
J. Geogr. Sci. 2011, 21(5): 801-819 
DOI: 10.1007/s11442-011-0881-2 

© 2011    Science Press     Springer-Verlag 

                    

Received: 2010-12-07  Accepted: 2011-04-29 
Foundation: National Key Basic Research Program of China, No.2010CB428403; National Grand Science and Technol-

ogy Special Project of Water Pollution Control and Improvement, No.2009ZX07210-006 
Author: Song Xiaomeng (1987−), Master Candidate, specialized in hydrology. E-mail: wenqingsxm@126.com 
*Corresponding author: Zhan Chesheng, Ph.D, E-mail: zhancs2006@gmail.com 

   www.geogsci.com   springerlink.com/content/1009-637X 

Advances in the study of uncertainty quantifica-
tion of large-scale hydrological modeling system 

SONG Xiaomeng1, *ZHAN Chesheng2, KONG Fanzhe1, XIA Jun2 
1. School of Resource and Earth Science, China University of Mining & Technology, Xuzhou 221008, Jiangsu, 

China; 
2. Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and 

Natural Resources Research, CAS, Beijing 100101, China 
 

Abstract: The regional hydrological system is extremely complex because it is affected not 
only by physical factors but also by human dimensions. And the hydrological models play a 
very important role in simulating the complex system. However, there have not been effective 
methods for the model reliability and uncertainty analysis due to its complexity and difficulty. 
The uncertainties in hydrological modeling come from four important aspects: uncertainties in 
input data and parameters, uncertainties in model structure, uncertainties in analysis method 
and the initial and boundary conditions. This paper systematically reviewed the recent ad-
vances in the study of the uncertainty analysis approaches in the large-scale complex hy-
drological model on the basis of uncertainty sources. Also, the shortcomings and insufficien-
cies in the uncertainty analysis for complex hydrological models are pointed out. And then a 
new uncertainty quantification platform PSUADE and its uncertainty quantification methods 
were introduced, which will be a powerful tool and platform for uncertainty analysis of 
large-scale complex hydrological models. Finally, some future perspectives on uncertainty 
quantification are put forward. 
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Since the 21st century, large-scale land-atmosphere coupling modeling has been regarded as 
one of the critical issues on the global change research by the International Geo-
sphere-Biosphere Programme (IGBP), the World Climate Research Programme (WCRP), 
and the Global Energy and Water Cycle Experiment (GEWEX), etc. In these projects and 
programs, many researches on simulating the land-surface hydrological processes and their 
coupling studies with climate models have been performed (Chen et al., 1997; Lohmann et 
al., 1998; Shao and Henderson, 1996). How to establish a new large-scale hydrological cycle 
modeling system coupled with atmosphere model, which could both describe the temporal 
and spatial variations of hydrological cycle effectively and assess water resources partition-
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ing quantitatively at regional or global scale, is a research hot point in the global change re-
search (Yong, 2007; Yong et al., 2009). Generally, hydrological model (e.g. conceptual 
model, distributed hydrological model, large-scale coupled model, etc.) is a principal tool to 
research the watershed hydrological processes and their evolution laws. Also it is an abstrac-
tion, simplification and interpretation of the reality hydrological processes using mathe-
matical formula and physical equations. And there are enormous uncertainties and distor-
tions for hydrological modeling. Therefore, uncertainty quantification of complex hydro-
logical model is also one of the most crucial issues in the hydrological science (Ye and Xia, 
2002), especially for the study on uncertainty of large-scale hydrological cycle modeling 
system. 

There are many components in a complex hydrological cycle system model, such as 
model input, model output, model structure and equations, initial and boundary conditions, 
and model parameter, etc. The uncertainty sources can be grouped into four categories 
(Renard et al., 2010): 1) uncertainty in the input data, 2) model structure uncertainty, 3) pa-
rameter uncertainty, and 4) uncertainty in the output data for model calibration and optimi-
zation. There is also great uncertainty in the hydrological modeling, especially for the 
large-scale land-atmosphere coupled hydrological modeling system. And its uncertainties 
also consist of the forecasting uncertainty of atmosphere model, land surface model, and the 
interaction effect of multi-physics processes on the output, and so on. 

The much larger scale or more complex land-atmosphere coupled model has been devel-
oped with the development of remote sensing (RS), geographic information system (GIS), 
and computer technology. And also the high-precision and high-resolution observed data and 
high-performance computer are useful support and facilitation for the model construction. 
However, how to establish an effective framework of uncertainty quantification techniques 
for these more complex models become a critical step or issue for the hydrological science 
research at present. 

In this paper, we systematically reviewed the recent advances in the uncertainty analysis 
approaches and proposed a new framework of uncertainty quantification for complex models. 
Firstly, the concepts or explanation of uncertainty quantification, uncertainty sources and 
propagation processes were described. And then, the classical approaches or methods were 
discussed. Also, the uncertainty analysis of large-scale complex hydrological modeling sys-
tem was summarized including input uncertainty, model structure uncertainty, parameter 
uncertainty, analysis approaches uncertainty, and others. Subsequently, a new uncertainty 
quantification platform PSUADE (Problem Solving Environment for Uncertainty Analysis 
and Design Exploration) was introduced and proposed to uncertainty analysis of large-scale 
hydrological cycle modeling system, which can reduce the running computational cost with 
a good accuracy based on the response surface methodology. Finally, some perspectives and 
recommendations on uncertainty quantification were put forward and suggested. 

1  Uncertainty quantification 

Uncertainty quantification is the quantitative characterization and reduction of uncertainties 
in applications, and it tries to determine how likely certain outcomes are if some aspects of 
the system are not exactly known. In general, uncertainty quantification has to incorporate 
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research and development efforts in three key, irreducible technical areas: (1) Characteriza-
tion of uncertainty in system parameters and the external environment; (2) propagation of 
this uncertainty through large computational models; and (3) verification and validation of 
the models and incorporating the uncertainty of the models themselves into the global un-
certainty assessment. Therefore, according to the propagation processes of uncertainty and 
the relationship among the uncertainty sources as shown in Figure 1, the thrust of uncer-
tainty quantification to be discussed herein is to determine: 1) the model structure, i.e., how 
accurately a mathematical model describes the true system for a real-life situation, may only 
be known approximately, while models are almost always only approximations to reality; 2) 
the numerical approximation approaches, i.e., how appropriately a numerical method is used 
in approximating the operation of the system, while most models are too complicated to 
solve exactly; 3) initial and boundary conditions, i.e., how accurately and really determine 
the initial and boundary conditions for the models; 4) model input and parameters, i.e., how 
to enhance the quality of input data and parameter estimation. 

 
Figure 1  Uncertainty sources and propagation processes 

2  Uncertainty analysis methods 

Generally, uncertainty assessment methods can be broadly classified into two groups (Li et 
al., 2010), i.e., the Generalized Likelihood Uncertainty Estimation (GLUE) method and the 
Bayesian method. The GLUE method, named as the informal Bayesian approach, has been 
widely used due to its conceptual simplicity, ease of implementation and flexibility of less 
modification to existing source codes of hydrological models since it was developed by 
Beven and Binley (1992). The Bayesian method (Engeland et al., 2005; Kavetski et al., 
2006a,b; Liang et al., 2010; Thiemann et al., 2001), in contrast, refers to the use of a prior 
probability over hypotheses to determine the probability of a particular hypothesis given 
some observed evidence, and then analyze the uncertainty of model. That is, the probability 
that a particular hypothesis is truely given some observed evidence comes from a combina-
tion of the prior probability of the hypothesis and the compatibility of the observed evidence 
with the hypothesis. 

To solve the parameter “equifinality” in the hydrological model, Beven et al. (1992, 2001) 
proposed the GLUE method based on the generalised sensitivity analysis of Hornberger and 
Spear. It provides tools for sensitivity and uncertainty estimation using the results of Monte 
Carlo simulations and Bayesian theory, which has been widely applied to various catch-
ments models, such as Xinanjiang model (Shu et al., 2008), TOPMODEL model (Beven et 



804  Journal of Geographical Sciences 

 

al., 1992, 2001), HYMOD model (Montanari, 2005), WASMOD model (Jin et al., 2010), etc. 
However, the GLUE method has some drawbacks, and a number of questions still remain 
unresolved. For example, Montanari (2005) stated that the GLUE method relied on some 
explicit and implicit assumptions, and it was not fully clear how these may affect the uncer-
tainty estimation when referring to large samples of data. And also the prediction limits pro-
vided by GLUE do not necessarily include a percentage close to their confidence level of the 
observed data. Blasone et al. (2008) demonstrated that the GLUE derived parameter distri-
butions and uncertainty bounds were entirely subjective and had no clear statistical meaning, 
and it is incoherent and inconsistent from a statistical point of view. Then, the Latin hyper-
cube sampling (LHS) strategy and SCEM-UA algorithm were used to improve it. And the 
revised GLUE method was well applied to the NAM model, HYMOD model and SAC-SMA 
model in the Tryggevalde catchment of Denmark and the Leaf River catchment, located in 
southern Mississippi. Wei et al. (2009) pointed out that the SCEM-UA method excessively 
depended on the model structure, not accounted for the effect of other uncertainty sources 
(e.g. input error, model parameters uncertainty, etc.) on the output. Therefore, the Markov 
Chain Monte Carlo (MCMC) method was used to revise the GLUE, and it can derive more 
accurate prediction bounds and more proper estimation of the uncertainty in SMAR model. 

The Bayesian method was firstly used to analyze the parameter uncertainty problem in the 
hydrological statistical model by Wood and Rodriguez-Iturbe (1975), and then it has been 
widely applied to the uncertainty analysis and hydrological forecasting. The Bayesian 
framework effectively allows for the estimation of model uncertainties by constraining prior 
information on the parameters in the form of prior distributions using the data available 
(Khu and Werner, 2003). The posterior parameter distributions which result can be used to 
make model predictions is shown. Once new data become available, the posterior parameter 
distributions can be applied again as prior distributions and updated using the new informa-
tion contained in the additional data (Khu and Werner, 2003). Krzysztowicz et al. (1999) 
proposed Bayesian Forecasting System (BFS) with the foundation of Bayesian theory, and it 
was an operational framework for probabilistic forecasting via a deterministic hydrological 
model of an arbitrary complexity. The BFS decomposes the total uncertainty into input un-
certainty and hydrological uncertainty, which are quantified independently and then inte-
grated into a predictive distribution. However, the forecasting uncertainty and error sources 
uncertainty cannot be quantified. The Bayesian total error analysis (BATEA) method was 
applied to uncertainty analysis of input data, model parameter, model structure and model 
simulation by Kavetski et al. (2006a, b), Kuczera et al. (2006), and Thyer et al. (2009). And 
the BATEA method provides a comprehensive framework to hypothesize, infer, and evaluate 
probability models describing input, output, and model structure error, whose characteristic 
is that the data and model uncertainty can be incorporated into hydrological modeling. The 
Bayesian model averaging (BMA) method is also provided to uncertainty analysis, which 
derives the consensus prediction from competing prediction using likelihood measures as 
model weights (Hoeting et al., 1999) and has been applied to the hydrological models (e.g., 
Neuman, 2003; Vrugt and Robinson, 2007; Najafi et al., 2011). Thiemann et al. (2001) pre-
sented the framework for a Bayesian recursive estimation (BaRE) approach to hydrological 
prediction that can be used for simultaneous parameter estimation and prediction in an op-
erational setting. The prediction can be described in terms of the probabilities associated 
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with different output values, and this approach could be extremely useful for that ungauged 
catchments or without adequate observed data. Kuczera and Parent (1998) stated that the 
Monte Carlo-based approach with Metropolis algorithm provided a quantum advance to deal 
with parameter uncertainty in hydrological models in the three different conditions or cases. 
And then, Cheng and Li (2007) developed the parallel adaptive Metropolis (PAM) algorithm 
based on the Metropolis algorithm to solve the parameter uncertainty and optimization of 
Xinanjiang model. Also, the integrated Bayesian uncertainty estimator (IBUNE) was devel-
oped by Ajami et al. (2007), which accounted for the major uncertainties of hydrologic 
rainfall-runoff predictions explicitly and distinguished between the various sources of un-
certainty including parameter, input, and model structural uncertainty. 

In the recent research achievement, some new uncertainty analysis techniques based on 
other assumptions and theories, in addition to the above mentioned methods, have been de-
veloped and applied to various catchments, such as the ensemble Kalman filter (EnKF) ap-
proach (Vrugt and Robinson, 2007), the shuffled complex evolution Metropolis method 
(SCEM-UA) (Vrugt et al., 2003a), the multi-objective shuffled complex evolution Metropo-
lis (MOSCEM) (Vrugt et al., 2003b), the fuzzy-based simulation method coupling fuzzy 
vertex analysis technique with distributed hydrological model (Huang et al., 2010), the 
meta-Gaussian stochastic approach (Montanari and Brath, 2004), etc. 

While the above mentioned approaches are only useful and well applied to the conceptual 
hydrological model or physically-based distributed hydrological model, not suit to the 
large-scale complex hydrological modeling system, e.g., a large-scale hydrological model 
coupled with land surface model and atmosphere model. Uncertainty quantification of cou-
pled models, with complex structure and a large number of parameters involving hydrologi-
cal model parameters, land-surface model parameters and atmosphere model parameters, 
adopting only one of the classical methods or approaches may lead to statistical bias and 
underestimation of the uncertainty, and also it becomes more and more difficult. Also, there 
is interaction effect among the various modules, and the uncertainty effect of modules on the 
output cannot be well identified and quantified. The classical analysis methods cannot 
achieve uncertainty analysis for the complex model with large number of parameters be-
cause it is time-consuming and a high-cost computation. For this reason, how to establish an 
effective uncertainty quantification approach or scheme for large-scale complex hydrody-
namics system model becomes one of the crucial efforts and aims in the hydrological sci-
ence.  

3  Uncertainty analysis of large-scale hydrological modeling system 

As the atmosphere and hydrosphere are closely connected with various energy and mass 
exchanges of different scales, the interaction and restraint effects between climate change 
and hydrological cycle exist (Yu, 2008). Generally, hydrological and atmospheric processes 
occur over scales that range from microscopic to global, roughly spanning 10−10 to 105 me-
ters in space and 10−13 to 105 seconds in time. Many poorly understood physical processes in 
both the hydrosphere and atmosphere (e.g. infiltration and cloud dynamics) exist within this 
spectrum scales. Some processes may be known and quantifiable under limited conditions, 
but are difficult to generalize over larger spatial domains. Yet heterogeneous land surfaces 
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dominate the earth and play a key role in land-atmosphere interactions in areas where the 
surface hydrologic budget may be most affected by climate change. Ideally, models should 
be able to simulate hydrological and atmospheric processes at any scale, but there are large 
gaps in the ability of the existing models to do because the nature of some processes may 
preclude modeling due to lacking sufficient knowledge of the natural processes to model 
them, or the underlying physics of the processes are too complex to be simulated by com-
puter models. Therefore, the uncertainty effect of the hydrological and atmospheric coupled 
models or land-atmosphere coupled models on the model output is important, and many hy-
drologists and meteorologists have paid attention to their uncertainty quantification. And we 
discussed the uncertainty analysis efforts for the large-scale complex models from the vari-
ous uncertainty sources. 

3.1  Input uncertainty 

The uncertainty about model input data is often acknowledged to be one of the main sources 
of uncertainty in model predictions. There are a large number of input data for large-scale 
land-atmosphere coupled models, involving the precipitation input, soil input, evapotranspi-
ration input, vegetation cover, air temperature, etc., which could immensely affect on the 
model output due to various data quality. 

To reduce the input data uncertainty, applications of data assimilation arise in many fields 
of geosciences, perhaps most importantly in atmospheric science, marine science and hy-
drological science. Several methods have been used to assimilate data into hydrological 
model, e.g., the linear Kalman filter, variational method (Reichle et al., 2001; Koren et al., 
2009), ensemble Kalman filter (Reichle et al., 2002; Ghent et al., 2010), particle filter (Mo-
radkhani et al., 2005; Salamon and Feyen, 2010), etc. Reichle et al. (2002) discussed the 
application of the ensemble Kalman filter to hydrological data assimilation and in particular 
to the estimation of soil moisture, and compared the performance of the EnKF to an optimal 
smoother (weak-constraint variational algorithm), and the results showed that the error de-
creased by 55% from the value obtained without assimilation.  

Another attempts from the efforts of Moradkhani et al. (2005) and Koren et al. (2009) 
also showed that the data assimilation techniques could reduce the uncertainties arising from 
the data and the model. Furthermore, an approach was proposed by Salamon and Feyen 
(2010) to infer during a calibration process the statistical properties of the principal error 
sources (i.e. parameter, precipitation, potential evapotranspiration, and model structural un-
certainty) by means of sequential data assimilation. It was applied to a large-scale distrib-
uted model of the Rhine River to demonstrate its usefulness when characterizing error 
sources, and the posterior multiplier distributions were used to identify whether a systematic 
bias exists and to illustrate that uncertainty from those sources can be reduced significantly 
in comparison to the prior assumptions adopted.  

In addition, it is important to notice that the information generated by the atmosphere 
model is inevitably subject to uncertainties which propagate through the hydrological 
scheme and eventually influence model results (Kotlarski et al., 2005). Therefore, Kotlarski 
et al. (2005) selected four regional climate models (RCMs, e.g. REMO5.0, REMO5.1, MM5 
and CLM) to compare with their effect on the hydrological model output and drive the un-
certainty ranges by means of three reference data sets (ERA15, CRU and DWD). And the 
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results showed that differences between RCM results were of the same magnitude as differ-
ences between the reference data sets. Other than the climate model simulation results, the 
radar based quantitative precipitation estimates are also widely used to large-scale distrib-
uted hydrological models, and the data obtained remain an important source of uncertainty 
for hydrological predictions. Schröter et al. (2011) demonstrated that the probabilistic use of 
radar quantitative precipitation estimates may add valuable information to hydrological pre-
dictions and reduce the bias of hydrological model parameter estimates. 

3.2  Model structure uncertainty 

Hydrological cycle model structure is a critical and kernel component for hydrological mod-
eling system, which commonly aggregates the hydrological processes occurring in a catch-
ment into a number of key responses represented by storage components and their interac-
tions. However, any model is an abstraction, simplification and interpretation of reality. The 
incompleteness of a model structure and the mismatch between the real causal structure of a 
system and the assumed causal structure as represented in a model always result in uncer-
tainty about model predictions. And also, the discordant scales of hydrological and atmos-
pheric models in the coupled models have become one of the most important sources of un-
certainty. 

Though the model structure uncertainty is one of the key sources of uncertainty in model 
predictions, it is frequently neglected and no generic methodology exists for assessing the 
effects of model structure uncertainty (Refsgaard et al., 2006). Butts et al. (2004) addressed 
the two questions to the model structure uncertainty, i.e., “First, different model structures 
are expected to perform differently, but is there a trade-off between model complexity and 
predictive ability? Secondly, how does the magnitude of model structure uncertainty com-
pare to the other sources of uncertainty?”. The results showed that model performance was 
strong dependent on the model structure, and distributed routing and to a lesser extent dis-
tributed rainfall were found to be the dominant processes controlling simulation accuracy. 
Also, the sensitivities to variations in acceptable model structure were of the same magni-
tude as uncertainties arising from the other sources. Therefore, he suggested that for practi-
cal hydrological predictions there are important benefits in exploring different model struc-
tures as part of the overall modeling approach, and the model structure uncertainty should be 
considered in assessing model uncertainties.  

Then Refsgaard et al. (2006) presented a framework for assessing the predictive uncer-
tainties of environmental models used for extrapolation, involving the use of multiple con-
ceptual models, assessment of their pedigree and reflection on the extent to which the sam-
pled models adequately represent the space of plausible models. Lin and Beck (2009) dem-
onstrated that the real challenge in dealing with structure error and uncertainty in a model 
lied in at least two aspects: 1) how to identify this source of uncertainty in models, including 
unambiguously differentiating it from other sources; 2) how to account for the model error 
and uncertainty in making forecasting. In their work, the time-varying parameter was pro-
posed to view the parameters of the model’s structure not as random variables, i.e., as con-
stants (albeit known with uncertainty), but as stochastic processes, i.e., quantities that vary 
with time, in part in a systematic manner and in part in an essentially random manner. The 
approach is useful to assess the model structure uncertainty. 
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For a complex coupled model, the discordant resolutions or scales among various models 
are important error sources (Yu, 2008). To evaluate the effect that the mesoscale meteoro-
logical model (MM5) resolution has on the simulation of direct surface runoff in the linked 
model experiments, and decrease the computational intensity of these experiments, three 
single storm events and their basin responses were simulated with MM5 using three domain 
set-ups (i.e. 36-23-4, 36-12 and 36 km) by Lakhtakia et al. (1998). And the results showed 
that the 36-12 km set-up generated similar patterns of precipitation and direct surface runoff 
to those of the 36-12-4 km domain set-up, and the 36 km domain set-up produced unrepre-
sentative precipitation distributions in time and space. It also was concluded that 12 km pre-
cipitation fields may be a suitable compromise, providing sufficient resolution for simulating 
the basin response to climate variation and change.  

With the current emphasis on modeling past and future climate change, the need for better 
methods for modeling interactions between the hydrosphere and atmosphere has been 
brought to the forefront of research. A great amount of effort aimed at solving the discordant 
scale problem and coupled model uncertainty is now being expended by terrestrial, hydro-
logical and atmospheric scientists. In the near future, the coupled model structure uncer-
tainty analysis will become a new hot point. 

3.3  Parameter uncertainty 

Parameter of model is an important component for a computational model, especially for 
large-scale coupled model. Also, it is another one of the main sources of uncertainty. Most of 
the parameters cannot be measured directly but can be inferred by a calibration process that 
adjusts the parameter values to closely match the input-output behavior of the model to the 
real system it represents (Vrugt et al., 2003). However, quantification of parameter and pre-
dictive uncertainty is not an easy matter. Whilst a number of methodologies are available, 
none of them are entirely satisfactory (Gallagher and Doherty, 2007). Also, some of them are 
extremely computationally intensive, requiring many model runs for their implementation, 
thus making their deployment with many commonly used models difficult, for a large-scale 
coupled model or a relatively complex model. 

Chen and Dudhia (2001) introduced the sensitivity of coupled model with land surface 
model (LSM) and Penn State-NCAR MM5 model, and stated that soil moisture parameters 
were important, i.e., the soil thermal, hydraulic conductivities and surface energy balance 
were very sensitive to soil moisture changes. Hence, it was necessary to establish an appro-
priate soil moisture data assimilation system to improve the soil moisture initialization at 
fine scales. 

The GLUE method and Sobol approach were applied to the global routing model in the 
HTESSEL-TRIP2 coupled model by Pappenberger et al. (2010). In their work, the ground 
water delay parameter is identified as being the most sensitive calibration parameter, and its 
uncertainty effect on output is significant. And also, the application results showed that the 
global runoff routing model was fit for the purpose although there were significant uncer-
tainties in the modeling system, whose uncertainties came from meteorological inputs, hy-
drological model and the observations, not from the routing component itself. It will have 
the potential to be used for alternative purpose such as flood early warning or climate stud-
ies.  
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A primary limitation in using the GLUE method is the prohibitive computational burden 
imposed by uniform random sampling of the parameter distributions, especially for a 
large-scale complex model (Hossain and Anagnostou, 2005). Therefore, a revised GLUE 
method was proposed using stochastic modeling of the parameters’ response surface to rec-
ognize the inherent non-linear parameter interactions. The results showed that it can reduce 
computational burden by at least 15%–25%, and demonstrated the potential for increasing 
efficiency of GLUE uncertainty estimation for rainfall-runoff models as it does not impose 
any additional structural or distributional assumptions.  

At present, response surface methodology (RSM) as a surrogate model of complex model 
arouses a great concern by some scholars. When the model simulation is very expensive, as 
in any large-scale complex model (e.g. land surface model) applications, it is not easy to 
employ the traditional model calibration techniques. It acquired succeed application in the 
common land surface model (Duan et al., 2009). 

The multi-criteria algorithm, the multi-objective generalized sensitivity analysis 
(MOGSA) (Bastidas et al., 1999), was used to investigate the parameter sensitivity of five 
different land surface models with increasing levels of complexity in the physical represen-
tation of the vegetation (BUCKET, CHASM, BATS1, Noah, and BATS2) at five different 
sites representing crop land/pasture, grassland, rain forest, cropland, and semidesert areas 
(Bastidas et al., 2006). The methodology allowed for the inclusion of parameter interaction 
and did not require assumptions of independence between parameters, while at the same 
time allowing for the ranking of several single-criterion and a global multi-criteria sensitiv-
ity indices. However, the analysis required on the order of 50 thousand model runs. Also, 
this approach has been applied to parameter estimates, which was found to be effective in 
constraining the parameter estimates into physically plausible ranges when observations on 
at least one appropriate heat flux and one properly selected state variable are available 
(Gupta et al., 1999). 

A large-scale coupled model (revised AVIM model), which had been coupled to GCM, 
between hydrological model (Xinanjiang model) and land surface processes was proposed 
by Su (2001). In order to evaluate the surface water budgets of AVIM and to evaluate the 
ability to simulate runoff, the implementation of AVIM to Xilinhe basin (in Inner Mongolia 
of China) and daily streamflow simulations from the year 1991 to 1994 were presented. The 
results of sensitive experiments indicated that runoff direactly affected the change of soil 
moisture states, thus affecting sensible and latent heat fluxes and other energy terms. 

3.4  Uncertainty approaches 

The uncertainty quantification is much expensive for a large-scale land-atmosphere coupled 
model due to its large number of parameters, complex structure, and many components. 
Therefore, the traditional and classical uncertainty analysis approaches are not useful to the 
complex models. Recently, there are some approaches or attempts applied to the complex 
models. 

The SCEM-UA algorithm was attempted to be applied to uncertainty analysis of the 
large-scale BIGMOD model by Fernando et al. (2007), and the results indicated a high level 
of uncertainty for each of the 16 parameters modeled. However, this variation was likely to 
be due to the fact that measured flow and salinity data were only available at one location 
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each, and that different combinations of model parameters can achieve the same output. That 
highlighted the importance of incorporating as much a prior knowledge into the calibration 
as possible. Also, to reduce the computational cost, such knowledge was required to choose 
the physically most plausible set of parameter values generated.  

The Gaussian error propagation (GEP) approach was used to assess uncertainty of state 
variables and fluxes in the CoLM model (Liang, 2008), and the results showed that the un-
certainties in soil parameters affected more remarkably compared to plant parameters, 
meanwhile, soil hydraulic parameters (e.g., porosity -ηS, saturated matrix potential -ΨS, 
pore-size distribution index-b, and saturated hydraulic conductivity -kS) contributed much 
more than thermal parameters (e.g., saturated soil albedo -αS, and volumetric heat capacity 
-ρScS). Also, uncertainty in b dominated uncertainty of all state variables and fluxes under 
most conditions, followed by ηS on sand and loam and kS on clay. The GEP method can 
identify critical parameters and parameterization, and also could form a scientific basis for 
model parameter determination and parameterization improvement.  

The MOGSA approach based on multi-criteria calibration procedure, which provided an 
objective determination of the multicriteria sensitivity of the modeled variables to the pa-
rameters and thereby allowing the number of calibration parameters and hence the computa-
tional effort to be reduced, was proposed and used to sensitivity analysis of BATS (Bio-
sphere-Atmosphere Transfer Scheme) model (Bastidas et al., 1999). And the results were 
found to be consistent with the physical properties of the different environments, and also 
there was little degradation in the quality of the model description and little change in the 
preferred range of the remaining parameters when the insensitive parameters were omitted 
from the calibration process (Bastidas et al., 1999), that is to say, the approach can reduce 
the uncertainty of parameters via decreasing the number of parameters. 

Uncertainty quantification for a large-scale model is a challenging activity that requires a 
different approach to uncertainty analysis at a relatively small scale (Bijlsma et al., 2007). 
And Bijlsma et al. (2007) stated that the some limitations and inherent subjectivity existed, 
and it was not always valid when the practice of uncertainty analysis approach at a large 
scale was derived from a small scale. Also, the current restriction of uncertainty assessment 
was mostly based the given structurally conservative estimates, and the unknown bias was 
usually not assessed though it may easily outweigh the effects of variability.  

3.5  Others 

Hou et al. (2009) discussed the effect of large-scale atmospheric uncertainty on the stream-
flow predictability. The global ensemble forecast system (GEFS) of NCEP was evaluated 
following an approach, in which its hydrological component was considered free of errors 
and the initial conditions in the hydrological variables were assumed to be accurate. And the 
results suggested that the coupled system was capable of generating useful gridded stream-
flow forecast when the land surface model and the river routing model can successfully 
simulate the hydrological processes, and the ensemble strategy significantly improve the 
forecast. Also, the expected forecast skill increased with the increasing size of the river ba-
sin. 

A land-surface hydrological model TOPX based on the saturated runoff generation 
mechanism of the improved SIMTOP with topography concept of TOPMODEL model, in 
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association with the water budget calculation principle of the Xinanjiang model was pro-
posed by Yong (2007) to be coupled with regional climate model RIEMS to improve the 
parameterization scheme of the hydrological processes in regional climate model. The un-
certainty effect of regional climate model RIEMS on the land surface hydrological processes 
was also discussed, and the results showed that the precipitation estimated from the regional 
climate model was an important effect factor on the streamflow forecasting. 

Gao et al. (2006) improved the Noah land surface model, in which the evaporation of 
pond water and re-infiltration were taken into account in the land surface model, and the 
overland routing and subsurface routing parameterization were added into land surface 
scheme. Routing module was linked with MM5 through the disaggregating or aggregating 
method. Then, the high-resolution atmosphere-hydrology coupling model was applied to 
simulate the feedback of land surface water cycle in atmosphere in the Heihe River basin. 
The results indicated that the atmospheric fields were influenced by land surface water cycle 
process at large extent, involving the soil moisture, evaporation, boundary layer stability, 
cloud water and rain water. 

The fully-coupled, stochastic simulation was used by Williams and Maxwell (2011) to 
demonstrate the uncertainty propagation between land surface and atmosphere in the cou-
pled model. Feedbacks between the land surface and the atmosphere, manifested as mass 
and energy fluxes, are strongly correlated with soil moisture, making soil moisture an im-
portant factor in land-atmosphere interactions. The results state that a reduction of the un-
certainty in hydraulic conductivity creates a reduction in uncertainty in land-atmosphere 
feedbacks that yields more accurate atmospheric predictions. Also, by reducing uncertainty 
associated with land-atmosphere feedback mechanisms, they reduce uncertainty in both spa-
tially distributed and domain-averaged wind speed magnitudes, thus improving simulation 
ability to make more accurate forecasts. 

All in all, although many efforts and achievements have been devoted to quantify the un-
certainty of large-scale land-atmosphere coupled models, there are also many problems or 
puzzles to solve. Because of the highly nonlinear nature of the hydrological cycle system, it 
is not feasible to account for all these uncertainties from different sources through model 
calibration, verification and validation (e.g. parameter adjustments) (Ajami et al., 2007). For 
examples, regarding to the errors or uncertainty in model input data, there is no perfect 
method to assess the sensitivity of input data spatial distribution because no enough infor-
mation can be used to describe the spatial relationship of each unit or cell, such as the tem-
poral and spatial distribution of precipitation, soil moisture, and so on. In addition to that, 
usually, the interpolation uncertainty effect of input data on the output is neglected. The 
model structure is another source of uncertainty for a hydrological model, especially for a 
large-scale land-atmosphere coupled model. A large-scale complex model consists of many 
sub-modules or sub-models, in which the uncertainties come from the abstraction, simplifi-
cation and interpretation of reality system, and lack of knowledge to the natural processes, 
etc. Therefore, an effective approach or method has not been accomplished and applied to a 
complex computational model, and it will be a research hot point for hydrological science. 
Also, the parameter estimation is important for model constructing and simulation. Many 
approaches or algorithms have been widely applied to calibrate and optimize these parame-
ters of models. However, it is difficult to seek the global optimization value or achieve the 
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identification and calibration processes because there are various peak values for the pa-
rameter response surface and interaction effect among parameters. Also it makes the calibra-
tion process exist inherent subjectivity due to large number of parameters and some without 
physical meanings, i.e., it cannot be observed in the reality system and can only be cali-
brated from the model. Apart from that, the uncertainties of initial and boundary conditions 
are rarely considered in the existing literatures. But for a large-scale land-atmosphere model, 
these conditions could affect on the forecasting and simulation output, which should be 
taken account into the uncertainty quantification of complex models in the future research. 

4  A new effective uncertainty quantification approach 

An effective uncertainty quantification system for a large-scale complex hydrological cycle 
modeling system has not been established at present. For classical analysis approaches, there 
is some insufficiency (e.g., high computational cost, etc.) for complex hydrological cycle 
system. To improve the simulation accuracy and well understand the uncertainty of 
large-scale hydrological cycle models, a new tool or platform called PSUADE can be se-
lected to solve that problem, and applied to the uncertainty quantification of large-scale hy-
drological model. 

4.1  PSUADE 

The PSUADE is a software toolkit developed by the Lawrence Livermore National Labora-
tory to facilitate uncertainty quantification for large-scale complex modeling system. It has a 
rich set of tools or approaches involving the sampling design, uncertainty analysis, sensitiv-
ity analysis, numerical/statistical optimization, model calibration, etc. In particular, 
PSUADE provides a surrogate model (response surface methodology) to simplify the origi-
nal computational model, and make the uncertainty quantification more tractable with re-
ducing the computational cost. Also, it enables to assess the uncertainty of complex compu-
tational model or system, and offers beneficial reference and experience for uncertainty 
quantification of large-scale land-atmosphere coupled hydrological cycle modeling system. 

Generally, uncertainty quantification will help: 1) tune a simulation model to match better 
with experiments, 2) establish the integrity of (validate) a simulation model, 3) assess the 
region of the validity of a simulation model, 4) characterize the output uncertainties of a 
simulation model, 5) identify the major sources of uncertainties of a model, and 6) provide 
information on which additional experiments are needed to improve the understanding of a 
model, and others. To accomplish the goal of uncertainty quantification, many design and 
analysis tools are needed. In the PSUADE, there are a set of sampling design methods in-
cluding Monte Carlo sampling (MC), Latin Hypercube sampling (LHS), orthogonal array 
sampling (OA), quasi-random sampling (LPTAU), central composite designs (CCD), Morris 
one-at-a-time designs (MOAT), fourier amplitude sensitivity test designs (FAST), factorial 
designs (FACT), fractional factorial design (FF), Placket-Burman design, etc. Also, it pro-
vides many methodologies to construct the response surface, such as polynomial regression 
model, multivariate adaptive regression splines (MARS), artificial neural network (ANN), 
Gaussian process model (GP), and support vector machines (SVM), and so on. Furthermore, 
it supports a lot of global sensitivity analysis methodologies for models with large number of 
parameters and complex constraints, i.e. qualitative analysis methods (e.g. LH-OAT method, 
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MOAT screening method, and FAST method) and quantitative analysis methods (e.g. Sobol 
method, Extend FAST, main effect, two-way interaction effect, and RSM-based method). 
Take the sensitivity analysis as a case, the flowchart for running the PSUADE is as shown in 
Figure 2. 

 
Figure 2  Operation framework in PSUADE (after Tong Charles. Uncertainty quantification methodologies and 
methods for multi-physics applications [PPT]) 
Note: PDF means probability density function. 

4.2  Response surface model 

Response surface methodology (RSM), which is also known as a meta-model or surrogate 
model, is a collection of statistical and mathematical techniques useful for developing, im-
proving, and optimizing processes. In the PSUADE, a good response surface model, which 
is used to approximate and simplify the complex and high-dimension nonlinear input-output 
relationship, has been constructed with sufficient accuracy via rigorous validation or cross 
validation. Subsequent all the analysis can rely on this response surface model which is in-
expensive to evaluate. And it will facilitate the efficacy of the more quantitative analysis that 
requires a large number of evaluations. The original definition of RSM pertains to linear and 
polynomical regression analyses. The kernel for response surface involves appropriate sam-
ple data (such as the input-output data and the space-filling data) and fitting method. 
PSUADE provides a number of response surface methods ranging from parametric regres-
sion methods to non-parametric methods, such as Friedman’s multivariate adaptive regres-
sion splines (MARS), artificial neural network (ANN), Gaussian process model, support 
vector machines (SVM). Take the land-atmosphere coupled hydrological cycle system 
model as a case, the procedure (as shown in Figure 3) for creating the response surface is as 
follows: 1) Choose a sampling design method, such as LPTAU, Metis, LH, etc.; 2) run the 
simulator with the sample; 3) use response surface check to see goodness of fit, e.g. examine 
training errors and cross validation errors; 4) if errors are not acceptable, add more points; 5) 
create a FF IV design to sample some corners, to test the robustness against extrapolation; 6) 
use “rstest” to examine extrapolation errors; 7) if good, add FF design and create new re-
sponse surface. 
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Figure 3  The procedure for structure of response surfaces and generalization of complex system 
 

4.3  Application 

At present, there are few case studies of PSUADE to the hydrological model or hydrological 
cycle system, but which has been applied to other complex computational model. For exam-
ple, Tong and Graziani (2008) proposed a global sensitivity analysis methodology using the 
PSUADE for general multi-physics applications that are characterized by strong nonlineari-
ties and interactions in their input-output relationships, expensive simulation runs, and large 
number of input parameters. And they present a four-step approach consisting of (1) pre-
scription of credible input ranges, (2) parameter screening, (3) construction of response sur-
faces, and (4) quantitative sensitivity analysis on the reduced set of parameters. The nu-
merical results show that it obtains a good accuracy compared with the classical method, and 
reduce the computational cost. Furthermore, it is also applied to quantification of parameter 
uncertainty of the Common land model (CoLM), and the results demonstrate the usefulness 
of the response surface technique as a potential calibration tool. Hsieh (2007) focuses on 
using PSUADE as a tool for global sensitivity analysis and uncertainty quantification to an 
engineering model. In addition, Tong (2008) applied a spectrum of uncertainty quantification 
techniques to the study of a two-dimensional soil-foundation-structure-interaction (2DSFSI) 
system subjected to earthquake excitation. Also, Wemhoff and Hsieh (2007) used the code 
PSUADE to calibrate Prout-Tompkins kinetic parameters for pure recrystallized TNT. The 
results stated the methodology based on response surface using PSUADE provided a basis 
for future calibration studies. 

The PSUADE software package integrates many uncertainty quantification approaches 
with a rich collection of sampling methods. And it also supports a flexible runtime environ-
ment, e.g., serial and asynchronously parallel execution modes, non-intrusive to user codes, 
a user-friendly interface via input and output filters. In particular, the response surface 
methodologies based on statistical and mathematic theory can be widely applied to many 
complex computational model to facilitate the uncertainty quantification, and it will be well 
applied to the complex hydrological modeling system. 
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5  Future prospects 

There are many uncertainty sources for a large-scale hydrological cycle modeling system, 
involving the uncertainties of the both-way transmission and feedback of the input-output 
information via inter-coupling between land surface model with atmosphere model, which 
become a crucial factor to model simulation accuracy or reliability (Yong et al., 2006). How 
to reduce or decrease the uncertainty effect of large-scale hydrological modeling system has 
become a hot point and frontier issue for hydrological and atmospheric sciences (Yin et al., 
2006). Currently, an effective framework of uncertainty quantification of complex hydrody-
namics system has been not constructed yet. Also, many problems of uncertainty quantifica-
tion should be solved urgently, such as, how to quantify the effect of the uncertainty of 
model input, parameter, and structure on the output, how to develop and establish an effec-
tive approach framework to reduce the cost of uncertainty quantification for complex system 
model, and how to construct the integration assessment platform or tool package to support 
complex model, and so on. Therefore, the following aspects on uncertainty quantification 
should be emphasized in the future.  

(1) Uncertainty methods 
The uncertainty methods are the basis of model uncertainty quantification. Now, although 

many methods or approaches have been widely used and applied to hydrological model, the 
classical methods have limitations for large-scale physically-based distributed hydrological 
models or complex land-atmosphere coupled models. Consequently, an effective assessment 
and quantification method system should be formed and constructed based on the classical 
approaches integrating with their strong points and advantages, so that they are also suitable 
to the uncertainty quantification of complex computational models, and quantitatively dis-
tinguish the effect of various uncertainty sources on the output without increasing the com-
putational cost and reducing the model simulation accuracy. The PSUADE is a relatively 
effective platform for uncertainty quantification, which integrates many uncertainty analysis 
methods, and can emulate the complex model using a response surface (or surrogate model) 
to reduce the uncertainty computational cost. It will be a new hot point issue to uncertainty 
quantification of complex models, especially for multi-parameters and multi-processes cou-
pled models. 

(2) Parameter optimization methods 
Model parameter is a crucial component for computational models, and also is the exter-

nal representation and explanation of model structure. In a great many situations, the model 
parameters are conceptual representations of abstract watershed characteristics and must be 
determined through a trial-and-error process or an optimization algorithm with popula-
tion-evolution-based search strategy which adjusts the parameter values so that the model 
response matches the historical input-output data (Yapo et al., 1998). However, many opti-
mization algorithms have several shortcomings, i.e., being dependent on the parameter ini-
tial values, optimization ranges, quality of the historical input-output data, and parameter 
distribution, also being extremely time consuming when comprehensive assessment is car-
ried out on the model structure and others, and the optimization parameter values are usually 
not best ones. Therefore, a multi-objective global optimization algorithm should be en-
hanced to reduce the uncertainty effect of model parameters on model output, and it will be 
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another key hot point. 
(3) Model structure and mechanism 
The theory of hydrological science is a basis and foundation for constructing the model 

structure and system. However, the water cycle processes are complex considering the hy-
drological processes, land surface processes, atmospheric processes, etc., and a computa-
tional model is abstracted from reality system, and has great uncertainty if we do not have a 
good and comprehensive knowledge for inherent laws of reality system. In addition, the un-
certainty of coupled processes between the land surface model and atmosphere model has 
been also not well known (e.g., the scale transformation). So, the research on model struc-
ture and mechanism should be enhanced based on the existing models, to make the modeling 
system well represent the reality system and then reduce the forecasting uncertainty. 

(4) Data source and quality control 
Model input is one of the unavoidable uncertainty sources. Model input data based on 

various techniques with different precisions exists extreme errors, which can propagate the 
error from the modeling system to the output. To reduce the effect of input error on the out-
put, many new techniques or approaches controlling data quality should be widely used to 
hydrological science, such as remote sensing, data assimilation, etc. 
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