 75 75 77.0 64.3 62.5 77.8 62.5 81.8 66.7 75.0 70.1 

2 81.3 86.4 85.8 90.5 90.4 91.3 89.5 87.9 77.4 82.1 83.7 83.5 91.2 84.1 88.0 84.3 

3 70.8 71.1 81.3 82.5 71.7 76.0 86.2 77.1 75.6 76.2 77.6 81.3 73.3 80.9 82.4 78.2 Rabi 

4 71.4 70.8 73.1 72.0 78.2 69.6 72.3 72.5 76.4 78.0 80.3 84.4 75.4 80.0 78.3 79.0 

5 88.0 94.7 90.0 86.4 88.2 94.1 90.2 68.8 66.7 69.2 76.0 71.4 80.0 72.0 

6 75.6 93.0 74.5 74.5 71.4 74.0 77.2 70.8 72.7 74.5 76.1 83.3 72.5 75.0 

7 72.2 72.7 83.3 84.9 84.8 75.7 79.0 76.5 78.4 74.1 71.4 77.8 77.9 76.0 

8 76.7 74.5 75.2 73.1 75.0 86.0 76.8 81.2 90.5 86.4 82.9 80.5 87.1 84.7 

Kharif 

9 

 

73.7 78.1 77.8 73.0 81.3 75.8 76.6

 

77.8 73.5 75.7 75.0 74.3 78.1 75.7 

*Numbers in this column represent as follows: 1&5=Residential/Fallow/Barren; 2=Wheat; 3&7=Sugarcane; 4&8= 
Fodder; 6=Cotton; 9=Rice 

 

The overall classification efficiency provides a crude measure of accuracy (Giri et al., 
2005) while accuracy assessment through error matrix depends on sampling points. Fewer 
sampling points may lead to misspecification of classes (Foody, 2002) which we can diag-
nose by estimating the kappa coefficient (K) (Congalton, 1996). The value of K incorporates 
the off-diagonal elements of the error matrices and exhibits agreement after removing the 
agreement by chance. The value of K for each season is calculated as under and shown in 
Table 3. 

 
percent overall correct value - percent correct agreement to observed values

=
total number of class - percent correct agreement to observed values

K   (2) 

Comparison of estimated average values of K (shown in Table 3) for present study with 
earlier studies (shown in Table 4) reveals a close match between the two. 

3.2.2  Ancillary data 

Estimated and reported crop area fractions for major crops are measured with the help of 
remote sensing and ancillary data collected from provincial agriculture department. The es-
timated area fraction is calculated by dividing the remotely-sensed area for a particular crop 
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Table 3  Summary of seasonal accuracies and K (Kappa coefficient) 

Rabi Season Kharif Season 
 

Sr. 
No. 

 
Year 

Avg. 
Prod. 

Accur.

Avg. 
User 

Accur.

Overall 
accuracy 

K 
Avg. 
Prod. 

Accur.

Avg. 
User 

Accur.

Overall 
accuracy 

K 

1 2005-06 74.7 73.4 87.4 0.77     

2 2006-07 77.9 74.7 79.5 0.66 77.2 75.0 76.2 0.69 

3 2007-08 80.6 80.4 83.6 0.74 82.6 76.4 79.3 0.73 

4 2008-09 78.0 77.9 81.9 0.71 80.2 76.0 78.1 0.71 

5 2009-10 79.5 79.9 81.2 0.71 78.4 76.3 77.0 0.70 

6 2010-11 80.8 80.9 83.8 0.75 80.2 77.5 78.6 0.72 

7 2011-12 79.0 77.9 82.5 0.74 81.1 79.1 80.1 0.74 

Average 78.6 77.9 82.8 0.73 79.9 76.7 78.2 0.71 

 
Table 4  Comparison of accuracy values and K from earlier studies with present study 

Sr. No. 
Classification 

accuracy 
K Type of data Reference 

1 91.5 0.89 RADARSAT Shao et al., 2001 

2 77.2 0.736 MODIS Giri et al., 2005 

3 84.4–87.1 82.3–83.6 Landsat MSS. ETM+ Reis, 2008 

4 77 0.73 SPOT Cheema et al., 2010 

5 94 0.93 SPOT Thi et al., 2012 

6 78–99 – Landsat Ding et al., 2013 

7 84–93 0.78–0.92 Landsat Lu et al., 2013 

8 78.2–82.8 0.71–0.73 MODIS Present study 
 

in a tehsil by the geographical area of that tehsil. Similarly, reported crop area fractions are 
measured by dividing each crop’s area in tehsils to their total geographical area. The rela-
tionship of reported and estimated crop area fractions for major crops is presented in Figure 6. 
The distribution of data points shows wheat to be the major crop in rabi occupying major 
area in all tehsils. A higher value for the coefficient of determination (R2=0.85) shows a 
higher reliability of this estimation (Figure 6). Other crops in the area include rabi fodder 
and sugarcane during rabi season. As the cultivation of sugarcane in various tehsils is not so 
high, most points fall around 0.20. Moreover, as the sugarcane lasts during both seasons, its 
crop area fraction is calculated for both seasons together having a coefficient of determina-
tion equal to 0.75. This relatively small value stems from mixing with other crops due to 
large pixel size relative to field size along with ancillary data having low standard accuracy. 

For kharif seasons, the relationship is observed for both cotton and rice. The coefficients 
of determination for cotton and rice are found to be 0.78 and 0.83, respectively. Almost 
identical planting dates for various crops during this season make it difficult to discriminate 
these crops along with mixing of pixels and ancillary data quality. Nevertheless, values of R2 
for different crops depict reliable and encouraging results given the complex cropping pat-
terns prevailing in LCC.  

3.2.3  Comparison with localized study 

The third accuracy assessment technique used is the comparison of classification results 
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Figure 6  Relationship between reported cropped-area fraction and remotely-sensed cropped-areas fraction for 
wheat, cotton, sugarcane and rice crops (1:1 Plot) 
 

with a previous localized study. Cheema and Bastiaanssen (2010) conducted a study to clas-
sify the whole Indus Basin into different LULC classes for the cropping year 2007. A map of 
LULC for LCC, being part of Indus Basin, was obtained from the quoted authors. This map 

is available at 1 km  1 km spatial resolution with non-separable classes for rabi and kharif 
seasons (Figure 7). This Figure shows the dominance of arable agriculture in the area. Rice 
and wheat are dominating crops in the upper parts of the study area during kharif and rabi 
seasons, respectively. Cotton is dominant in the downstream area along with sugarcane and 
fodder. The spatial details of areas under different major classes by Cheema and Bas-
tiaanssen (2010) and the current study can be seen in Figure 7. 

3.2.4  Orographic and climate effects on LULC 

Soil and orography have a great effect on adaptability of LULC in different parts of the 
world. Similarly, climate change influences the terrestrial biosphere closely linked with hy-
drological, carbon and energy cycles thus affecting vegetation indices to a great extent (Kim, 
2013). Many studies depict this influence in many parts of the world including USA, India, 
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Figure 7  Comparison of crop area estimates with Cheema and Bastiannssen (2010) 
 

China, Turkey and Indus Basin (Kim, 2013; Fang et al., 2005; Reis, 2008; Cheema and Bas-
tiaanssen, 2010). For the present study, overlay analysis of soil map with LULC distribution 
revealed increased adaptability of wheat and sugarcane cultivation on moderately-fine to 
moderately-coarse soils, while rice and cotton have more suitability with moderately-fine 
and moderately-coarse soils, respectively (Table 5). Rabi and kharif fodders are mostly cul-
tivated on moderately-coarse soils. Slope data from Table 5 indicate that the area is rela-
tively flat with slopes ranging from 1.14% to 2.4%. Rice is dominant at relatively higher 
slope and cotton at lower slope. The slope decreases from north-east to south-west of LCC. 
Rice and wheat are cultivated at relatively higher elevations, i.e., 192 m and 187 m, respec-
tively. As a matter of fact, wheat cultivation is common throughout the study area having 
much concentration in the northern parts. Sugarcane is found to be cultivated at the lowest 
elevation (169 m) mostly along the areas near river Ravi. There is no significant difference 
in mean elevation for cultivation of other crops.  

Among different climatic factors, rainfall and temperature are more linked with NDVI 
(Adam Black and Haroon Stephen, 2014; Kim, 2013). Present study investigated the effect 
of precipitation and temperature on NDVI for major crops in LCC. Temporal information for 
rainfall and temperature concerning each crop is extracted using zonal statistics function. As 
given by Figure 8, wheat is sown in the mid of November onward. Relatively higher tem- 
perature is observed for wheat in the initial stages with little rainfall. Later on, temperature 
decreases and rainfall increases between the months of February and March, thus causing 
increase in NDVI values in the middle of wheat growth. Temperature continues to increase 
towards the end of wheat growth and NDVI values continue to decrease till its harvest in the 
mid–April onward. These conditions best suit wheat production in the study area as revealed 
by the local crop experts, who opined that low temperatures at germination would suppress 
crop growth while high temperatures at mid stages (especially milking stage) would cause 
crop shriveling. The trends of temperature for cotton and rice crops during kharif are not 
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Table 5  Summary of soil texture, elevation and slope for each LULC 

Class Name Texture Class Texture Elevation (m) Slope (%) 

Wheat Moderately fine/ Moder-
ately-coarse 

Sandy-clay-loam, clay-loam, 
silty-clay-loam/sandy-loam,  

fine sandy-loam 

187 1.98 

Rice Moderately-fine 

 

Sandy-clay-loam, clay-loam, 
silty-clay-loam 

192 2.40 

Cotton Moderately-coarse Sandy-loam, fine sandy-loam 176 1.14 

Sugarcane Moderately fine/Moder-
ately-coarse 

Sandy-clay-loam, clay-loam, 
silty-clay-loam/sandy-loam,  

fine sandy-loam 

169 2.00 

Rabi fodder Moderately-coarse Sandy-loam, fine sandy-loam 175 1.41 

Kharif fodder Moderately-coarse Sandy-loam, fine sandy-loam 179 1.91 
 

 

 

Figure 8  Relationship of NDVI to temperature and precipitation for wheat, cotton, sugarcane and rice 
 

very different and exhibit less fluctuation throughout the growing period but the major dif-
ference is observed in case of rainfall. In the cotton growing areas, less rainfall is observed 
at germination stages and then smoothly increases resulting into increase in NDVI trends. 
Completely contrasting situation prevails in rice-growing areas where rainfall is higher at 
the initial stages of crop growth, lasting till the end of monsoon season. Completely different 
cropping conditions of rice and cotton in respective areas partially explain variation in 
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growth stages and allied benefits or disadvantages. Plenty of moisture is beneficial for rice 
cultivation, whereas rainfall at initial stages of cotton would form soil crust which hampers 
its germination. Similarly, local experts believe that higher temperature with lower precipi-
tation has a detrimental effect on rice growth especially in its early stage while cooler nights 
towards the crop maturity help improve grain quality. The NDVI trend for sugarcane is very 
clear and indicates increasing NDVI values with increase in rainfall and vice versa. This 
NDVI trend is relatively static during winter months mainly due to lower temperature cou-
pled with a smaller amount of rainfall during this time which suppresses sugarcane vegeta-
tive activity.  

3.2.5  Areal distribution of major crop classes 

Estimation of areal distribution for various crops forms one of the key informations for hy-
drological modeling especially in irrigated agriculture. Tables 6 and 7 show this areal dis- 
tribution under different classes for both rabi and kharif seasons. During all rabi seasons, 
wheat is the major class in LCC with an overall cropped area of more than 50% with values 
ranging between 497,214 ha (53.7%) in 2007-08 to 598,172 ha (64.6%) in 2009-10. Rest of 
the area is occupied by rabi fodder and sugarcane with values ranging between 299,717 
ha(32.3%) to 128,328 ha (13.8%) for sugarcane, and 214,061 ha (23.1%) to 78,453 ha (8.5%) 
for rice considering all study years. 
 

Table 6  Areal distribution of LULC classes during rabi seasons in LCC 

Year Class* Area (ha) 

2005-06 

1 
2 
3 
4 

227300 
128328 
548403 

22042 

2006-07 

1 
2 
3 
4 

230410 
124671 
550848 

20144 

2007-08 

1 
2 
3 
4 

281345 
126883 
497214 

20631 

2008-09 

1 
2 
3 
4 

289249 
105769 
512261 

18794 

2009-10 

1 
2 
3 
4 

214061 
98032 

598172 
15808 

2010-11 

1 
2 
3 
4 

299717 
78453 

534307 
13596 

2011-12 

1 
2 
3 
4 

248657 
113668 
544990 

18758 

Total area 926073 

Area (%)  
 
Fodder 

  

Sugarcane   Wheat  
 

Fallow 

 

 

 

 

 

 

 

*Numbers in this column represent as follows: 1=Fodder; 2=Sugarcane; 3=Wheat; 4=Residential/Fallow/Barren 
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Table 7  Areal distribution of LULC classes during kharif seasons in LCC 

Year Class* Area (ha) 

2006 

1 
2 
3 
4 
5 

336686 
319260 

99804 
136262 

34061 

2007 

1 
2 
3 
4 
5 

252756 
375766 
198419 

76740 
22392 

2008 

1 
2 
3 
4 
5 

251435 
414699 
106311 
131255 

22373 

2009 

1 
2 
3 
4 
5 

361944 
323286 

87297 
117159 
36387 

2010 

1 
2 
3 
4 
5 

348843 
231065 
137761 
179269 

29135 

2011 

1 
2 
3 
4 
5 

341801 
169562 
138028 
259964 

16718 

Total area 926073 

Area (%) 
 
Rice 

 
Fodder 

 

Sugarcane  
 
Cotton  

 

Fallow 

 
 

 
 

 
 

 
 

 
 

 

 

* Numbers in this column represent as follows: 1=Rice; 2=Fodder; 3=Sugarcane; 4=Cotton; 5=Residential/Fal-
low/Barren 

 
 

For kharif seasons, a distinctive pattern in crop cultivated area is observed at various in-
tervals during the study period. The cultivation of rice has the least relative fluctuation in 
area with values in the range of 251,435 ha (27.2%) and 361,944 ha (39.1%). Maximum and 
minimum values for area of sugarcane are 198,419 ha (21.4%) and 87,297 ha (9.4%), re-
spectively. The cultivated area under kharif fodder decreases from previous to current years 
while it is vice versa for cotton. Minimum and maximum values for kharif fodder are 
169,562 ha (18.3%) and 414,699 ha (44.8%), respectively while for cotton, they are 76,740 
ha (8.3%) and 259,964 ha (28%), respectively. 

3.2.6  LULC change detection 

Most studies on LULC change detection consider two well-separated years for this process 
(Lu et al., 2013; Ding et al., 2013). In this study, however, the cropping seasons with maxi-
mum and minimum cropped areas under a particular LULC are selected as upper and lower 
baselines to identify the maximum relative change during the study period. Positive values 
indicate an increase in cropped area for specific crop year having minimum cultivated area 



M USMAN et al.: Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data 1497 

 

 

under particular crop and vice versa. Results indicate minimum change in wheat cultivated 
area for the study period with values ranging from –16.9% to +20.3%. This is mainly driven 
by its being main staple food in the country, relatively cheaper inputs and reduced chance of 
crop failure. In contrast, sugarcane has the maximum flexibility in change, i.e., –38.8% to 
63.5%, while the change for rabi fodder is between –28.6% to 40%. 

For kharif seasons, rice exhibits minimum variation in cropped area ranging from 
–30.55% and 43.9%. Cotton has a very high volatility in percentage change from –70.4% to 
238.1%. This extremely large variation is due to recent increase in cotton cultivation during 
the last cropping season of the study period. The second highest positive change for cotton is 
133.4% during 2010. Results indicate an increasing trend of cotton cultivation in recent 
years as evinced by Agricultural Outlook Forum (2012) who observed up to 14% increase in 
cropped area under cotton in Pakistan compared with that of 2011. It is possibly driven by 
increased Bt-Cotton cultivation while a shallow change in rice cultivation stems from its 
excessive water requirements given depleting water resources in the study area. Kharif fod-
der also shows a clear decreasing trend with positive change in recent years while sugarcane 
exhibits a change of about ± 60%, except 127.2% in 2007. 

The LULC change detection discussed so far regarding various crops focused only on 
quantitative changes in cropped areas for whole LCC. It is also important to explore spatial 
changes in cultivated area for a particular crop during specific cropping season, thus helping 
to know the allocation of cropped area over time along with potential of a particular crop to 
replace another one. This end is achieved by performing analysis for change detection con-
sidering two different cropping seasons. For this purpose, a number of techniques are helpful 
such as post-classification comparison, image ratio, image regression and manual on-screen 
digitization of change. For this study, post classification comparison approach is used, which 
provides detailed ‘From–To’ change trajectories at per-pixel level (Lu et al., 2013; Reis, 
2008) for each LULC class. Same baseline cropping years as discussed above are used to 
make these comparisons. Area matrices for different crops are constructed and are presented 
in Tables 8 and 9.  

From the results, the changes in area for major crops can be identified and presented in 
colored maps. For example, out of total wheat area of 598,403 ha, 120,855 ha are shifted 
from rabi fodder between years 2007-08 and 2009-10 while the sugarcane area shifted to 
wheat is 32,161 ha. However, 444,865 ha of land remained under wheat cultivation in both 
years. This greater value of shared land for wheat between two cropping years shows the 
preference to wheat cultivation among farmers. The amount of fallow land shifted to wheat 
remained 476 ha, indicating a prior occupation of most cultivated area by wheat (Table 8). 
As sugarcane area was higher in 2005-06 as compared to 2010-11 (Table 6), the shared area 
between the two seasons is 45,465 ha, whereas, the shift from wheat to sugarcane is 4752 ha 
and 12,150 ha for years 2010-11 and 2005-06, respectively. Similarly, the area shifted from 
rabi fodder to sugarcane is 19,852 ha and 69,015 ha for years 2010-11 and 2005-06, respec-
tively. As the area under rabi fodder increased in 2010-11 compared to the previous year, the 
shared area under this crop is 136,430 ha while an area of 46,500 ha is shifted from sugar-
cane to rabi fodder. The transfer of wheat area to rabi fodder is maximum, i.e., 116,472 ha 
(Table 8). 
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Table 8  Pixel-by-pixel LULC change detection between maximum and minimum cropped areas for rabi seasons 

Crop 
class 

Change matrix for area (ha) Spatial change detection 

 2007-08 

 Fallow* Wheat S. cane
R. 

fodder
Total 

Fallow* 14511 24 1368 12  

Wheat 476 444865 32161 120855 598403

S. cane 5751 3943 63460 24745

R. fodder 0 48676 29628 135526
 

Wheat 2009- 
10 

Total  497546  
 

 2010-11 

 Fallow Wheat S. cane
R. 

fodder
 

Fallow 11959 476 8361 1362 

Wheat 83 446441 4752 97317
 

S. cane 1618 12150 45465 69015 128257

R. fodder 24 75366 19851 131762

Sugar-
cane 2005- 

06 

Total  78435  
 

 
 2009-10 

 Fallow Wheat S. cane
R. 

fodder
Total 

Fallow 12001 178 1505 0 

Wheat 0 474773 1629 58031

S. cane 3860 6934 48266 19369

 

R. fodder 54 116472 46500 136430 299478

Rabi 
fodder 2010- 

11 

Total  213847   

*Fallow/Residential/Barren 
 

To sum-up, change from fodder to wheat is the highest in LCC and vice versa, as well. 
Similarly, shift from sugarcane to wheat is conspicuous but is less pronounced in case of 
wheat to sugarcane. The reason is the annual nature of sugarcane crop with relatively higher 
water requirements compared with wheat. Farmers find it easy to allocate area from sugar-
cane to wheat which is otherwise less-attractive. The shifting of area from sugarcane to rabi 
fodder is the urge on farmers’ part to provide a biophysical relief to the soil. 

Results of area transformation between crops for kharif seasons are presented in Table 9. 
It is evident that rice is the major crop occupying a common area of 224,125 ha. This shows 
a decreased volatility of rice area to shift. The rank-wise contribution of kharif fodder, sug-
arcane and cotton area to rice area is 88,378 ha, 35,831 ha and 13,726 ha, respectively dur-
ing 2009. Cotton area also shows increasing trend during recent years. Major contribution to 
cotton area during 2011 comes from kharif fodder (143,959 ha) and sugarcane (81,034 ha). 
The area converted from rice to cotton amounts to 25,881 ha. Kharif fodder area has a 
greater flexibility to be allocated to other crops during the season. Similarly, conversion of 
cotton area to sugarcane cultivation and vice versa is also observable, whereas change from 
rice area to cotton and vice versa is less conspicuous. 
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Table 9  Pixel-by-pixel LULC change detection between maximum and minimum cropped areas for kharif sea-
sons 

Crop 
class 

Change matrix for area (ha) Spatial change detection 

 2008 

 
Fal-
low*

Cotton S. cane
K. 

fodder
Rice Total 

Fallow* 18388 0 0 16913 1118

Cotton 0 75533 8266 32982 184 

S. cane 0 23966 61450 928 821 

K. fodder 3937 17799 672 275465
25388

 

 

Rice 131 13726 35831 88378 224125 362218

Rice 
2009 

Total  251654   

 2007 

 
Fal-
low

Cotton S. cane
K. 

fodder
Rice Total 

Fallow 12566 0 0 4395 190  

Cotton 12 8623 81034 143959 25881 259529

S. cane 0 23407 102895 7993 3485

K. fodder 8480 59 1701 154152 5156

Rice 1392 44662 12435 65239 218285

Cotton 
2011 

Total  76758  

 

 

 2011 

 
Fal-
low

Cotton S. cane
K. 

fodder
Rice Total 

Fallow 14088 0 0 7826 541 

Cotton 0 83704 40660 1290 4775

S. cane 0 13006 81129 36 12049

 

K. fodder 2866 154378 10104 152249 95069 414699

Rice 196 8421 5888 7553 229578

Kharif 
fodder 2008 

Total  169562  
 

 

* Fallow/Residential/Barren  

 
3.2.7  LULC change scenarios for hydrological studies 

The LULC are amongst important environmental factors which are affected heavily by an-
thropogenic activities and therefore impact the hydrological cycle (Lorencov´a et al., 2013). 
Evapotranspiration is the single term that links land surface energy balance and surface wa-
ter balances (Zhao et al., 2013). This forms a key process of hydrological cycle and regarded 
valuable in water balance modeling especially in irrigated areas (Usman et al., 2015a). 
Evapotranspiration is generally not considered directly in hydrological studies but as a re-
charge which varies spatially due to differences in water use for various land uses (Wege-
henkel, 2009). As the water balance approach is not perfect without its consideration for 
evapotranspiration in any agro-climatic region (Usman et al., 2015b), it is estimated by us-
ing Surface Energy Balance Algorithm (SEBAL) devised by Bastiannssen et al. (1998b) for 
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its significance in recharge estimation and its application in hydrological studies.  
The detailed methodology and application of SEBAL is omitted to save space but it is 

accessible from Usman et al. (2014). The results of different LULC areal coverage and its 
change detection as discussed above are correlated with spatially distributed evapotranspira-
tion for establishing patterns of water use within these LULC and to identify potential areas 
of change for different LULC in all subdivisions of LCC. For this, zonal statistics approach 
is used to estimate seasonal average water use by different crops in different irrigation sub-
divisions of LCC as given in Table 10. 

 

Table 10  Irrigation-subdivision wise seasonal average evapotranspiration (mm) and percent of total cultivated 
area for each LULC class in the study area 

LULC  Sagar Chuharkana Paccadala Mohlan Buchiana Tandla Tarkhani Kanya Bhagat Sultanpur 

Evapotranspiration 563.4 537.9 550.9 557.4 579.3 545.1 525.0 520.6 518.4 539.8 
Cotton 

% area 1.1 2.9 5.8 11.8 15.4 21.9 13.7 14.1 9.6 3.6 

Evapotranspiration 602.1 578.4 576.1 587.5 595.0 595.1 571.9 560.8 583.5 595.3 
Sugarcane 

% area 0.03 0.10 0.61 7.35 7.44 19.17 19.26 16.40 8.16 21.48 

Evapotranspiration 529.3 525.6 513.1 534.3 544.7 516.5 482.9 505.1 460.7 530.5 Kharif 
fodder % area 4.1 4.6 16.7 9.9 16.6 10.2 11.7 6.9 17.8 1.6 

Evapotranspiration 589.9 581.4 576.9 604.4 619.4 604.6 555.6 553.1 565.6 600.1 
Rice 

% area 30.5 24.4 9.6 16.2 0.6 2.0 2.0 1.9 7.5 5.4 

 
The results of different LULC areal coverage presented in section 3.2.5 represent overall 

information at LCC scale. In reality, the cultivated area under a particular LULC class is not 
uniform throughout LCC but specific classes are dominant in particular irrigation subdivi-
sions of LCC. Similarly, LULC change is also not uniform throughout LCC but it is highly 
dependent on overall areal coverage of a particular class in specific sub-region. Due to this 
fact and hence to consider spatial variability of any LULC change, total area under any 
LULC class is segregated at irrigation subdivision level (Table 10). These estimated propor-
tions take into consideration the overall suggested change in any LULC at LCC scale. The 
potential change from any LULC class to another class is suggested based on the findings 
that appear in Tables 8 and 9. 

Subsequently, different LULC scenarios are generated in order to feed their results for 
future hydrological modeling and to explore their impacts on possible changes in ground-
water levels in the study area. To achieve this end, the following two conditions are followed 
while devising these scenarios:  

(1) Ensuring the realistic limits of the area of each LULC class while introducing changes 
in the area of a particular LULC class based on estimated results (Type I). 

(2) Maintaining the area of a particular LULC class within its realistic change limits with 
no consideration to cropped areas of other classes (Type II). 

Along with meeting the above-stated conditions, the following points are considered to 
ensure maximum suitability of LULC scenarios to the study area: 

(a) Change in any LULC class is based on its spatial coverage in any particular sub-region 
of LCC. 

(b) Increase/decrease in LULC area of any particular class is based on its current status in 
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LCC (i.e. year 2011, the latest study year). 
(c) LULC change scenarios are based only on classes in kharif cropping seasons as op-

tions for change are limited during rabi seasons and the difference in consumptive water use 
is also less among rabi crops (Usman et al., 2015a; Usman et al., 2014).  

The details of different LULC change scenarios and possible water saving or more water 
utilization against each scenario relative to current water usage are presented in Table 11. 
The results also provide details of variation for water saving or its more utilization for each 
irrigation subdivisions under each LULC class along with explaining spatial variability of 
change. Out of many possible scenarios, 15 scenarios are presented here. These scenarios 
portray changes in water demand for different LULC changes, thus providing valuable clues 
regarding their ultimate effect on groundwater table and surface water provision. The last 
column of Table 11 indicates change in consumptive water use at LCC scale. The negative 
values depict increased water demand and vice versa under changed land use scenario. Very 
few scenarios show similar changes in consumptive water use at LCC scale however, the 
variation of change for each irrigation subdivision is significant and leads to spatial variabil-
ity of water table. This effect is easily detectable by incorporating these results to hydro-
logical modeling. 

4  Conclusions 

Land use/land cover (LULC) change is a global phenomenon and it is accurate and updated 
information has major significance compulsory for detailed eco-system studies using hy-
drological modeling. It becomes extremely important in regions dominated by agricultural 
lands owing to their complexity of use and rapid changes from season to season. In recogni-
tion to the role of irrigated agriculture, many global, regional, and country level studies have 
been conducted varying in space and time scales covering different aspects of crop-water 
interactions. The present study was conducted in LCC, Pakistan and shows that MODIS 250 
m  250 m spatial resolution data prove quite useful to discriminate different major LULC. 
Time series NDVI profiles were constructed and areas under different LULC were measured 
based on this information. This process was repeated for each cropping season separately 
from year 2005 to year 2012 while considering rabi and kharif as distinct cropping seasons. 
Different classification accuracy assessment techniques were employed including error ma-
trix, comparison of LULC maps to ancillary data and with previous studies focusing on the 
study area.  

The error matrix analysis shows overall accuracy varying from 79.52% to 87.39% for rabi 
and 76.19% to 80.08% for kharif. Kappa coefficients indicate good agreement between ac-
tual crop information and classified map information. Kappa values change from 0.66 to 
0.77 for individual rabi seasons with an average of 0.73 while range between 0.69 and 0.74 
with an average of 0.71 for kharif. The maximum value for coefficient of determination is 
observed for wheat (0.85) followed by rice (0.83), cotton (0.78) and sugarcane (0.75); 
showing a potential for replacement of manual data (by government agencies) with remote 
sensing techniques at spatial resolution of 250 m  250 m. 

Orographic and climatic conditions have specific effects for different crops. For example, 
the growth conditions for rice and cotton crops are completely different from completely 
distinct growing areas for both of these crops. Soil with more drainage ability and climates 
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with fewer rainfalls are suitable for cotton which is other way round for rice crop. Wheat is 
cultivated on all types of soils but its cultivation generally starts in relatively warmer months 
followed by growth stages favoring cooler months. Sowing of sugarcane is mostly adopted 

in lowsloping areas especially alongside river Ravi. 
Based on areal crop coverage data, wheat and rice are ranked first in rabi and kharif crop-

ping seasons, respectively. Overall LULC change detection for individual crops from with 
respect to maximum and minimum cropped areas indicates wheat as least volatile crop in 
terms of in cropped area (–16.9% to 20.3%) during rabi and rice (–30.55% to 43.9%) in 
kharif. Cotton exhibits maximum positive change while kharif fodder maximum negative 
change in recent years. Sugarcane shows a change between ± 60%. Spatial LULC change 
detection at pixel scale indicates that fodder crop has maximum volatility in change com-
pared with all other crops during kharif and rabi seasons. Transformation of cotton area to 
rice cultivation is less conspicuous but it is remarkably high for sugarcane fodder crops. 
Change from cotton to rice is less popular but it is more pronounced from sugarcane and 
fodder to rice. 

A number of LULC change scenarios can be proposed based on the classification results 
for different cropping seasons. These scenarios along with spatio-temporal evapotranspira-
tion explore different options of consumptive water use change.  
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