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Abstract
Flow-type landslides, including subaerial and submarine debris flows, have poor spatiotemporal predictability. Therefore,

researchers rely heavily on experimental evidence in revealing complex flow mechanisms and evaluating theoretical

models. To measure the velocity field of experimental flows, conventional image analysis tools for measuring soil

deformation and hydraulics have been borrowed. However, these tools were not developed for capturing the kinematics of

fast-moving soil–water mixtures over complex terrain under non-uniform lighting conditions. In this study, a new

framework based on deep learning was used to automatically digitalize the kinematics of experimental flow-type land-

slides. Captured images were broken into sequences and binarized using a fully convolutional neural network (FCNN). The

proposed framework was demonstrated to outperform classic image processing algorithms (e.g., particle image

velocimetry, trainable Weka segmentation, and thresholding algorithms) over a wide range of experimental conditions. The

FCNN model was even able to process images from consumer-grade cameras under complex shadow, light, and boundary

conditions. This feature is most useful for field-scale experimentation. With fewer than 15 annotated training images, the

FCNN digitalized experimental flows with an accuracy of 97% in semantic segmentation.
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1 Introduction

Flow-type landslides, such as debris flows, are rapidly

moving particle–fluid mixtures that pose a threat to sus-

tainable development. These landslides have poor spa-

tiotemporal predictability, such that experiments [6] and

numerical simulations [18] are often conducted to reveal

underlying flow mechanisms and evaluate theoretical

models. Flume experiments are a commonly employed

source of physical evidence that can be utilized by

numerical modelers to calibrate their numerical simula-

tions. For instance, de Haas et al. [9] conducted laboratory

flume experiments to investigate the runout and deposition

behaviors of debris flow mixtures. Iverson et al. [15] ana-

lyzed the flow volume and flow runout distance using a

120-m-long flume. Debris flows impacting barriers were

also investigated in field-scale experiments [23, 33] using a

28-m-long field-scale flume. The model flows in these

studies were highly transient. For example, flows in field-

scale experiments [23, 33] required less than 5 s to travel

from the storage container to the outlet of the channel.

Owing to the high flow velocities, the window for obtain-

ing measurements of the flow kinematics (e.g., the frontal

velocity) is limited. Therefore, high-speed cameras that

capture images at high frame rates are needed for image

analysis. For example, Du et al. [10] use 300 frames/s and

Chen et al. [5] use 240 frames/s in their experiments.

However, the use of high-speed cameras is often limited to

controlled laboratory environments with consistent lighting

conditions. It is difficult and time-consuming to deploy

high-speed cameras in field-scale experiments. To address

this challenge, researchers have started using consumer-

grade cameras as an auxiliary tool in both lab-scale and

field-scale experiments to extract information from exper-

imental flows while reducing the complexity and cost of

data acquisition [9, 18, 23].
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Flow videos from both high-speed and consumer-grade

cameras need to be analyzed by image processing. Among

image processing methods, particle image velocimetry

(PIV) [35] has been extensively used to deduce the dis-

placement field of flow materials [30]. In PIV analysis,

video frames are divided into a grid of patches. The dis-

placement field is then calculated by comparing the texture

of patches between two frames. The texture processed by

PIV can be either the texture of materials or artificial

textures (e.g., textures obtained by adding tracers). Another

method often compared with PIV is particle tracking

velocimetry (PTV) [22]. Instead of comparing textures of

patches, PTV tracks the velocity of tracer particles. Except

for instances where sufficiently large grains are present and

observable, as reported in [30, 31], PTV requires the

addition of tracer particles with sufficient color contrast

against the color of the flow materials. The number of

tracer particles to add is not easy to establish. On the one

hand, enough tracers should be added so that they can be

uniformly distributed in the flow and observed in images.

On the other hand, the number of tracers should be limited

so that the properties of the flow (e.g., the solid fraction or

bulk density) do not change. Compared with PTV, PIV

usually does not require additional tracer particles for

granular flows [30]. However, tracers must be added if the

experimental materials being examined by PIV do not have

distinguishable textures (e.g., clay) [10]. For methods like

PIV or PTV, which track textures or tracers, tracking

algorithms are readily affected by the ambient light con-

ditions and shadows. Consequently, costly light-emitting

diode lighting devices without flicker are needed, and

ambient light conditions need to be well controlled.

However, light conditions are difficult to control in field-

scale experiments [23, 33].

With the rapid development of artificial intelligence,

object detection techniques based on deep learning have

been increasingly used in recent years for tracking the

bounding box of flow boundaries. For example, eight types

of convolutional neural network (CNN) algorithms were

used to detect flooded areas in aerial images [25]. The

object detection neural network YOLOv4 was used to

detect flow bounding boxes from the images of real geo-

hazards and laboratory-scale flume experiments in [24].

Bounding boxes are an important advancement in flow

tracking. However, bounding boxes often fail to detect the

boundaries of flows with complex frontal morphologies

(i.e., unchanneled flow fronts with fingers). Flow boundary

tracking is often equivalent to the machine vision process

of segmenting images into backgrounds and flow bodies.

Segmentation is a classification task based on digital image

processing whereby each pixel of an image is classified as

either a background pixel or a flow pixel. One popular

method that is used to classify pixels is thresholding, which

distinguishes a flow and its background according to color-

related properties [21]. However, simple thresholding

methods struggle to process complex images. Specifically,

recent observations [18] suggested that classical thresh-

olding typically yields noisy results when applied to an

image with a complex background with shadows and

reflected light. In comparison, a deep learning-empowered

image segmentation method may outperform classical

thresholding and yield a clean and accurate result.

The objective of this study is to create a workflow that

assists physical modelers in effectively generating digital

representations of flow-type landslides in experiments. The

workflow will allow for the maximum amount of infor-

mation to be extracted from flow videos of these time-

consuming experiments. To accomplish this objective, a

new framework, empowered by a deep learning algorithm,

that handles complex lighting conditions encountered in

both laboratory-scale and field-scale experiments is intro-

duced. The framework was designed to be easy-to-use and

can operate with consumer-grade cameras. To evaluate the

proposed framework, three experiments, namely a field-

scale flume experiment, a submarine experiment, and an

unchanneled experiment, were analyzed. These experi-

ments generated experimental flow videos under different

flow and light conditions.

2 Segmentation of flows using a deep FCNN

2.1 Pre-processing of images

The framework adopted in this study uses video captured

by either research- or consumer-grade cameras as input.

The recorded video is separated into image sequences and

then processed, and the flow kinematics are computed. To

ensure that the computed flow kinematics are accurate,

images of the flow should be free from distortion. How-

ever, cameras produce images with perspective distortion

such that there is a fisheye effect. The fisheye effect is a

byproduct of the lens and increases the field of view

(FOV). In this study, an algebraic algorithm [1] was used to

perform fisheye correction. Furthermore, the perspective

was corrected to treat perspective distortion (i.e., objects

farther from the lens being larger than those that are clo-

ser). As the prerequisite of perspective correction, an affine

transformation matrix C is first calculated:

wx0i
wy0i
w

0
@

1
A ¼ C

xi
yi
1

0
@

1
A; ð1Þ

where the vector wxi0 wyi0 wð ÞT gives the homogenous

coordinates of the ith pixel after transformation and
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xi yi 1ð ÞT gives the homogenous coordinates of the ith

pixel before the transformation. The homogenous coordi-

nates xi yi 1ð ÞT are constructed from the vector of

coordinates of a pixel xi yið ÞT by appending an extra

dimension with unity magnitude to the vector. After

transformation, the extra dimension is transformed into a

random number w. The value of w depends on the trans-

formation matrix C, which corrects the errors induced by

camera rotation and translation. C is given as follows:

R1 R2 T1

C1 C2 T2

W1 W2 1

2
4

3
5; ð2Þ

where the first column R1 C1 W1ð ÞT corrects the ver-

tical distortion, the second column R2 C2 W2ð ÞT cor-

rects the horizontal distortion, T1 corrects distortion due to

vertical camera translation, and T2 corrects distortion due

to horizontal camera translation. To obtain the parameters

in Eq. 2, a set of linear equations [36] is solved:
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where x1; x2; x3; x4 and y1; y2; y3; y4 are the coordinates

of four user-selected reference points on a distorted image

and x01; x02; x03; x04 and y01; y02; y03; y04 are the correspond-

ing corrected coordinates of the user-selected reference

points. The perspective distortion of an image is reduced

by applying perspective correction to each pixel.

2.2 Segmentation of flows using a deep FCNN

For experiments where the entire flow body needs to be

measured, flow boundaries need to be identified from each

frame of the recorded video after image correction (as

described in Sect. 2.1). Here, semantic segmentation is first

adopted to separate corrected images into flow (i.e., white)

and background (i.e., black). The boundary outlining a flow

is then identified using the Moore neighborhood tracing

algorithm [12]. To perform semantic segmentation, an

FCNN model modified from U-net [27] is used. This

modified U-net boasts a reduced parameter count when

compared to its original version, making the modified

model a more lightweight alternative to the original U-net.

According to [11, 19], the modification results in a less

computationally demanding model without compromising

the accuracy of the model segmentation capabilities. Fig-

ure 1 shows the workflow of FCNN semantic segmentation

using a sample image of clay–water mixture flowing

through a model forest (as discussed in Sect. 3). First, the

raw flow video frame, which is distorted, is corrected

before being used as the input of the FCNN model. How-

ever, since the FCNN model only accepts images of a fixed

size (i.e., 720 9 720 9 3 pixels), flow images of arbitrary

sizes cannot be directly input into the FCNN. To address

this issue, a sliding window strategy is adopted to scan the

full-size flow image (2704 9 2028 pixels) following a

zigzag trajectory indicated by the green arrows. At each

position, the window crops the image, which is then passed

through the FCNN encoding structures to extract the fea-

ture maps. The feature maps are then used to differentiate

between the flow and background, and subsequently

decoded. The encoding and decoding part of the FCNN

have similar structures except that the decoding parts use

the up-sampling operation as the last operation instead of

max-pooling [7]. Detailed architectures of the encoding

and decoding blocks parts are discussed in Appendix A.

The decoding blocks output the semantic segmentation

results of the cropped image, corresponding to the current

sliding window position (i.e., the position of the green

rectangle). To process a full-size image, encoding and

decoding are repeatedly conducted at all positions on

which the sliding window lands.

2.3 Training

The FCNN needs to be trained before semantic segmen-

tation. Here, to train the network, flow images were ran-

domly chosen from frames of a video of an experiment as

training data. These training images were annotated using

an open-source annotation tool LabelMe [28]. The flow on

the images was presented in white and the background in

black. This black and white presentation was used as the

ground truth for semantic segmentation, which separated

the images into the flow and background. The images were

then cropped into sub-images using the sliding window.

The FCNN only uses images of fixed size (720 9 720 9 3

pixels) as input, and the cropped images must be of a size
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that fits the network input. Following the literature [19],

90% of the cropped images were fed into an Adam opti-

mizer [16] to train the network. These images are called

training sets. The remaining 10% of images (i.e., the val-

idation set) were used for evaluating the accuracy of the

segmentation during training. To enhance the ability of the

network to process images with noise, data augmentation

[37] was performed on the training images by adding

random noise. Finally, training images cropped from ran-

domly selected frames of flow video was combined with

the black and white presentations of the images. The

training was performed on an RTX 3090 graphical pro-

cessing unit for up to 100 epochs. During training, the

learning rate was set at 1:000� 10�5 and the batch size

was set at 10, and the binary cross-entropy [7] function was

used as the loss function.

3 Experimental evidence for evaluating
FCNN

3.1 Field-scale channelized debris flow

Images recorded in three different experiments were used

to evaluate the proposed FCNN model. Details of each

experiment are discussed below. The first experiment was

Fig. 1 Example of semantic segmentation using the fully convolutional neural network (FCNN), where the input image is photographed in the

unchanneled experiment of clay–water flow through a model forest (as discussed in Sect. 3)
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performed in [23] using a field-scale flume. Figure 2 shows

the flume, which was 28 m in length and 2 m in width. The

upstream section was a 5-m-long debris container with a

slope of 30�. The container was used to store a total volume

of 2.5 m3 of debris material comprising gravel, sand, clay,

and water with volumetric concentrations of 21, 36, 2, and

41%, respectively behind double gates. Immediately

downstream of the gate was a channel inclined at 20� with
reference lines were painted at intervals of 1 m on the bed

to track the movement of the flow front in the video. At the

downstream end of the flume was a deposition zone. An

unmanned aerial vehicle (UAV) with an onboard con-

sumer-grade camera was used to capture the entire flow

body as it moved downslope. The captured video had a

frame rate of 30 frames per second and a resolution of

1920 9 1080 pixels.

3.2 Submarine debris flow

The experiment of [10] modeled submarine debris flow

using a laboratory-scale flume. Figure 3 shows a side view

of the flume, which comprised a watertight tank with

transparent side walls. The tank was 3 m in length, 0.2 m in

width, and up to 1 m in height. A container that stored up to

0.08 m3 of debris was installed at the upstream end of the

model. The debris was retained by a pneumatically con-

trolled gate. Immediately downstream of the gate was a

channel with two sections, one inclined at 18� and the other
inclined at 3�. A high-speed camera was mounted at the

side of the 3� incline to record the flow kinematics. The

camera recorded images with a resolution of 1696 9 642

pixels at a frame rate of 300 fps. The debris materials used

were mixtures of water, Toyoura sand, and kaolinite clay.

The Toyoura sand contained less than 2% of dyed particles

by volume. In the experiment [10], dyed particles were

used as tracers for performing PIV analysis. Table 1

summarizes the test conditions reported in [10] for evalu-

ating the FCNN model. Two specific test conditions were

selected, involving flows with varying volumetric content

(vol%) of kaolinite clay, sand, and water. These variations

in composition result in different flow appearances, which

can be used to assess the generalizability of FCNN in flow

segmentation.

3.3 Laboratory-scale model forest impacted
by slurry

The bulk of laboratory-scale models of flow-type landslides

have confined channels. However, for some problems (e.g.,

flow spreading in forests [3, 21]), unchanneled experiments

are carried out. Unchanneled experiments allow lateral

spreading and thus greater spatiotemporal variability in the

flow height and velocity along the lateral direction than

channeled experiments. Moreover, in contrast with the case

for channeled flows, a larger FOV is required to capture the

spreading behavior of unchanneled flows. To evaluate the

FCNN model in terms of capturing the frontal kinematics

of unchanneled flows, experimental cases of slurry flow

impacting a model forest were analyzed in the present

study. Figure 4 shows an oblique view of a model forest,

which comprised an array of aluminum cylinders that were

150 mm in height and 20 mm in diameter. The cylinders

Fig. 2 Aerial photograph of the 28-m-long flume facility at the Kadoorie Centre of the University of Hong Kong [23]
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were affixed to a 2 m � 2 m (length � width) wooden

board. A hydraulic jack was used to incline the model

forest. Figure 5 shows the plan view of the model forest

with a stem spacing of 175 mm. A clear-board model [13]

was used for comparison in this study. Upstream of the

model forest, debris material was stored in an acrylic

container and released via a dam break. The debris material

was retained using a pneumatically controlled gate. A

Fig. 3 Side view of the experimental setup for submarine debris flow [10]

Table 1 Reported test conditions [20] used to evaluate the FCNN

model in the present study

Clay content

(vol%)

Sand content

(vol%)

Water content

(vol%)

Bulk density

(kg/m3)

4 36 60 1,685

12 28 60 1,601

Fig. 4 Oblique-view photograph of the model forest [18]

Fig. 5 Top-view schematic of the model forest with a stem spacing of

175 mm (with all dimensions in millimeters)
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consumer-grade camera (GoPro Hero 7) was mounted

above the model forest to capture the flow kinematics. The

camera captured images at 50 fps and a resolution of

2704 9 2028 pixels.

The slurry comprised 22% kaolinite clay and 22% water

volumetrically. In each experimental case, 20 kg of the

mixture was prepared and placed into the storage container.

To initiate a test, the pneumatically controlled gate was

lifted. The retained soil–water slurry then flowed down-

slope and impacted the model forest. The kinematics were

captured by the camera. Two basal slopes (20� and 25�)
were used in both the clear-board and model-forest

experimental cases (Fig. 5).

4 Evaluation of the FCNN model

4.1 Evaluation of image correction

The unchanneled experiment was used to evaluate the

image correction technique adopted in the proposed

framework. A model forest was used to evaluate image

correction because a panoramic view was adopted for the

camera to generate an FOV large enough to capture the

entire flow body. Consequently, the fisheye effect was

large, making the images ideal for assessing the image

correction technique adopted. Figure 6a shows a typical

image of the flow with fisheye distortion. The straight

edges of the wooden board (red dashed lines) were curved,

such that the curvature could be used to correct for dis-

tortion. Figure 6b shows the image after fisheye correction.

Although straight edges were observed, the image still

suffered from perspective distortion. Specifically, the ori-

entation of the camera was not perfectly perpendicular to

the board, and the side edges of the board were thus not

parallel. Such an issue can be solved by perspective cor-

rection. Perspective correction was performed by substi-

tuting four user-selected reference points (indicated by

yellow diamond markers) into Eq. 3. Figure 6c shows the

image after perspective correction. This image was used to

perform semantic segmentation. Edges that should be

parallel in reality were now parallel in the image. More-

over, the lines formed by the top of the model trees, which

were parallel in reality, were now also parallel in the

image.

The corrected flow image was processed using the

FCNN model for semantic segmentation based on the

workflow described in Fig. 1b. The flow in the image was

then identified. The boundary and area of the flow were

computed indirectly by counting the number of pixels

belonging to the flow part of the image. The computed flow

boundary and area had a unit of pixels. To transform the

unit from pixels to mm, the size sp of a single flow pixel is

calculated as follows:

sp ¼
S

Np
; ð4Þ

where S is the real size of a user-selected reference object

on the image (in mm) and Np is the number of pixels

constituting this object. Taking the unchanneled experi-

ment as an example, it was assumed that S was the width of

the board, which was 2000 mm and designed to be the

same as the width of the image used for semantic seg-

mentation. As the image had a width of 2000 pixels

(Np ¼ 2000), it followed that sp ¼ 1 mm/pixel.

4.2 Evaluation of the deep convolutional neural
network

To evaluate the ability of the FCNN model to perform

semantic segmentation, it was trained using experimental

images captured in the three experiments. The experiments

differed greatly in flow material and experimental setup, so

training was performed separately. Table 2 summarizes the

number of images used for training in each case. Table 3

summarizes the hyperparameters used to train all three

experiments.

Figure 7 shows the training curves for each type of

experiment. For each experiment analyzed in this study, the

first 10 training epochs were the most effective. In these 10

epochs, the training accuracy increased to more than 80%.

The training accuracy is defined as the percentage of cor-

rectly identified pixels, evaluated on the training set. In the

cases of the field-scale and unchanneled experiments, the

training accuracy increased to approximately 97% after 50

epochs of training. The validation accuracy had the same

trend as the training accuracy. For the submarine experi-

ment, the training accuracy increased to approximately

97% after 100 epochs of training. The training accuracy

serves as an indicator of the chosen hyperparameters’

effectiveness across all experiments. Nevertheless, the

submarine debris flow experiment necessitated a greater

number of training iterations due to the utilization of a

high-speed camera that solely produced grayscale images.

In contrast to the true-color images obtained in the field-

scale and unchanneled experiments, these grayscale images

provided less information for segmentation purposes.

Despite this limitation, the final training accuracy of 97%

demonstrates the well-trained FCNN’s proficiency in per-

forming semantic segmentations on grayscale images as

well. It is worth noting that the validation accuracy for the

submarine experiment is higher than the training accuracy.

This interesting observation can be attributed to the pres-

ence of noise intentionally added to the training images

during data augmentation, which makes it more
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Fig. 6 Image distortion and its correction: (a) original flow image with fisheye distortion, (b) perspective distortion that distorts parallel edges,

and (c) corrected image with perspective distortion

Table 2 Number of images used in training

Annotated

images

(full size)

Cropped

images

Cropped

images used

in training

Cropped

images used

in validation

Field-scale

experiment

8 1152 1036 116

Submarine

experiment

5 560 504 56

Unchanneled

experiment

15 1080 972 108

Table 3 Hyperparameters used in training

Name Value

Learning rate 1:000 � 10�5

Adam b1 0.900

Adam b2 0.999

Batch size 10

Loss function Binary crossentropy [7]
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challenging for the FCNN to accurately segment them.

However, in both the validation set and real experiments,

this noise does not exist, resulting in higher accuracy.

Figure 8 compares the actual flow boundary obtained in

the field-scale experiment and that identified using the

FCNN. The boundaries of the flows (i.e., the black solid

lines in Fig. 8a, b, and c and the white solid lines in Fig. 8d

and e) were extracted by applying the Moore neighborhood

tracing algorithm [12] to the semantic segmentation results.

In the field-scale experiment (Fig. 8a), the images were

taken by a consumer-grade UAV camera, which had a

resolution of 1920 � 1080 pixels. However, the flow only

occupied a small part of the image (i.e., the resolution of

the area corresponding to the flow in the image was low

and only 1000 9 165 pixels). Nevertheless, the FCNN

model still identified the flow boundaries. After the flow

was released (at 0.33 s), it traveled downslope with a

slightly convex flow head. Specifically, the flow near the

center line of the channel moved more rapidly than that

near the side walls. As the flow head moved downslope, the

right side of the flow traveled more rapidly than the left

side. At 2.27 s, the distance traveled by the flow head on

the left side was 8.2% less than that traveled by the flow

head on the right side. This difference across the width of

the channel was also captured by the FCNN model.

Figure 8b and c further demonstrate the ability of the

FCNN model to identify the flow boundaries in the

unchanneled experiment. Figure 8b shows the identified

flow boundary on a laboratory-scale wooded board. Unlike

the case for channeled flow, where the flow boundary was

close to being rectangular, an elliptical flow boundary was

observed owing to lateral spreading.

Figure 8c shows that the spatial variation in the flow

velocity was even more pronounced when flow impacted

the model forest. After the flow impacted a model tree, the

flow front divided into branches. In this case, accurate

boundary detection was evident.

Figure 8d and e showcase the ability of the FCNN

model to identify flow boundaries in the submarine

experiment. In contrast with the field-scale and unchan-

neled experiments, a research-grade high-speed camera

was adopted in the submarine experiment to capture the

flow kinematics. The camera only generated grayscale

images, each of which was essentially a 1696 9 642 9 1

matrix. The size of the third dimension (i.e., 1) indicates

that each pixel contained one parameter that described its

grayscale. In comparison, the true-color images in Fig. 8a,

b, and c had three parameters per pixel that described the

red, green, and blue components, which constitute the color

of a pixel. As such, grayscale images make it more chal-

lenging for the FCNN to identify the flow boundaries

between the flowing and non-flowing parts. Notwith-

standing, the FCNN model in this study output flow

boundaries that were consistent with the observed bound-

aries. When analyzing sidewall images from landslide

flume tests, it is crucial to consider the 3D effects, espe-

cially for submarine debris flows in a flume. This is

because the flow front often exhibits pillowy turbulence

caused by the clay content that diffuses into the water and

forms a diluted layer. It is important to note that in any

image-based method, including the FCNN, the captured

flow edges depict the edges of the maximum projected flow

contour, rather than the actual 3D flow edge at the sidewall.

Hence, image pre-processing is necessary to ensure that the

captured edges are accurate, as discussed in Sect. 3.1.

4.3 Evaluating field-scale debris flow

Compared with laboratory-scale experiments, research-

grade high-speed cameras [10, 30] are more difficult

Fig. 7 Training curve of the FCNN model. The round markers represent the training accuracy and the square markers the validation accuracy
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to deploy in the field because they require a steady

power supply, real-time data transmission and pro-

cessing, and well-controlled light conditions, which

may not be easy to prepare in the field. Therefore,

field-scale experiments often use consumer-grade

cameras [23].

Figure 9 compares the performances of different image-

based measuring algorithms. Sixteen images capture from

Fig. 8 Comparison of the flow boundaries identified by the FCNN model and the observed flow boundaries: (a) field-scale experiment, (b) flow
spreading on a laboratory-scale clear wooden board, (c) flow interacting with a laboratory-scale model forest having spacing of 175 mm,

(d) submarine flow [10] with a volumetric clay content of 4%, and (e) submarine flow [10] with a volumetric clay content of 12%
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consumer-grade cameras are illustrated. Images A to D are

the raw input images. Images E to H are the semantic

segmentation results produced by the FCNN using images

A to D as input. Images I to L are the semantic segmen-

tation results produced by a commonly used machine

learning algorithm, the trainable Weka segmentation

(TWS) algorithm [2]. TWS was implemented using ImageJ

[29], which is open-source image processing software.

Images M to P show the velocity field of the flow obtained

through PIV [32], which was implemented using PIVlab

software [32]. Among the three algorithms, FCNN and

TWS used semantic segmentation to identify the flow.

However, TWS produced noisier results than the FCNN

model. Discrete and isolated parts of the image that did not

belong to the flow were misinterpreted. The misinterpreted

parts were mixed with parts of the image that actually

represented the flow, making it difficult to differentiate the

flow from the background. Although the performance of

TWS can be further improved by adding more training

samples, the training process is laborious (refer to [2] for

Fig. 9 Comparison of the performances of image-based measuring methods in processing images of the field-scale experiment (where the flow

direction is to the right). The first row shows the source or input images of the flow head taken by an onboard camera mounted to an unmanned

aerial vehicle. The second row shows the semantic segmentation results obtained using the FCNN algorithm in the present study. The third row

shows the noisy results obtained by the trainable Weka segmentation (TWS) algorithm [2]. The fourth row shows the image analysis results

obtained using the particle image velocimetry (PIV) algorithm [32]
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the detailed training procedure). In contrast, the output of

the FCNN was consistent with the real flow profile, with

there being only one misinterpreted part of the flow (i.e.,

that at a time of 0.56 s). More importantly, the misinter-

preted part was not mixed with the actual flow, so was

easily removed without affecting the part of the image that

represented the actual flow body. The flow was assumed to

be larger than the misinterpreted parts. Thus, if more than a

single white region was identified by the FCNN as the flow,

only the largest region was preserved, and the other parts

were removed.

The PIV algorithm is based on a different principle than

semantic segmentation algorithms. Specifically, the PIV

algorithm tracks the texture of flow and assumes that the

velocity of the tracers represents the flow. The flow

material in the field-scale experiment contained gravel,

which served as tracers [30] to generate flow textures for

PIV analysis. However, the low resolution of the images

makes it difficult to detect individual particles of gravel.

Moreover, gravel particles may saltate and not always have

a velocity that is representative of that of the flow body. So,

it is not surprising to find that PIV may underestimate the

flow velocity. Specifically, images M to P show that the

flow has a velocity that is less than 1 m/s, whereas the

measured ground truth [23] had a flow velocity of 5.2 m/s.

Figure 10 compares the performances of the different

algorithms in computing the movement of the flow head in

the field-scale experiment. For the TWS and FCNN

methods, the travel distance was defined as the distance

from the gate of the container to the flow head. Through

semantic segmentation, the pixels of the flow head were

tracked in each frame, and the positions of the pixels were

used to compute the time history of the travel distance. In

the segmentation results produced by the FCNN (i.e., the

first row in Fig. 9), the largest continuous white area was

the flow, and the pixel in this area that was farthest from

the gate was considered the flow head. Evidently, the pixel

position computed by the FCNN (solid line in Fig. 10a)

closely approximated the measurements in the experi-

mental study [23]. However, TWS produced noisy results

and struggled to identify the flow and define the flow head.

For example, three solid lines corresponding to the 50, 70,

and 90% percentiles of the travel distance of the identified

flow pixels are presented in the figure. For a noise-free

segmentation result, the 100% percentile of the travel

distance (i.e., the maximum travel distance of all pixels)

should be the travel distance of the flow head. In noisy

results, however, some pixels identified as the flow are

misinterpreted pixels. As such, using a high percentile

(e.g., corresponding to the 70 and 90% percentiles of the

travel distance) includes misinterpreted pixels in the

computed travel distance. Thus, the travel distance is

overestimated. In contrast, if a low percentile of the pixel

travel distance (e.g., corresponding to 50%) is used, the

flow travel distance is underestimated and some of the

pixels corresponding to the actual flow are excluded.

The PIV algorithm does not directly provide information

on the travel distance. However, the velocity field produced

by PIV can be used to differentiate moving from static

objects. In a flow image, the flow can be regarded as a

moving object and the background is static. By setting a

velocity threshold, the boundaries of moving objects can be

identified. Figure 10b shows the results of using this

strategy to identify the flow body and its head. Four

velocity thresholds (i.e., 0.1, 0.4, 0.7, and 1.0 m/s) were

used. In some frames of the flow video, the travel distances

computed with the strategy were close to those measured in

the experimental study [23]. For example, the frames

between 1.0 and 1.5 s are plotted close to the red markers

indicating the travel distances measured in the experi-

mental study [23]. However, the PIV algorithm overesti-

mated the flow runout in many other frames because some

static parts of the flow near the downstream end of the

flume were misinterpreted as moving objects owing to the

limited image resolution and a lack of tracers (e.g., the PIV

image at 2.04 s in Fig. 9).

4.4 Evaluating laboratory-scale flow boundaries
from the side

High-resolution images from the sides of laboratory-scale

models have been analyzed in numerous PIV studies

[8, 10, 30]. The main limitation of PIV is that it relies

heavily on tracer-generated textures. For example, Fig. 11

shows the velocity field of a submarine debris flow

deduced with PIV. Although tracers have been added to the

flow to generate textures and facilitate PIV analysis, the

tracers do not always move with the flow body. Specifi-

cally, there are no tracers in the diluted parts of the flow

(e.g., areas bounded by dashed yellow lines in Fig. 11b and

c). So the velocity field in this part of the flow is absent or

not correctly computed. If an analysis of the flow height is

required, the missing vectors in the diluted areas may cause

an underestimation. Also, the reference grids on the side

walls (Fig. 11a) may cause an underestimation of the

overall kinematics in PIV. For the flow body around a

reference grid, velocities deduced by PIV are close to zero

(e.g., the areas bounded by the dashed red lines in Fig. 11b

and c).

Owing to missing or underestimated velocity fields, PIV

is limited in identifying moving objects or flow boundaries.

For example, the green contours in Fig. 11 were identified

using the thresholding strategy described in Sect. 3 with a

threshold of 4.5 m/s. Although this threshold is smaller

than the minimum flow frontal velocity reported in the

experimental study [10], it does not allow the identification
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of a complete flow front. Moreover, even if a small

threshold (e.g., 0.15 m/s corresponding to the red contours)

is used, areas around reference grids and diluted flows

cannot be identified. In contrast, the FCNN yielded a

complete flow boundary identification result throughout the

flow process (i.e., the purple dashed line). Although the

FCNN does not produce a velocity field, the FCNN out-

performed PIV in tracking the flow front and flow height

even after tracers were added to facilitate PIV analysis.

4.5 Tracking flow boundaries of unchanneled
flow–forest interaction

The tracking of flow boundaries is useful for unchanneled

flows [21]. Figure 12 compares the ability of the FCNN

with thresholding and TWS in carrying out semantic seg-

mentation for complex flow–forest interactions. Compared

with channeled flows, which were limited to a width of 0.2

m [10], unchanneled flows spread almost 2 m in width in

the unchanneled experiment, making it difficult to ensure

uniform light conditions when a flow spreads over a large

area. Complex shadows and specular reflections in flow

images may hinder semantic segmentation. Moreover,

tracking flow boundaries becomes more difficult when

obstacles are involved because obstacles can occlude the

flow body or be misinterpreted as part of the flow. Such

effects introduce errors into semantic segmentation, espe-

cially when a large number of obstacles are involved. For

cases without obstacles, the major challenges are specular

reflections and shadows (Fig. 12a and b). When using a

straightforward thresholding method, specular highlights

are misinterpreted as the background, and shadows are

misinterpreted as the flow because thresholding uses color

brightness to differentiate between the flow and back-

ground. The brown flow is darker than the white basal

board, and thresholding thus identifies any dark part (i.e.,

the shadows) as the flow and any bright part (i.e., the

highlights) as the background. In contrast with the thresh-

olding method, TWS uses a more sophisticated criterion for

differentiating between the flow and background (refer to

[2]). As such, TWS produces results that are less noisy and

correctly excludes shadows from the flow. However, noise

is still observed. In contrast, the FCNN uses self-adaptive

criteria based on training, which generates clean results

with little noise and boundaries that closely approximate

the observed boundaries.

Fig. 10 Comparison of the time histories of the measured [23] and computed movements of the flow head. (a) Results of semantic segmentation.

The movement of the flow head computed by TWS represents the 50, 70, and 90% percentiles of the distance of flow pixels from the gate.

(b) Results of PIV (based on a velocity threshold)
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For unchanneled flows, although the results of TWS and

thresholding are noisy, they can still be used to extract flow

boundaries if manual post-processing is adopted (e.g., man-

ually excluding the misinterpreted parts of the imagery using

ImageJ [29]). However, if obstacles are involved, it is difficult

to improve segmentation results even with manual post-pro-

cessing. For example, Figs. 12c and 13d compare segmen-

tation results for experiments with a total of 116 obstacles.

The aluminum obstacles were darker than the white back-

ground and thus misinterpreted as part of the flow. The flow

and misinterpreted parts were blended in the semantic seg-

mentation results of thresholding and TWS. It is thus

impractical to separate such misinterpreted areas from the real

flow parts. In contrast, the FCNN differentiated between

obstacles and flows and produced clean segmentation results.

5 Discussion

The framework proposed in this study harnesses the power

of FCNN to process flow images and thus allows modelers

to extract valuable information of flow kinematics from

both new and existing physical experiments. In previous

experiments, such as those conducted in [23, 34], although

flow images are captured, the interpretation of these images

often relied on human operation or image processing tools

like ImageJ or Photoshop. Such manual interpretation

process can be labor-intensive and time-consuming, lead-

ing to limitations in the number of sampling points of flow

kinematics. For instance, in [23], only less than 15 scat-

tered data points were used to represent the time history of

flow travel distance in a large-scale flume experiment. This

Fig. 11 Computed velocity fields and boundaries of submarine flows at different times after the flow entered the FOV (as described in Fig. 3):

(a) 0.2 s, (b) 0.4 s, and (c) 0.6 s. The green arrows show the velocity field computed through PIV. The red and green contours were identified as

‘‘moving objects’’ using thresholding PIV data. The dashed purple line is the flow boundary identified using the FCNN
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Fig. 12 Comparison of FCNN segmentation results of flow–forest interactions with thresholding and TWS: (a) on a clear board with a basal

slope of 20�, (b) on a clear board with a basal slope of 25�, (c) on a board with 116 model trees and a basal slope of 20�, and (d) on a board with

116 model trees and a basal slope of 25�. Automated thresholding was performed via ImageJ [29]. TWS was carried out following the procedures

reported in the literature [2]
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scarcity of data points can be attributed to the manual

measurement process, which required the physical model-

ers to analyze the recorded flow videos manually and

measure the flow travel distance by hand. In contrast, the

use of FCNN provides an automated solution for image

processing. This enables researchers to obtain continuous

time histories of flow kinematics, including the flow

behavior in the gaps between the limited sampling points

(as shown in Fig. 10). By leveraging FCNN’s capabilities,

the study offers a method to make full use of expensive

physical experiments. Additionally, the continuous time

history of flow kinematics can be a benchmark for

Fig. 12 continued
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calibrating numerical simulations and building high-fi-

delity numerical tools as demonstrated in [18].

When training the FCNN model, it is worth noting that

the FCNN model employed in this study is a variant of

U-net architecture [27]. The U-net architecture is known

for its high accuracy even with a limited number of training

images [19]. This characteristic is particularly valuable

considering that annotating experimental training images

can be time-consuming, especially when dealing with high-

speed cameras that capture thousands of frames per second.

In Fig. 7, the model achieved a validation accuracy of 97%

using fewer than 15 annotated images. However, it is

important to note that the generalization ability of the

FCNN model, particularly in out-of-distribution scenarios,

is limited. This limitation arises because deep learning

models may suffer from overfitting [37] when the training

images do not cover a wide range of experimental condi-

tions, such as location, timing, texture, and camera settings.

Therefore, it is advised to not assume that an FCNN trained

with one set of experimental images will be applicable to

other sets of experiments. Nonetheless, the results in

Sect. 4 demonstrate that the FCNN successfully processes

an entire group of experiments, even when only a limited

number of images (up to 15 in this case) from those

experiments were used for training. This success can be

attributed to the similarity of experimental conditions

within the same group of experiments. In situations where

physical modelers need to analyze a new and different

group of experiments, the FCNN can be retrained to

digitize the new data. However, the time cost associated

with annotation and retraining is relatively trivial compared

to the planning, execution, setup of cameras, and manual

processing of videos using traditional image processing

methods.

When using the FCNN for flow image segmentation, a

sliding window technique, as described in Fig. 1, was

invoked to preprocess the input image. The primary

objective of this technique was to efficiently process ima-

ges of any size with limited GPU memory. In cases where

the images exceeded the GPU memory capacity, the flow

images were processed in parts. However, it is important to

note that the sliding window technique may introduce noise

in the segmentation results, as demonstrated in Fig. 13.

Specifically, in image B, the sliding window approach

discards the contextual information of the entire image

during the segmentation process. Consequently, the flows

are solely processed based on the cropped image patches.

In the central region of the sliding windows, the FCNN can

still generate accurate segmentation results because there is

sufficient nearby context. However, difficulties arise when

processing images near the sliding window boundaries,

leading to the generation of noise in those areas. To miti-

gate the noise, this study incorporates overlapping between

sliding windows. As illustrated in image C, a 50% overlap

is ensured for each sliding window during the sliding

process, and the final segmentation result is determined by

averaging the results from different sliding windows. The

overlapping approach allows each pixel on the flow image

Fig. 13 Comparison of preprocessing techniques for large image segmentation using FCNN: Image A is the Input flow image. Image B

illustrates the noisy segmentation result obtained through the naive sliding window technique. Image C shows the enhanced segmentation result

by incorporating overlaps between sliding windows. Image D shows the segmentation result obtained by resizing the input image
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to be processed multiple times, thereby improving the

reliability of the results. This explains why image C

exhibits smoother flow boundaries compared to image B.

However, it is worth noting that the sliding window tech-

nique requires invoking the FCNN multiple times, and the

overlapping technique doubles the number of FCNN seg-

mentations performed, resulting in reduced computational

efficiency. An alternative approach could involve resizing

the large flow image to match the required resolution for

the FCNN input. After segmentation, the produced masks

can be upscaled back to the original resolution. However,

this technique should be used with caution and only when

the flow image is slightly larger than the FCNN input

resolution. Image D presents a failure case of using resiz-

ing, where the flow image is downscaled by a factor of 5.5

on both width and height to fit the FCNN input resolution.

The segmentation accuracy is significantly lower compared

to the sliding window technique. This reduction in accu-

racy is not surprising because downscaling discards infor-

mation from the flow image, and such information cannot

be fully recovered during the upscaling of masks.

Figure 10a shows that the modified U-net model offers

precise estimation of flow travel distance. Nevertheless,

given the swift progression of machine learning algorithms,

future physical modelers may benefit from of adopting

more advanced segmentation models such as the Swin

transformer [20] or Segment Anything [17] to achieve

greater segmentation accuracy, albeit at the expense of

building a more sophisticated software framework with

higher memory requirements. Nonetheless, the proposed

workflow can serve as a useful reference when constructing

such a software framework.

6 Conclusions

A new framework for digitalizing experimental flow-type

landslide kinematics was proposed in this study. The

FCNN model was evaluated using different types of

experiments. Key conclusions are as follows:

(1) Adopting deep learning, images of flow obtained in

experiments were processed to obtain the boundaries

of the flow head so that the flow kinematics could be

digitalized. The proposed method outperformed

classic image processing algorithms (i.e., PIV,

TWS, and thresholding algorithms) and had an

accuracy in boundary identification close to that of

visual observation.

(2) With image correction, the FCNN model can process

images from consumer-grade cameras. This feature is

most useful for measurements in outdoor field-scale

experiments and measurements of real flow events.

(3) With fewer than 15 annotated training images, the

FCNN digitalized experimental flows with an accu-

racy of 97% in semantic segmentation. The FCNN

can process images under complex light and shadow

conditions and thus be used in experiments where a

plain background and uniform light conditions are

difficult to prepare.

Appendix A: architecture of the FCNN model

Figure 14 shows the architecture of the modified U-net.

The architecture follows an encoder–decoder style, where

an input image is passed to a set of encoding blocks (i.e.,

the blue rectangles) and then to a set of decoding blocks

(i.e., the orange rectangles). An image that is passed to

encoding blocks can be regarded as a three-dimensional

720 9 720 9 3 matrix (i.e., the light blue stripe). In the

first encoding block, an image is processed through con-

volution, batch normalization, and max-pooling operations

[37, 38]. After these operations are performed, the input

matrix is converted into another three-dimensional matrix

with dimensions of 360 9 360 9 16. This new three-di-

mensional matrix is referred to as a feature map, and the

size of the third dimension (i.e., 16) is referred to as the

number of channels. The aforementioned operations that

transform an input image into a feature map are analogous

to filtering [26] in classic digital image processing (DIP).

The main difference between the operations conducted by

the FCNN and filtering in classic DIP is that the operators

used in classic DIP are artificial operators (e.g., the canny

operator [4] designed for edge detection). Artificial oper-

ators are designed according to assumptions, and there are

inevitably input images that are not suitable because of the

assumptions made. As such, classic DIP may not perform

well in identifying the boundaries in flow images with

complex ambient light and shadows (as discussed in

Sect. 3). In contrast, the operators used in the convolution

operation of the FCNN were obtained by training. There-

fore, well-trained operators are suitable for the input ima-

ges used.

There are four encoding blocks in the encoder. Each

encoding block is connected to the next one. The input of

an encoding block comprises two parts: (1) the output from

the previous block and (2) the down-sampled input of the

previous block (i.e., the gray arrows). Taking the first

encoding block as an example, the input of the block is first

down-sampled in a special convolution operation, which

directly converts the input (i.e., a 720 9 720 9 3 matrix)

as a special feature map that has the same size as the output

of the block (i.e., a 360 9 360 9 16 matrix). The special

feature map and output of the block are then merged to
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produce a new 360 9 360 9 16 matrix. The newly merged

matrix is the input of the next encoding block. The merging

operation is analogous to building shortcuts between

blocks. Such a shortcut strategy was first introduced in the

well-known residual neural network [14]. The shortcuts

enable encoding blocks to use more information than just

the output from the previous block. Consequently, the

information loss due to the convolution and max-pooling

operations in the previous blocks is reduced to facilitate the

training of the deep FCNN.
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