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Abstract
A graphic processing unit (GPU)-accelerated implicit material point method (IMPM) is proposed in this paper, aiming at

solving large-scale geotechnical engineering problems efficiently. The Cholesky decomposition direct solution method and

the preconditioned conjugate gradient (PCG) iteration method are implemented to solve the governing equation implicitly.

In order to build an efficient parallel computation framework, the sequential processes in these solution methods are

optimized by adopting advancing parallel computational algorithms. The risk of data race during parallel computation is

avoided using atomic operation. The GPU-accelerated IMPM is firstly tested by a 1-D compress column and cantilever

beam simulation to validate the accuracy of the proposed IMPM. Then, the computational efficiency is tested using the

sand column collapse simulation. The solution of the governing equation is the most time-consuming process, occupying

more than 95% of the computational time. The PCG iteration method shows higher efficiency compared to Cholesky

decomposition direct solution method. By analysing the memory usage, it is found that memory occupation is the primary

limitation on the simulation scale of IMPM, especially using the Cholesky decomposition direct solution method. Finally,

the GPU-accelerated IMPM is implemented in the simulation of the Xinmo landslide, showing high accuracy and com-

putational efficiency.

Keywords GPU-accelerated method � Implicit material point method � Large-scale landslides � Sparse matrix

1 Introduction

In geotechnical engineering, the safety and stability of a

structure are the most concerning matters for engineers.

The application of numerical methods in calculating the

mechanical state and possible failure process of geotech-

nical engineering is thereby of great importance. During

the last century, one of the most successful numerical

methods, i.e. the finite element method (FEM), has

provided a robust and efficient way to estimate the safety of

geotechnical engineering. However, for large deformation

problems, the FEM may suffer from mesh distortion

problems, resulting in the failure of a simulation [3, 48].

Sulsky et al. proposed a material point method (MPM)

for large deformation problems by improving the particle-

in-cell (PIC) method based on fluid mechanics and then

applied it to simulate solid materials [38–40]. The MPM

uses both Lagrangian and Eulerian descriptions [30],

whereby all historically relevant state quantities are stored

in material points, and the momentum equations are solved

using a background grid. Due to the resetting of the

background grid at each time step, the MPM does not

suffer from the shortcomings of grid-based methods [11].

According to different time integration schemes, the MPM

can be categorized into explicit and implicit formats. The

explicit MPM uses an explicit integration method, allowing

the current moment system state variable to be used to

directly determine the next moment system state variable

[49]. Among them, the central finite difference
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approximation is one of the most widely used explicit

integral methods and is suitable for problems with short

time loads and high-frequency responses. Subsequently,

the MPM was developed and applied to various fields

[20, 23, 25, 41]. The explicit MPM has received much

attention due to its high efficiency [24]. Wieckowski et al.

[44] used MPM to solve the flow problem of granular

material discharge in silos with flat bottom and conical

hoppers. Shin [33] enhanced MPM using the principle of

multi-field variation so that it can be applied to analyse

landslide and debris flow problems. Wang et al. [42] used

MPM to analyse the dynamic development process of

regressive and progressive slopes. Zhao et al. [52] used 3D

MPM to reproduce actual landslides that include debris and

entrainment effects, allowing further understanding of the

hazard.

However, IMPM breaks through the limitation of

explicit MPM to the Courant–Friedrichs–Lewy (CFL)

conditions and is suitable for problems that are more

interested in low-frequency bulk motion [36, 37]. The

IMPM can directly solve the mechanical equilibrium of the

system, i.e. solving for the next moment system state

variables involving both the current moment state variables

and the next moment state variables. Implicit time inte-

gration methods often use Newmark’s method and Wil-

son’s method [49]. Guikey and Weiss [19] develop and

implement an implicit integration strategy in conjunction

with the material point method (MPM), which proposes an

incremental iterative solution strategy based on Newton’s

method that utilizes Newmark integrals for updating the

kinematic variables. Sulsky and Kaul [37] derive and val-

idate a time-implicit discretization of the material point

method for solving discrete equations using Newton’s

method in combination with the conjugate gradient method

or the generalized minimum residual method, where the

solution is implemented using a matrix-free approach,

which greatly improves numerical efficiency. Beuth et al.

[7] used the implicit integration scheme to solve the three-

dimensional quasi-static large-strain geotechnical problems

using quadratic interpolation functions. Coombs et al. [11]

established an IMPM with the previously converged

Lagrangian approach, which does not need to map the

derivatives of the basis function, thus reducing computa-

tional cost and algorithmic complexity. Wang et al. [43]

compared IMPM with updated Lagrangian FEM and

explicit MPM in terms of algorithm accuracy and time

step, elaborating that the implicit MPM is a useful tool to

capture post-damage behaviour in geotechnical engineer-

ing applications. Chandra et al. [8] imposed a penalty

formulation for IMPM with non-flush, non-coordinated

Dirichlet boundaries to solve the problem of inconsistent

material boundaries and background grids. Yuan et al. [47]

proposed a proposed static implicit generalized

interpolation material point method that eliminates the

crossover noise of cells inherent in traditional MPM for

large deformation problems in geotechnical engineering.

However, the IMPM requires the solution of a large

system of linear equations at each time step, resulting in

high single-step computational costs that prevent the

application of the IMPM in practical geotechnical engi-

neering simulations. In recent years, with the development

of parallel acceleration technology, graphics processing

unit (GPU) acceleration technology has provided a

promising way to solve large-scale numerical simulation

problems. GPU parallel schemes have been successfully

applied to many advancing numerical simulation methods

[14, 28]. For example, in recent decades, Chiang et al. [10]

used a GPU scheme to accelerate the generalized interpo-

lation material point method. Dong et al. [15] proposed a

GPU parallel explicit MPM scheme with a maximum

acceleration of 30.8 times for single precision and 24 times

for double precision. Xia and Liang [45] used a GPU-ac-

celerated smooth particle hydrodynamics (SPH) model in

shallow water equations with an overall efficiency

improvement of 7–10 times compared to the use of the

central processing unit (CPU) acceleration scheme. Zhang

et al. [51] used a GPU-accelerated explicit smoothed par-

ticle finite element method (SPFEM) simulation for large

deformation problems in geotechnical engineering, which

improves the efficiency by more than 10 times compared to

the sequential CPU simulation. However, few studies

involve the implementation of GPU acceleration technol-

ogy in the IMPM. Possible difficulties include the assembly

of a large sparse matrix and the solution of large systems of

linear equations in parallel computing structures, which

hinders the further development of the IMPM.

Therefore, to solve the computational efficiency prob-

lem that affects the development of the IMPM, a GPU-

accelerated IMPM is proposed and applied to the analysis

of large deformations in geotechnical engineering. This

paper consists of four major parts. First, Sect. 2 introduces

the basic theory of the IMPM and proposes the GPU par-

allel framework containing two implicit solution methods.

Second, the proposed IMPM is validated by three examples

in Sect. 3. Subsequently, the computational efficiency of

the IMPM is evaluated and tested in Sect. 4 based on the

simulation of sand column collapse example. Finally, the

landslide process in Xinmo Village is simulated, demon-

strating the reliability of the proposed GPU-accelerated

IMPM in modelling large-scale geotechnical engineering

problems.
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2 Methodology

This section summarizes the governing equations and

algorithm flow of the GPU-accelerated IMPM. For com-

pleteness of the paper, a brief introduction of the governing

equations for the IMPM is provided first in Sect. 2.1. Then,

in Sect. 2.2, the calculation steps of the GPU-accelerated

IMPM are presented. Finally, Sect. 2.3 describes in detail

the implementation procedure of the stiffness matrix

assembly and the implicit solution of the governing

equations.

2.1 Governing equations

In a continuous medium, the governing equations for MPM

include the mass conservation (Eq. (1)) and momentum

conservation (Eq. (2)) equations.

dq
dt

þr � qvð Þ ¼ 0 ð1Þ

q
dv

dt
¼ f þr � r ð2Þ

where r is the differential operator, q is the mass density, v

is the velocity, r is the Cauchy stress tensor, and f is the

body force, e.g. gravity.

A continuous medium occupies an initial domain X of

the three-dimensional space. The Lagrangian governing

equations of mass conservation Eq. (1) and momentum

conservation Eq. (2) must be satisfied in the region X. The

corresponding displacement boundary conditions Eq. (3)

and stress boundary conditions Eq. (4) are imposed for the

solution, i.e.

u ¼ u on su ð3Þ

r � n ¼ t on sr ð4Þ

where su is the displacement boundary region, sr is the

stress boundary region, n is the outwards unit normal

vector, u and t are the Dirichlet prescribed displacement

and the Neumann traction confined by the boundary region,

respectively.

As the mass of the MPM is independent of time, the

mass conservation equation Eq. (1) is satisfied. By intro-

ducing the principle of virtual displacement and using the

divergence theorem in Eq. (2), the integral form of the

equilibrium equation Eq. (5), which represents the dynamic

governing equation at time t ? dt in weak form, is

obtained [6, 43].Z
Xtþdt

Stþdt � detþdtdX ¼
Z

Xtþdt
f tþdt � dutþdtdX

þ
Z

stþdt
r

t � dutþdtdsr

ð5Þ

where S is the second Piola–Kirchhoff stress tensor, e is the

Green–Lagrange strain tensor, dt is the time step, and du is

the virtual displacement.

The corresponding stress and strain terms are brought

into the governing equation (Eq. (5)), and the Galerkin

method is used to discretize the weak form of the gov-

erning equation at the material points to obtain a system of

equilibrium equations in the form of a matrix as follows

Ktu ¼ Ftþdt
total ð6Þ

where Kt is the global stiffness matrix, Ftþdt
total ¼ Ftþdt

ext � Ft
int

is the resultant force, Ftþdt
ext is the external force, and Ftþdt

int is

the internal force. Considering the dynamic cases, the

inertia term can be added directly to the governing equa-

tion and combined with Newmark’s time integration

scheme, as shown in Eq. (7) and Eq. (8), the dynamic

governing equation matrix takes the form of Eq. (9).

vtþdt
i ¼ vti þ ½ 1 � bð Þati þ batþdt

i �dt ð7Þ

utþdt
i ¼ uti þ vtidt þ

1

2
� a

� �
ati þ aatþdt

i

� �
dt2 ð8Þ

Kt þ Mt

adt2

� �
u ¼ Ftþdt

ext þMt 1

adt
vt þ 1

2a
� 1

� �
at

� �

� Ft
int ð9Þ

where vtþdt and utþdt are the velocity and displacement at

time t ? dt, respectively, a and b are the time step

parameters that affect the integral accuracy and stability,

which are chosen as 0.25 and 0.5, respectively, in this

study, and Mt is the lumped mass matrix.

To increase numerical stability, it is necessary to add a

damping force that is proportional to the nodal velocity at

the right-end term of Eq. (9) [43]. Therefore, the governing

equation matrix with the same dynamic and quasi-static

form is finally obtained as follows.

K
t
u ¼ F

tþdt

total ð10Þ

where F
tþdt

total ¼ Ftþdt
ext þMt 1

adt v
t þ 1

2a � 1
� �

at
� �

þ Ft
damp,

K
t ¼ Kt þ Mt

adt2
. Ft

damp uses local non-viscous damping as

described by Cundall [12].

2.2 IMPM format

Prior to the introduction of the parallel strategy of the

IMPM, the main stages within a single time step and the

manipulations involved in the parallel computing are

addressed briefly. In MPM, the material region X is dis-

cretized by a series of material points, which carry infor-

mation such as the position, momentum, stress and strain of

the material. The state variables of the material points are

mapped onto the background grid through the shape
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function to solve the momentum equation in each time

step. After the new state variables are obtained, they are

mapped back to the material points by the shape function.

When the current time step ends, the background grid is

cleared. Therefore, the single time step of the IMPM can be

divided into three calculation stages.

(a) Mapping phase

In the mapping phase, the material region is discretized

into material points, and the state variable of each material

point is mapped to the corresponding grid node according

to the shape function.

mi ¼
X
p

NiðxtpÞmp ð11Þ

Pt
i ¼

X
p

NiðxtpÞmpv
t
p ð12Þ

Fext
i ¼

X
p

NiðxtpÞFext
p ð13Þ

Fint
i ¼ �

X
p

_NiðxtpÞrtpVt
p ð14Þ

where i is the grid node, p are the material points in the

supporting domain of the grid node, m is the mass of the

material point, P is the momentum of the grid node, v is the

velocity of the material point, and V is the volume of the

material point.

(b) Lagrangian phase

In the Lagrangian phase, the governing equation

Eq. (10) is solved to obtain the single-step displacement

increment u. Using the obtained displacement increment u,

the motion variables of the grid are updated with New-

mark’s time integration scheme Eqs. (7) and (8).

(c) Convection phase

The convection phase includes three substeps. First, the

state variables of the grid are mapped back to the material

points, as described by Eqs. (15) and (16). Second, the

velocity and position of the material point are updated by

Eqs. (17) and (18), respectively. Finally, the information

on the background grid is cleared for the next mapping

phase.

utþdt
p ¼

XNn

i¼1

NiðxtpÞutþdt
i ð15Þ

atþdt
p ¼

XNn

i¼1

NiðxtpÞatþdt
i ð16Þ

vtþdt
p ¼ vtp þ

1

2
ðatp þ atþdt

p Þdt ð17Þ

xtþdt
p ¼ xtp þ utþdt

p ð18Þ

where u is the displacement increment, a is the accelera-

tion, and x is the position of the material point.

In this paper, the GPU-accelerated IMPM is proposed

based on the IMPM framework of Wang et al. [43]. All the

calculation steps are parallelized on the GPU, which

achieves the optimal parallel effect of the code. The

implementation procedure of the GPU-accelerated IMPM

is as follows (as shown in Fig. 1):

(1) Read the initial material information and discrete

material region.

(2) Clear the information of the background grid nodes.

(3) Calculate shape functions and their derivatives. The

mass, momentum, internal forces, and external

forces of the material points are obtained on the

nodes of the grid through the shape function.

Fig. 1 GPU acceleration scheme of the IMPM
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(4) Apply the boundary conditions.

(5) Solve the matrix-form governing equation i.e.

Eq. (10), to obtain the nodal displacements (see

Sect. 2.3 for details).

(6) Update the grid node kinematic variables, i.e. the

velocity and acceleration, with the nodal displace-

ments obtained in step (5).

(7) Map the displacement increments, velocities, and

accelerations of the grid nodes back to the material

points to obtain information on the material points

at time t þ dt.

(8) Map the updated material point momentum back to

the background grid and perform step (4) again.

(9) Calculate the strain rate and strain tensor and

update the stress tensor.

(10) If the current step is greater than or equal to the

total step, then the loop ends and the program are

terminated. Otherwise, jump to step (2).

Compared to the explicit integral method, step (5) is

special and difficult to implement in a parallelized com-

putational framework. In Fig. 1, two solving methods are

provided for step (5), namely the Cholesky decomposition

direct solution method and the preconditioned conjugate

gradient (PCG) iterative method. The Cholesky decompo-

sition direct solution method can directly calculate the

exact solution of each step, only requiring the matrix to be

invertible. It is applicable in a wide range of cases, and the

rate of solving depends only on the size of the calculation.

However, this method needs to assemble the global stiff-

ness matrix, which requires considerable memory space.

Although the sparse matrix is stored optimally using the

compressed sparse row (CSR) format, the memory usage of

this approach is still a major constraint on large-scale

calculations. The other solution method is the PCG itera-

tive method, which does not require the assembly of the

global stiffness matrix. PCG method may greatly release

the memory, but the solving speed is closely related to the

coefficient matrix [37]. It is suitable for the case where the

element stiffness matrix is dominant. Otherwise, the

excessive number of iterations will sharply increase the

computational cost.

The two solution methods are described as follows (as

shown in Fig. 2).

(5:1) Preprocess of computational models. Loop over the

grid nodes and neglect the nodes without any

physical information to determine the number of

active elements and degrees of freedom. Loop over

the active element nodes and build lists to cast the

local element number to grid number for efficient

data access.

(5:2) Assemble the internal and external force vectors.

Calculate the resultant force of all grid nodes. Three

vectors are created with the magnitude of the

degrees of freedom, i.e. the displacement increment

u, the resultant force F, and the lumped mass

matrix M. The displacement increment u is

assigned an initial value equal to zero. The resultant

force vector F and the lumped mass matrix M are

assigned values determined by the mapping rela-

tionship between the grid nodes and the degree of

freedom. The lumped mass matrix M is only

diagonally nonzero and can be stored in a vector

form.

(5:3) Calculate the stiffness matrix for each element.

Loop over the material point in each element and

calculate the elementary stiffness matrix.

Case 1: The Cholesky decomposition direct solution

method:

To solve the matrix-form governing equation i.e.

Eq. (10) with case 1, it is necessary to construct the global

stiffness matrix. In practical engineering problems, the

magnitude of the grid nodes can reach millions, leading to

a tremendous global stiffness matrix that consumes too

many memories of the computer and damages the com-

putational efficiency. As the global stiffness matrix is

sparse, one solution is to use the CSR format to optimize

the storage problem. The detailed information about CSR

format and global stiffness can be found in Sect. 2.3.

Therefore, the Cholesky decomposition direct solution

method includes two major steps as follows:

(5:4) Assemble the global stiffness matrix in CSR

format.

(5:5) Solve Eq. (10) using the Cholesky decomposition

direct solution method. The obtained displacement

increment u is mapped to the activated grid nodes.

Case 2: The preconditioned conjugate gradient iteration

method:

In a PCG iterative method, the result of Ku is obtained

by sum up the result of each element, i.e.
PNn

i¼1 K
i

eue, which

can avoid the assembling of global stiffness matrix and also

suitable for parallel computation. The solution of ue is

obtained until the iteration is convergence. The key step of

PCG iterative method is to preprocess the coefficient

matrix, which greatly improves the speed of iteration

convergence. Diagonal preprocessing was used for pre-

conditioning. When the coefficient matrix of the example is

strictly diagonal dominant, this processing method can

improve the rate of convergence. The PCG iterative

method includes two major steps as follows:

(5:4) Preprocess the element stiffness matrix of each

element. The preconditioning method adopts the

diagonal method.
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(5:5) Solve Eq. (10) with the PCG iterative method. The

obtained displacement increment u is mapped to

the activated grid nodes.

2.3 GPU parallelization strategy

2.3.1 Data race problem

In the IMPM, processes may occur on each material point

or grid point separately, such as mapping the information

of the material points to the grid nodes (P2G), mapping the

information of the grid nodes back to the material points

(G2P), boundary conditions, and stress updating. When the

information of material points and surrounding grid nodes

are provided, these processes can be solved parallelized to

accelerate the simulation. For example, in a P2G process,

the information of each material point is assigned to a

thread, and the information mapped to grid points can be

solved independently using Eqs. (11–14) (shown in Fig. 3).

Threads are calculated by the multiple cores of the GPU,

which are invoked simultaneously, reducing the computa-

tional time significantly compared to a sequential process.

The number of threads sometimes can be larger than the

number of blocksize (maximum number of threads in each

block). Then, these threads are divided into several blocks,

and the blocks are executed sequentially by the GPU. Due

to a large number of GPU cores and high data transfer

efficiency, this process can be solved quickly.

However, there are still some processes in IMPM that

may require data communication between threads or

sequential procedures, such as stiffness matrix calculation,

global stiffness assembling or solving of the governing

equation implicitly, which may significantly damage the

parallel efficiency of IMPM. Therefore, these problems in

Fig. 2 Solution methods of the IMPM

Fig. 3 GPU-accelerated IMPM parallel schemes
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IMPM are studied and optimized in this paper to obtain a

high-efficiency GPU-accelerated IMPM framework.

The data communication may cause a data race problem,

which refers to the read–modify–write operation of data

from different threads on the same memory location. When

the read–modify–write operations are performed by several

threads simultaneously, the result will become one of the

outputs from a random thread rather than the combination

of several threads. For instance, when material point mass

in different threads is mapped to the same grid node, the

mass on the grid should be the cumulative mass over each

thread. However, during the computation, each thread gets

the initial mass of the grid and sums up the mapped mass

from only one material point on this thread. This result will

override the memory without comparison or summation

with other threads, leading to an incorrect result. Dong

et al. think the benefit of GPU parallelization can be trivial

when dealing with the data race problem, so they adopt a

CPU sequential process to avoid data race in parallel

computation [15]. However, the data transfer between CPU

and GPU can be expensive, especially when the model is

large. In IMPM, in addition to the operation of P2G, there

is also the risk of data race during stiffness matrix calcu-

lation, global stiffness assembling, etc. The CPU sequential

process may significantly damage the computational effi-

ciency, which is not an appropriate solution to the data race

problem in IMPM. Therefore, the atomic operation is

introduced in this framework. The basic atomic operation

in hardware changes the data race problem into a read–

modify–write operation performed by a single hardware

instruction on a memory location address [13]. The hard-

ware ensures that no other threads can perform another

read–modify–write operation on the same location until the

current atomic operation is complete. The atomic operation

limits the data race problem to the minimum scale and

avoids the data transfer between CPU and GPU. The

atomic manipulation method has also been applied by Hu

et al. in developing MLS-MPM, showing high efficiency in

explicit MPM simulation [21, 22].

2.3.2 Fast active element scan procedure

Unlike FEM, MPM has many background grids that are not

involved in the calculation. Therefore, it is necessary to

carry out a preprocess to divide the background grid into

material area and empty area. The material area refers to

the background grid that contains the material points; then,

the remaining background grid is obviously the empty

region. All grid nodes in the material area will be activated.

The nodes with mass larger than zero are regarded as active

nodes, which should be considered when calculating the

global stiffness matrix. When all eight nodes of a back-

ground grid are activated, the background grid element will

be activated. The total number of degrees of freedom is

determined by the activated grid nodes, and an activated

node contains three degrees of freedom in the x, y and

z directions, respectively. The active grid node, the degree

of freedom and the activation element establish a mutual

mapping relationship by constructing two mapping lists.

One of the mapping lists indicate the relationship between

the activated grid nodes and the degree of freedom number.

The other list establishes a mapping relationship between

the activated grid nodes and the activated grid elements.

Through the mapping list, the relationship of elements,

degrees of freedom and grid nodes can be accessed quickly

by each paralleled thread in GPU independently.

2.3.3 Sequential operation optimization in IMPM

Sequential processes refer to the operation of counting,

sorting or reducing as the operation of each thread may

change the results of other threads, which is unsuitable for

parallel computation. These sequential processes are

involved in counting the number of degrees of freedom, the

building of compression matrix, solution of systems of

linear equations, etc. These sequential procedures are

inevitable but can be optimized by adopting advancing

algorithms to boost parallel efficiency. For instance, higher

computational efficiency can be obtained by introducing

the Radix Sort algorithm compared to comparison-based

sorting algorithms such as Merge Sort or Enumeration Sort

[5]. Therefore, two optimized parallel computation pack-

ages thrust and cuSOLVER are introduced to utilize the

advancing parallel algorithms and obtain high computa-

tional efficiency [5, 31].

To further explain the problems and solutions in GPU-

accelerated IMPM framework, the global matrix assem-

bling process with acceleration procedure are illustrated

and discussed. As shown in Fig. 4, K is the global stiffness

matrix which is assembled by the element stiffness

including Ki
e and K j

e. The variable V represents the value of

element stiffness matrix, where the subscript indicates the

position in the global stiffness matrix, and the superscript

indicates the element number. When assembling the global

stiffness matrix, the values that share the same row and col

are sum up as shown in Fig. 4a.

The global stiffness matrix is sparse, which contains

many zero values. The storage of these zero values may

take up too much memory and is impossible for large-scale

modelling. Therefore, only nonzero values should be stored

with their corresponding row and column, forming a

compressed sparse matrix format. In this study, a CSR

format is adopted to store the global spare matrix in a

compressed way. First, the element stiffness matrix is

calculated in each element, and the row and column index
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Fig. 4 The process of assembling the global stiffness matrix in CSR format
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in global stiffness matrix is derived by the grid number.

The element stiffness matrices are stored as three arrays,

row, col, and value, as in Fig. 4b. Row and col denote the

row and column numbers of in global stiffness matrix, and

Value indicates the element stiffness value. Then, these

arrays are then combined for the following operation.

Because the compressed format requires an ascending

order of row and column index, a sort operation is then

adopted. After the sorting operation, the arrays are orga-

nized in ascending order, and the items with the same

position (i.e. the same row and column index) in the global

matrix are placed next to each other, as in Fig. 4c. Sub-

sequently, a reduce operation is carried out to sum up these

items, which is the assembling procedure shown in Fig. 4d.

This procedure includes a comparison between different

threads and complex memory management. Finally, the

row compression operation is introduced to further save the

memory usage where the row number is changed to rep-

resent the total number of nonzero values above this row,

as in Fig. 4e. This operation requires a cumulative counting

over each item in the arrays, which is also difficult to

implement directly in parallel. After these three steps, the

global stiffness matrix in CSR format is formed with all

nonzero items in three one-dimensional arrays. The

assembling process takes advantage of parallel acceleration

as much as possible. Compared to a CPU sequential pro-

cedure, these parallel optimization processes save roughly

66% computation time, showing a significant improvement

in efficiency.

Besides the global stiffness matrix assembling, these

sequential processes exist in nearly all the procedures when

solving the governing equation, i.e. step (5) in Sect. 2.2,

including both the Cholesky decomposition direct solution

method and the PCG iteration method. By adopting

advancing parallelized algorithms, the computational cost

of these sequential processes is reduced, contributing to a

high-efficient GPU-accelerated IMPM framework.

3 Validation

This section verifies the robustness and applicability of the

proposed GPU-accelerated IMPM through three numerical

examples, including both quasi-static and dynamic prob-

lems. First, the GPU-accelerated IMPM is verified by

simulating one-dimensional weight compression and

compared with the analytical solution. Second, the large

deformation cantilever beam is modelled to verify the

ability of the program to accommodate large deformation.

Third, by comparing the Lube sand column collapse

experiment [29], the ability of the proposed algorithm to

simulate large deformation processes of dynamic

geotechnical problems is further proven.

3.1 One-dimensional weight compression
column

One-dimensional self-weight compression is a quasi-static

problem that applies a body force to a column. The self-

weight compression column test follows the example

described by Bardenhagen and Kober [2]. The initial height

of the column H = 50 m, with a fixed boundary at the

bottom and roller support at the side, as shown in Fig. 5.

The linear elastic material model is implemented with

Young’s modulus E = 1 MPa and Poisson’s ratio l = 0.0.

Damping factor set to 0.05. The applied body force

increases linearly from 0 to 200 N/m3 in 20 time steps. For

the parameter selection of this model, the maximum ver-

tical stress r = 10 kPa when the column is stabilized. The

analytical solution of stress under arbitrary body force is

described as follows:

r xð Þ ¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qb
E

D� xð Þ þ 1

r
� 1

( )
ð0� x�DÞ

where x represents the position of the current configuration,

q represents the density of the column, and D represents the

height of the current column. The material region is

Fig. 5 One-dimensional self-weight column model
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discretized into 400 material points, and the background

element grid is 1 m 9 1 m 9 1 m. To prove the robust-

ness of the GPU-accelerated IMPM, the results are com-

pared with the static equilibrium analytical solution of

Bardenhagen and Kober [2], as shown in Fig. 6.

Figure 6a shows that both explicit MPM and IMPM may

correctly simulate the stress field of the self-weight col-

umn. However, the IMPM is more stable than the explicit

MPM with the same time step. When the time step is set as

1 9 10–4 s, the IMPM shows no stress oscillations, but the

explicit MPM produces a large stress oscillation, and the

stress is seriously deteriorated. Until the time step is

reduced to two orders of magnitude smaller than the

IMPM, the stress oscillations is basically eliminated.

In Fig. 6b, with increasing time step dt, it is shown that

the relative error of the explicit MPM top displacement

increases gradually and that the relative error of the GPU-

accelerated IMPM remains unchanged. Therefore, the

IMPM shows better stability and accuracy than the explicit

MPM with varying time steps. Regarding the computa-

tional cost, one-dimensional compression is a small-scale

example of robustness verification, and none of them are

computationally expensive. Although the explicit MPM do

have significant computational advantages in small-scale

example, the implicit material point still has some advan-

tages in order to achieve the same accuracy. When time

step of explicit MPM is 2 9 10–6 s, the relative error and

computation time of IMPM (case 1) are basically the same

as that of explicit MPM, while IMPM (case 2) using a PCG

method cost less calculation time, i.e. nearly 75% calcu-

lation time saved, as in Table 1.

3.2 Cantilever beam of concentrated force

In this section, the linear elastic cantilever beam example is

presented to verify the ability of the GPU-accelerated

IMPM to solve large deformation problems. A large

deformation occurs by applying a concentrated force P at

the right end of the cantilever beam. The cantilever beam

applies a downward concentrated force on the material

points in the middle of the right end, and the left end is

fixed. The model has a size of 10 9 1 9 1 m3

ðL�W � HÞ, as shown in Fig. 7. The linear elastic

material parameters are Young’s modulus E = 1.0 GPa and

Poisson’s ratio l = 0.0 [26]. The time step is set to

1 9 10–7 s. The damping factor was chosen to be 0.05. The

element grid size is set to 0.2 m, and each element has 64

material points.

Figure 8 shows the stress distribution of the beam in a

horizontal direction at different times for a downward

concentrated force P = 3000 KN, and the position of the

neutral axis can be clearly seen. The distribution of the

horizontal stress is perfectly symmetrical, and the transition

is smooth. In Fig. 8a, when the load is applied in the

middle, the lower part of the beam is compressed while the

upper part is stretched. Figure 8b, c shows that the upper

tension and lower compression begin to appear clearly.

Then, the beam bends continuously until it reaches an

equilibrium state, as shown in Fig. 8d, showing a very

large deformation.

The cantilever beam tests are further carried out with

different applied concentrated forces. According to Bathe

and Bolourchi [4], the analytical solution of a cantilever

beam considering geometric nonlinearity can be described

as the relationship between the tip deflection ratio w=L at

Fig. 6 One-dimensional compression column. a Numerical and analytical solution of MPM; b Relative error of displacement in different time

steps of MPM
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the stabilized state and the dimensionless load parameter k,

where w is the tip displacement, and L is the initial length

of the cantilever beam. The load parameter is determined

by the geometry of the beam and material parameters

k ¼ PL2=EI, where P is the concentrated force applied to

the material point at the neutral axis of the tip and I is the

moment of inertia of the beam cross section. The com-

parison between the simulation results of the proposed

IMPM and the analytical solutions [50] is shown in Fig. 9.

The simulation result is shown a good consistence with the

analytical solution with varying loading parameters. This

result demonstrates that our proposed IMPM can accurately

reproduce structure large deformations.

To demonstrate the convergence of the GPU-accelerated

IMPM, the material points were encrypted and sparse,

respectively. Each background grid contains 8 material

points with five grid sizes of 0.125, 0.2, 0.3, 0.4 and 0.5 m,

respectively. We choose the loading parameter k = 3.6 for

this convergence analysis. The relative errors are

d ¼ j wIMPM�wAnalytical

wAnalytical j, where wIMPM is the result of IMPM

and wAnalytical is the analytical solution. Since the time step

dt needs to be changed when considering the small size

grid, the unified small time step dt is 1 9 10–7 s, and the

damping factor is 0.005. The other parameters are consis-

tent in the simulation. It is shown that when the grid is

encrypted, the error reduces and finally converges towards

a constant value at around 1.4%. The idea is to choose a

grid size of 0.2 m to achieve the highest computational

efficiency while ensuring high computational accuracy

(Fig. 10).

Table 1 One-dimensional compression calculation cost

Method Total

time

Time step Computational

cost

Relative

error

IMPM (Case

1)

4 s 1 9 10-4 s 421.657 s 0.014

IMPM (Case

2)

1 9 10-4 s 95.408 s 0.018

Explicit

MPM

1 9 10-4 s 11.586 s 0.227

Explicit

MPM

2 9 10-6 s 408.893 s 0.012

Fig. 7 Cantilever beam model

Fig. 8 Configuration and horizontal stress rxx of the cantilever beam at different times. a t = 0.0 s; b t = 2 9 10–3 s; c t = 4 9 10–3 s; and

d t = 0.01 s

Acta Geotechnica (2024) 19:3729–3749 3739

123



3.3 Sand column collapse

In this section, the dynamic large deformation problem is

verified by simulating the sand column collapse experiment

carried out by Lube et al. [29]. The initial geometric size of

the sand column is 0.63 m high and 0.09 m wide, as shown

in Fig. 11. To improve the numerical stability of the

dynamic problems, the described local non-viscous

damping is used to overcome the energy loss caused by the

friction between sand particles. The damping factor is

chosen as 0.10. The discretization of the model includes

36,288 material points, and the background grid is set to

0.01 m 9 0.01 m 9 0.01 m, with 64 material points in

each element.

The mechanical properties of sand columns are descri-

bed by the Drucker–Prager (DP) constitutive model. The

parameters include Young’s modulus E = 1.82 MPa,

Poisson’s ratio l = 0.3, cohesion c = 0 MPa, friction angle

u = 31�, dilatancy angle / = 1� and density q = 2650 kg/

m3 (see Table 2) [29, 34, 46]. The simulation is divided

into two stages. In the first stage, the column is vertically

deformed under gravity load. The baffle is set on the right

side of the model. The left side of the model is constrained

with rollers, and the bottom is a fixed boundary until the

equilibrium state is reached. In the second stage, the baffle

boundary is removed, and then, the bottom is given as a

friction boundary to simulate the response between the soil

and floor in the process of soil flow. The friction boundary

refers to Bandara [1], and the friction coefficient l0

between the soil and the base of the model is 0.55. The

time step is set as 5 9 10–5 s.

The collapse process is shown in Fig. 12, which is in

good agreement with the experimental results of Lube et al.

[29]. At 1.2 s, the collapse process ends, and the sand

column becomes stationary. It can be seen from the final

subgraph of Fig. 12 that the free surface and run-out dis-

tance of the column collapse are basically consistent with

Fig. 9 Results at different load parameters k

Fig. 10 Relative error analysis of different grids

Fig. 11 Sand column collapse model

Table 2 Material parameters for the sand column collapse example

Parameter (Unit) Symbol Value

Young’s modulus (MPa) E 1.82

Poisson’s ratio (–) l 0.3

Cohesion (kPa) c 0

Friction angle (�) u 31

Dilation angle (�) / 1

Density (kg/m3) q 2650

Damping factor (–) a 0.1

Friction coefficient (–) l0 0.50
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the experimental results. The height and final run-out dis-

tance of the sand column are 0.196 m and 0.8145 m,

respectively [46]. In Fig. 12d, the stacking height is

0.187 m, and the final run-out distance is 0.820 m. The

stacking height of the numerical simulation is slightly

lower than that of the experiment, while the final run-out

distance is nearly identical to that of the experiment. The

standard DP model neglects the energy loss due to particle

collisions [52]. It leads to a lower height of the collapsed

sand column than the experimental values, which can be

improved by employing an advanced constitutive model

[34, 46].

According to Lube et al. [29], the run-out distance d1 is

0.81454 m for this case. The constitutive parameters are

referenced form Yuan et al. and experiment by Lube et al.

[29, 34, 46]. The damping factor and friction coefficient are

calibrated to realize a consistent result with the experi-

mental observation. A parameter sensitivity analysis is

provided in Fig. 13a, showing the influence of the damping

factor and friction coefficient. It can be seen that the

increasing damping factor and friction coefficient reduce

the run-out distance d1 of the deposit. When the friction

coefficient become 0.55 or higher, the reduction coverage

and the run-out distance d1 become constant with

increasing friction coefficient.

For grid refinement analysis, the grid sizes were chosen

to be 0.0025, 0.005, 0.01, 0.02 and 0.04, respectively. Eight

material points were placed in each grid. The relative error

is defined as d ¼ j d
IMPM
1 �d

experiment
1

d
experiment
1

j, where dIMPM
1 is the result

of the IMPM and dexperiment
1 is the result of the experiment.

The results in Fig. 13b show that the error decreases after

encrypting the grid, and the error remains essentially

unchanged at a grid of 0.01 m for the same selected

parameters.

4 Efficiency study

In this section, the acceleration effect of the GPU-accel-

erated IMPM is tested by counting the computational cost

of each time step during the simulation of sand column

collapse. The number of particles is continuously increased

to the maximum scale that can be calculated by a single

personal computer (PC) with an i5-12600KF CPU and an

NVIDIA GeForce RTX 3060Ti GPU.

Fig. 12 Collapse column configurations at different times. a t = 0.15 s; b t = 0.3 s; c t = 0.6 s; and d t = 1.2 s
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Column collapse examples with varying material points

are used to analyse the calculation cost of the proposed

IMPM. The material parameters are the same as those

shown in the model in Sect. 3.3. The model is enlarged by

increasing the thickness of the column, where the geometry

in height and width remains unchanged. The time of each

step in the calculation process using the GPU-accelerated

IMPM is counted. Five samples are tested with 36,288,

72,576, 108,864, 145,152, and 181,440 material points, and

the corresponding numbers of grids are 21,780, 29,040,

36,300, 43,560 and 50,820, respectively. The total number

of steps is 10,000. Meanwhile, to obtain the maximum

scale for both solution methods, the scale is continuously

scaled up in the same way until it is limited because of

computer power.

4.1 Computational cost of the Cholesky
decomposition direct solution method

The computational cost of the Cholesky decomposition

direct solution method with different simulation scales is

shown in Table 3. It is found that the computational time

increases nearly linearly with the number of material

points. To test the computation efficiency, a parameter g,

which is the average computational time per material point

in each step, is introduced. From Table 3, it is found that g
of the GPU-accelerated implicit MPM is approximately

5 9 10–6 s, while for a GPU-accelerated explicit MPM, g
is 1.6 9 10–8 s.

In the IMPM, the solution of the governing equation is

the most time-consuming. For further analysis, Fig. 14

shows the calculation cost of step (5) with case 1. With an

increasing number of material points, the proportion of the

calculation cost of each part to the total time cost is basi-

cally unchanged. The main computational time is taken in

two parts: assembling the CSR form stiffness matrix and

solving the displacement. The calculation cost of assem-

bling the CSR stiffness matrix is mainly consumed by the

sort and reduce operations of three CSR arrays. Solving the

displacement is the inevitable computational cost required

to use the CUDA solver.

The Cholesky decomposition direct solution method

requires the global stiffness matrix to be assembled, which

may occupy a large memory space. Table 3 gives the GPU

memory cost in different simulation samples as well. It is

found that with an increasing number of material points,

the memory cost increases quickly and approaches the

maximum memory of the device (8 G). Therefore, the

primary limitation on the simulation scale of the Cholesky

decomposition direct solution method is the memory usage.

Fig. 13 Parametric analysis. a Runout distance of different damping factors and friction coefficients; b Grid refinement analysis

Table 3 Cost of the different scales of calculation (Case 1)

Model

number

Material

points

Cholesky solve

computational

time (s)

GPU

memory

usage (G)

g(s)

1 36,288 6419.4 0.4 4.53 9 10–6

2 72,576 11,773.3 1.0 4.41 9 10–6

3 108,864 18,168.0 1.7 5.19 9 10–6

4 145,152 25,891.2 2.3 4.88 9 10–6

5 181,440 31,217.3 3.0 5.08 9 10–6

6 217,728 38,910.2 3.6 5.23 9 10–6

7 254,016 45,511.8 4.3 5.15 9 10–6

8 290,304 52,138.1 5.0 5.34 9 10–6
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Using this computer, the maximum scale of this method

can reach approximately three hundred thousand material

points.

4.2 Computational cost of the PCG iterative
method

The computational cost of the PCG iterative method is

provided in Table 4. Similar to the Cholesky decomposi-

tion direct solution method, a linear increase in computa-

tional time is observed with a growing number of material

points. However, the computational time is significantly

lower, and the computational efficiency g is approximately

2 9 10–7 s, which is roughly 10 times larger than that of

the explicit MPM. As the IMPM can use a larger time step

compared to the explicit MPM, for instance, 100 times

larger in the self-weight column test in Sect. 3.1, the

simulation cost with IMPM can then be significantly

reduced compared with the explicit MPM.

Although with higher computational efficiency com-

pared to the Cholesky decomposition direct solution

method, the solution of the governing equation still occu-

pies more than 95% of the time during the simulation.

Figure 15 shows the computational cost of step (5) with the

PCG iterative method. Different from the Cholesky

decomposition direct solution method, the computational

cost of the PCG iterative method is mainly consumed by

the calculation of the element stiffness matrix, while the

solving of the governing equation only takes a small pro-

portion. The performance variation between the global

stiffness matrix assembly and the PCG iteration may be

attribute to the memory access. The memory allocation of

the global stiffness is a one-dimensional sequential mem-

ory that conforms to the spatial and temporal localization

of the hardware cache line. The sequential access pattern

leads to loading multiple elements into the cache line

(global stiffness matrix) at once, thereby significantly

reducing cache misses. By contrast, the scattered memory

access used by the PCG iteration may deteriorate the per-

formance due to the inefficient cache or cache pollution.

The high memory latency, delayed pipeline and the inef-

ficient hardware prefetching result in the improvement gap

between the calculation of element stiffness matrix in PCG

iteration method and global stiffness matrix assembly.

The PCG iterative method does not require the assembly

of a global stiffness matrix. Therefore, the memory usage

of the PCG iterative method is much lower than that of the

Cholesky decomposition direct solution method. For

instance, in Model 8, the memory usage is 5.0 G for the

Cholesky decomposition direct solution method, while the

Fig. 14 The statistics of computational cost for case 1

Table 4 Cost of different scales of calculation (case 2)

Model

number

Material

points

PCG solve

calculate time

(s)

GPU

memory

usage (G)

g(s)

1 36,288 786.9 0.7 2.17 9 10–7

2 72,576 1489.4 0.7 2.05 9 10–7

3 108,864 2179.8 0.9 2.00 9 10–7

4 145,152 2791.8 0.9 1.92 9 10–7

5 181,440 3476.4 1.0 1.91 9 10–7

6 217,728 4171.4 1.0 1.91 9 10–7

7 254,016 4838.4 1.1 1.90 9 10–7

8 290,304 5641.0 1.1 1.94 9 10–7

9 580,608 14,104.3 1.4 2.40 9 10–7

10 1,161,216 31,215.7 2.1 2.60 9 10–7

Fig. 15 The statistics of the computational cost for case 2
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PCG iterative method only takes 1.1 G. Therefore, it is

found that the PCG iterative method shows both higher

efficiency and lower memory usage compared to the

Cholesky decomposition direct solution method, as well as

better performance in parallel computational systems.

5 Xinmo slope failure

The numerical study of practical engineering or natural

hazards can be challenging, facing possible obstacles such

as large numbers of elements, long-term physical time and

low-resolution results. With the application of the GPU-

accelerated IMPM, these problems can be relieved, making

it possible to simulate large-scale problems with a single

PC and satisfactory computational time. In this section, the

slope failure and deposition process of the Xinmo landslide

are simulated, proving the feasibility of the GPU-acceler-

ated IMPM in large-scale simulation.

On June 24th, 2017, a catastrophic landslide with a

volume of 5.08 9 106 m3 occurred in Xinmo village,

Maoxian County, Sichuan Province. According to the

description of Fan et al. [16], the cracks in the deep layer of

the rock mass are suddenly separated, forming a landslide

in the sliding source area. The movement process can be

divided into three phases: (1) The rockslide phase: the

surface rock mass cracks and slides under the earthquake

and gravity. (2) The debris flow phase: the downward-

moving rock mass impacts the surface rock along the path

and becomes fragmented, forming a high-speed debris

flow. (3) The deposit phase: the debris flow reaches Xinmo

village near the river and accumulates in the fluvial valley,

forming a deposit area.

The landslide body and sliding surface are established

according to the digital elevation model before and after

the earthquake. The failure area consists of 46,893 material

points, representing a total volume of 5.8 9 106 m3. The

background grid size is set as 10 m, generating 7.62 mil-

lion grid nodes in total. The GPU-accelerated IMPM with a

PCG iterative method is applied in this study to acquire a

higher simulation efficiency. A comparison of digital ele-

vation model data before and after the landside shows that

the source area of the landslide is briefly divided into two

major parts [9]: the collapsed area (area A in Fig. 16) and

the entrained area during the landslide (area B in Fig. 16).

The velocity-weakening friction law described by Zhao

et al. [52] was used between the landslide bed and the

collapsed rock mass. The constitutive model is chosen for

Drucker–Prager. The relevant parameters are from Zhao

et al. [52] and are shown in Table 5.

The simulation is carried out under a gravitational

acceleration of 9.8 m/s2 with a simulation duration of

100 s. The computation of this modelling cost was

approximately 2 h using an NVIDIA GeForce RTX 3060Ti

GPU. A similar simulation carried out by Zhao et al. [52] is

reported to cost more than 20 h, and the number of ele-

ments is half of our model. Therefore, the GPU-accelerated

IMPM shows significant improvement in the computational

efficiency.

The simulated landslide lasted for 100 s, which is

basically consistent with the landslide duration recorded in

the practical engineering [35]. The development and slid-

ing processes of the landslide are shown in Fig. 17. The

initiation of the landslide body in Fig. 17a can be divided

into two parts: the sliding source area and the deformation

area. The sliding area is located at the top of the mountain,

showing a rapid increase in mass velocity. The lower

particles are relatively stable, showing slow movement and

deformation. At approximately 40 s, the rock continues to

slide with increasing velocity, forming a debris flow (see

Fig. 17b). At 70 s, the moving debris flow reaches the

riverbed and starts to slow down and deposit. Finally, the

Fig. 16 Xinmo landslide three-dimensional model

Table 5 Model parameters for the Xinmo slope

Parameter (unit) Symbol Value

Material

parameters

Young’s modulus (GPa) E 8.1

Poisson’s ratio (–) l 0.18

Cohesion (kPa) c 0

Dilation angle (�) / 1

Friction angle (�) u 30

Density (kg/m3) q 2200

Damping factor (–) a 0.05

Contact

parameters

Peak friction coefficient lp 0.7

Steady-state friction

coefficient

ls 0.23

3744 Acta Geotechnica (2024) 19:3729–3749

123



debris flow stopped moving at approximately 100 s,

forming a deposit area in the river valley.

According to Fan et al. [16], the rock mass developed a

deep fracture in the early stage, as shown in the red area of

Fig. 18a, distinguishing the collapsed and entrained area A

and B. Then, collapsed rock mass moves downward,

causing the failure of the entrain area B, as shown in

Fig. 18b, c. At the time of t = 40 s, the total rock mass

fails, forming a debris flow as shown in Fig. 18d. Finally,

the fragmented rock mass is accumulated at the bottom of

the valley.

The final deposit area and thickness of the accumulation

with IMPM are presented in Fig. 19a. The results of the

IMPM capture the area of deposits in both the riverbed and

the sliding surface, which is basically consistent with the

actual deposit area. Moreover, the deposit shows a larger

thickness around the eastern side and gradually decreases

towards the west, which also agrees with the actual deposit

thickness distribution shown in Fig. 19b. The larger deposit

thickness is mainly caused by a gully at the edge between

the slope and riverbed. It is notable that the thickness

simulated by IMPM is more concentrated and a bit larger

than the actual deposit, which may be attributed to the

limitation of the Drucker–Prager (DP) constitutive model

in the simulation of high-speed landslide [52]. The DP

constitutive model is a rate-independent constitutive

model, which cannot consider the energy loss due to par-

ticle collision. Meanwhile, the simple constitutive models

choose parameters at residual state value and neglecting the

mechanical behaviour of peak state and the influence of

stress path, leading to errors in the results. These problems

can be solved by adopting a strain-softened Drucker–Pra-

ger or more advanced constitutive models, which may

better capture the complex stress–strain response of the

material and lead to a more accurate results [17, 52]. In

Fig. 19c, the GPU-accelerated IMPM is compared with

several other numerical simulation results. From the per-

spective of the accumulation area, it shows the reliability of

the simulation results of IMPM, which proves the ability of

GPU-accelerated IMPM in large-scale actual landslide

simulation. However, there are many other limitations of

this simulation that may contribute to the discrepancy. For

instance, the presence of water in the place where the

deposit ease is not considered, which may lead to a smaller

range of deposition. The base of the landslide is set as rigid

boundary and the interaction between landslide and

Fig. 17 Movement process of the Xinmo landslide
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basement is neglected. As a continuum mechanism, the

problem of contact between different objects is very

complex, and the simplification of the contact model in

numerical simulation may lead to the difference with the

practical engineering [52]. Therefore, it is necessary to

construct a more refined model after improving the com-

putational efficiency in simulating large-scale actual

disasters.

6 Conclusions

This paper develops a GPU-accelerated IMPM for large-

scale practical engineering applications. Two different

methods, the Cholesky decomposition direct solution

method of assembling the global stiffness matrix and the

PCG iterative method, are used to solve the linear equa-

tions. The risk of the data race occurring in the IMPM

process is also studied and avoided by adopting atomic

operations. For the frequent reassembly of stiffness matrix,

we also constructed an efficient search technique. Statisti-

cally, the time to assemble the stiffness matrix is only

about 5% for the constructed code. Therefore, the proposed

IMPM framework takes advantage of the parallel acceler-

ation in GPU and avoids all the data transfers or sequential

processes in the CPU domain, showing high performance

in computation.

In the study, one-dimensional compression is used to

compare the efficiency of explicit MPM and IMPM. It is

found that to achieve the same accuracy, the IMPM solved

by the PCG iterative method is about 4 times faster than the

explicit MPM. It is found in the IMPM that assembling the

stiffness matrix and solving the linear equations take more

than 95% of the total computation time. The computational

efficiency g is defined as the average computational time

cost by each material point in each step. It is found that

IMPM shows a large g compared to explicit MPM,

showing a ratio of 300 and 10 for the Cholesky decom-

position direct solution method and the PCG iterative

method, respectively. However, this does not mean the

IMPM is low efficiency when solving a practical engi-

neering problem because the time step in the IMPM can be

much larger (generally ten times or larger) than the explicit

MPM, which may lead to a shorter computational time in

the simulation. By modelling the Xinmo landslide, the

Fig. 18 Failure process of the Xinmo landslide
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prospect of GPU-accelerated IMPM in practical engineer-

ing applications is demonstrated.

Despite the improvement of the GPU-accelerated

IMPM, there are still many obstacles in the application of

IMPM in engineering. The memory storage is one of the

reasons to limit the growth of GPU-accelerated IMPM

computing scale. We can introduce the data storage for-

mula of sparsely populated grid to improve memory stor-

age and break the limit of computing scale [27]. When

simulating real engineering problems, the mechanical

behaviour of geotechnical bodies is very complex, and

more advanced constitutive models should be further used

to approximate the engineering, such as the low-plasticity

soil model [18].

Appendix A: Nomenclature

Nomenclature

Abbreviations

1-D One dimension

MPM Material points method

IMPM Implicit material points method

FEM Finite element method

PIC Particle-in-cell

GPU Graphics processing unit

PCG Preconditioned conjugate gradient

SPH Smooth particle hydrodynamics

CPU Central processing unit

SPFEM Smoothed particle finite element method

CSR Compressed sparse row

P2G The material points to the grid nodes

G2P The grid nodes back to the material points

PC Personal computer

CUDA Computer unified device architecture

Fig. 19 Final position of the deposit area of the Xinmo landslide. a Thickness map of IMPM simulation; b Thickness map of actual deposit [32];

c The final accumulation area of different numerical methods [32, 52]
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Nomenclature

Case 1 The Cholesky decomposition direct solution method

Case 2 The PCG iterative method

dt Time step

DP Drucker–Prager

PFC Particle flow code

GIMP Generalized interpolation material point

GMRES Generalized min residual

Symbol

k Load parameter

w Tip displacement

L Initial length

I The moment of inertia

g The average computational time per material point in each

step

a Damping factor

H Initial height of the column

u The displacement increment

F The resultant force

M The lumped mass matrix

ue The incremental displacement obtained for each particle

g The average computational time cost by each material

point in each step

E Young’s modulus

l Poisson’s ratio

c Cohesion

u Friction angle

/ Dilation angle

q Density

l0 Friction coefficient

lp Peak friction coefficient

ls Steady-state friction coefficient
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