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Abstract
Shield tunnelling presents numerous potential risks particularly in complex geological environments. In this study, we

propose a novel fuzzy model for assessing the risk of tunnelling in soil-rock mixed strata. The proposed model incorporates

the fuzzy setpair analysis (FSPA) method into fuzzy c-means (FCM) clustering to overcome the limitations of conventional

data normalisation. Data pertaining to tunnelling machine, deformation, and vibration are employed to construct an index

system using mutual information algorithms for feature selection. The intercriteria importance though intercriteria cor-

relation is employed to weight the indicators, and the FSPA method is adopted to calculate the connection number.

Subsequently, the results are classified by the FCM with a modified objective function that considers the importance of risk

indicators to derive the risk level of each ring in real time. The proposed model is applied to a case study of a shield

tunnelling project in Guangzhou, China. The analysis results indicate a higher risk level from Ring 1572 onwards, which

necessitates a judicious regulation of the thrust force and earth pressure. This novel method provides a practical and

reliable tool for guiding risk decisions during the tunnel construction.

Keywords Construction safety � Fuzzy C-means clustering algorithm � Fuzzy set pair analysis � Risk assessment �
Shield tunnel

1 Introduction

Shield tunnelling is increasingly being utilised in infras-

tructure development owing to its efficiency and environ-

mental benefits. However, the construction process

involved is complex and poses various safety risks, par-

ticularly when deployed in soil-rock mixed strata [7, 8].

Geological uncertainties, potential ground settlement,

groundwater influx, shield cutter wear, shield attitude

control, and ground condition variations are the main risks

associated with soil-rock mixed strata [32]. These risks

must be evaluated judiciously to ensure the stability and

safety of the tunnelling process [2, 29]. To identify the

potential risks in these strata, a safety risk assessment must

be performed to ensure a safe and efficient construction.

The risk assessment of shield construction has pro-

gressed considerably in recent years. However, existing

research primarily focuses on individual risk sources in

shield construction, such as collapse [9, 12, 19, 28], water

inflow and inrush [26, 30], tool wear [5], and delay risk

[13], whereas a comprehensive research and evaluation of

complex risk sources is rarely conducted. Based on our

literature review, numerous theories and methods have

been proposed to address the risk of shield construction,

including empirical [15], analytical [33], experimental

[16], and numerical methods [14, 22, 35]. However, many
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current risk assessment methods rely on experience

[11, 12, 28]. Meanwhile, owing to the development of

artificial intelligence (AI), significant efforts have been

expended to develop AI-based risk assessment methods

[10, 20, 25, 31], where mining information from con-

struction and monitoring data is essential [21]. Neverthe-

less, the data used in existing studies are incomplete and

lack systematicity. For example, Zhou et al. [36] used only

tunnelling machine data from a shield acquisition system

for clustering, whereas Ge et al. [6] used data from both

geological conditions and shield tunnelling parameters.

Compared with construction data [1], monitoring data are

more accessible (e.g., settlement monitoring data), which

can reflect the environmental effect of tunnel construction.

Furthermore, vibration data can be acquired to reflect the

uncertainty of geological conditions [23]. Uncertainty or

fuzziness in the data obtained during shield construction is

inevitable. In this regard, fuzzy C-means (FCM) clustering

is an effective tool for addressing uncertainty or fuzziness

in data [4], thus rendering it a promising option for risk

assessment in shield tunnel construction, where data may

be complex and not clearly defined.

The objective of this study is to present an integrated

risk assessment method for shield tunnelling in soil-rock

mixed strata while considering shield tunnelling parame-

ters and monitoring data. A novel model using fuzzy set

pair analysis (FSPA) and FCM clustering is developed to

analyse and evaluate risks during shield tunnelling based

on construction data. Eight parameters of tunnelling

machine data are selected. Additionally, monitoring data

pertaining to ground settlement and vibrations at the tunnel

face are utilised. The mutual information (MI) method is

employed for feature selection, and a risk assessment index

system is established by combining practical engineering

and MI scores. Based on construction data, the connection

numbers are calculated using the FSPA method, and the

criteria importance though intercriteria correlation

(CRITIC) method is adopted to weight the indicators.

Subsequently, the results are classified by the FCM clus-

tering with a modified objective function to obtain clus-

tering results that combine the importance of risk indicators

such that the risk level of each ring can be derived in real

time. This novel model is a practical option for guiding

engineering-risk decisions during tunnel construction. The

key innovations of this study include the following: i) the

development of an integrated risk assessment method

based on FSPA and FCM, including the consideration of

raw data pre-processing and risk level clustering predic-

tion; ii) a modified objective function in the FCM algo-

rithm to consider the risk factor distribution; and iii) a

scientific index system based on data pertaining to tun-

nelling machine, deformation, and vibration, with features

selection according to the MI method and practical tun-

nelling engineering.

2 Materials and methodology

2.1 Risk evaluation framework

Figure 1 illustrates the framework of the proposed novel

model for risk evaluation, which can be described in three

stages involving six steps: (i) acquisition of construction

and monitoring data, (ii) establishment of an index system,
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Fig. 1 Flowchart for risk assessment of shield tunnelling in soil-rock

mixed strata
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(iii) weight assignments for the indices, (iv) calculation of

the connection number, (v) FCM clustering analysis con-

sidering the weight, and (vi) determination of risk levels.

Steps (i) and (ii) are presented in a case study, and the

methods used in steps (ii) to (v) are introduced in detail in

the following Sects. 2.3 to 2.6.

2.2 Data sources

Two types of data are involved in this study: internal

tunnelling performance data, i.e. the shield tunnelling

parameters, such as the thrust force, tunnelling speed, and

cutter head torque; and external environmental data, i.e.

monitoring parameters, including deformation and vibra-

tion information. The internal tunnelling performance

parameters were obtained by the shield machine data

acquisition system, whereas the external environmental

data were available from monitoring equipment. Specifi-

cally, deformation information involving ground settle-

ment, building settlement, vault settlement, and

convergence was measured using electronic levels and total

stations. Moreover, vibration data were acquired using

accelerometers installed on the back of the soil chamber

wall inside the shield [23].

2.3 Feature selection (MI method)

Feature selection is crucial in refining datasets for analysis

by identifying the most relevant attributes. This strategic

process can enhance the performance and interpretability

of the risk assessment model, while concurrently reducing

the computational complexity of extensive datasets. MI

algorithms are widely used for feature selection in data

mining. In this algorithm, the dependence between two

random variables is measured based on the concept of

entropy derived from information theory [27]. The MI

method is suitable for high-dimensional datasets because it

can capture complex feature dependencies. Feature selec-

tion is performed by calculating the MI score of each

feature relative to the target variable. The MI score is

calculated as follows:

MIðX; YÞ ¼
X

x;y

pðx; yÞ log pðx; yÞ=pðxÞpðyÞ ð1Þ

where X and Y are the sets of values for two variables; p(x,

y) is the joint probability distribution of X and Y; and

p(x) and p(y) are the marginal probability distributions of

X and Y, respectively. The MI score ranges from zero to

infinity, with higher values indicating stronger associations

between the two variables.

2.4 Weights assignment of risk factor (CRITIC
method)

CRITIC is an objective weighting method [3] that deter-

mines weights based on the comparative strength and the

conflict degree, as well as comprehensively considers the

correlation and variability of indicators. The main steps of

CRITIC are as follows: i. Standardisation of indicator data

(Eq. 2); ii. calculation of comparative strength, where the

standard deviation S is utilised to illustrate the volatility

(the greater the volatility, the higher is the weight); iii.

calculation of conflict degree, where the correlation coef-

ficient R is used to indicate the conflict (for two indicators

with a strong positive correlation between them, a lower

level of conflict signifies a lower weight); iv. determination

of the objective weights (Eq. 3).

x0 ¼
ðx � xminÞ =ðxmax � xminÞ ðpositiveÞ

ðxmax � xÞ=ðxmax � xminÞ ðnegativeÞ

(
ð2Þ

Wk ¼ Sk � Rk

,
Xn

k¼1

ðSk � RkÞ ð3Þ

2.5 Connection number distribution (FSPA
method)

To analyse the uncertain relationship between two sets with

a certain relationship in a set pair, set pair analysis [34] is

performed as it can address uncertain systems puts forward

based on the concept of a connection number l:

l ¼ aþ b1i1 þ b2i2 þ � � � þ bn�2in�2 þ cj ð4Þ

where a ? b1 ? b2 ? … ? bn-2 ? c = 1; a, b, and c are

the degree of identity, difference, and opposition of the set

pair, respectively; b1, b2, …, bn-2 are the difference degree

components, which can describe the ambiguity in two sets;

i1, i2, …, in-2 are the difference degree component coeffi-

cients, whose value range is [- 1,1]; and j is the coefficient

of opposition, whose value is typically set as -1. Fuzzy

numbers [17, 18] are used to analyse the uncertainty of the

difference coefficient i. For the risk assessment problem, l
reflects the relationship between the measured value and

safety standard interval.

2.6 Risk level determination (FCM method)

FCM, which was proposed by Dunn (1973) and Bezdek

(1981), is a widely used fuzzy clustering algorithm based

on the fuzzy set theory and k-means algorithm. The

membership degree is employed in the FCM method to

indicate the extent to which a sample belongs to a specific
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cluster [24]. The objective function is calculated as the

product of the membership degree and the distance to the

cluster centre. Assuming that the data set X (x1, x2, …, xn)

is partitioned into c clusters, and the membership degree of

sample xj with cluster centre ci is uij, the constraint function

can be expressed as:

J ¼
Xc

i¼1

Xn

j¼1

umij xj � ci
�� ��2¼

Xc

i¼1

Xn

j¼1

umij d
2
ij ð5Þ

where m is the membership factor, which is generally set as

2; and dij is the Euclidean distance from xj to the cluster

centre ci. Additionally, each sample xj comprises p fea-

tures, and the weight W is combined to obtain the distance

indicator Dij, which is expressed as:

Dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

k¼1

Wk xjk � cik
� �2

s

ð6Þ

Using Dij instead of the original dij and substituting it

into Eq. 5, the objective function that considers the weights

can be expressed as:

J ¼
Xc

i¼1

Xn

j¼1

Xp

k¼1

umij �Wk xjk � cik
� �2 ð7Þ

The objective function is optimised using an iterative

method to obtain the membership degree. Thus, the optimal

cluster centre ci and fuzzy membership matrix can be

output to achieve an automatic classification of the samples

based on the maximum membership principle.

3 Case study

3.1 Project overview

The proposed method was applied to a case study con-

ducted in Guangzhou, China. The construction of a 21-ring

shield tunnelling interval on the left line of the Guangz-

hou–Foshan Intercity Railway was investigated, as illus-

trated in Fig. 2. Specifically, Ring 1560 to 1580 (ZDK

31653.546–ZDK 31691.42) was investigated, where the

shield was tunnelling in soil-rock mixed strata. For more

details regarding this tunnel project, please refer to Zhang

et al. [32] and Shen et al. [23].

The geological conditions in the study area were

extremely challenging and were characterised by soft and

hard unevenness, which rendered construction susceptible

to large ground settlements, cutter wear, and low excava-

tion efficiency. Figure 3 shows the tunnelling progress

from 5 June, 2022, where numerous challenges were

encountered; the tunnelling became even less efficient

beginning from 24 June, 2022, which coincided with the

initiation of construction on Ring 1572. As shown in

Figs. 3, 10 soil chamber openings with pressure were

implemented to accommodate tool changes during the

construction of these 21 rings, particularly during the

construction of Ring 1578, which was opened twice. The

ground was reinforced using advanced grouting during the

construction of Rings 1574 and 1579.

3.2 Data acquisition and pre-processing

In this study, Ring 1560 to 1580 on the left line of the

shield tunnel were investigated. The database of the pro-

posed model comprised shield tunnelling parameters,

deformation information, and vibration data. The shield

tunnelling parameters were manually regulated by experi-

enced shield operators. In fact, they can be acquired

directly through the shield machine data acquisition sys-

tem. Figure 4 shows the variation in eight shield tunnelling

parameters: the total thrust force (F), tunnelling speed (V),

cutter head rotation speed (RSP), cutter head torque (T),

soil pressure (Ps), grouting pressure (Pg), shield horizontal

attitude (Trx), and shield vertical attitude (Trv). These

parameters can provide insights into the performance and

efficiency of the shield machine and offer a comprehensive

characterisation of the challenges encountered in tun-

nelling. For instance, as shown in Fig. 4a, the range of hard

rock excavation broadened from Ring 1568 to 1570, thus

resulting in higher values of F and T for overcoming the

soil resistance; the RSP reached its minimum value at Ring

1579 (see Fig. 4b), thus implying the weakest cutter head

cutting ability at this time and the worthiness of investi-

gating the rationality of the cutter head parameter settings.

Deformation data reflect the effect of the construction on

the surrounding environment and assembled tunnels. The

data comprise five parameters: the cumulative settlement

above the tunnel face (TFSsum, mm), maximum ground

settlement rate (GSRmax, mm/d), maximum building set-

tlement rate (BSRmax, mm/d), maximum vault settlement

rate (VSRmax, mm/d), and maximum clearance convergence

rate (CCRmax, mm/d). Figure 5 presents the variations in

these five parameters, which provides valuable information

regarding changes in the environment and structures during

tunnelling. Notably, as shown in Fig. 5a, a clear transition

occurred between Rings 1571 and 1572, where TFSsum
shifted from approximately ? 10 mm to - 50 mm, thus

signifying a transition from ground uplift to ground set-

tlement. Such a transformation can indicate the presence of

an underlying geological structure or condition that affects

the interaction between the tunnelling process and the

surrounding ground, such as a geological fault or a change

in the geological strata. In risk analysis, this change can

serve as a poignant reminder of the effect of construction

activities on both environmental safety and structural

integrity.
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Vibration data are closely related to the geological

characteristics of the tunnelling environment. Vibration is

generated by the cutting action during tunnelling as it

interacts with the surrounding geotechnical materials, and

its data are acquired using accelerometers positioned on the

back of the soil chamber. Two types of vibration indicators

were obtained from the accelerometers installed above and

below the soil chamber: upper and lower. The effective

value of the vibration, which is also known as the root

mean square (RMS), signifies the energy strength and sta-

bility of the vibration signal. It is calculated as follows:

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

x2i

vuut ð8Þ

In addition, the vibration margin (CL), which is the ratio

of the absolute value of the peak to the square root

amplitude (Eq. 9), reflects the shock characteristics of a

vibration signal. These two parameters are shown in Fig. 6.

As illustrated in Fig. 6a, RMS data from Ring 1572 to 1575

show an increase in energy intensity, thus indicating that

this particular excavation phase can feature challenging

geological conditions accompanied by more substantial

cutter wear. A comparison between the datasets acquired

from the upper and lower accelerometers showed minimal
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divergence (see Fig. 6), except for a clear fluctuation in the

CL value at Ring 1563. This reflects the greater effect of

the surrounding geotechnical materials on the lower cutter

head at this position.

CL ¼ MaxðjxjÞ
,

1

N

Xn

i¼1

ffiffiffiffiffiffi
xij j

p
 !2

ð9Þ

3.3 Establishment of risk assessment model

The proposed model was developed to conduct a compre-

hensive evaluation of the overall risk inherent in the tun-

nelling process, which encompasses various risks. This

approach diverges from conventional isolated risk assess-

ment practices, which strive to capture the intricate rela-

tionship between multiple risk sources that collectively

affect construction safety and stability. The model provides

a new assessment index system comprising the selected

features. In this study, the MI method was utilised to per-

form feature selection on a dataset comprising the 17 fea-

tures obtained in Sect. 3.2. To ensure the stability and
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reliability of feature selection, a cross-validation strategy

was employed, in which the dataset was segregated into

five folds using the Stratified Shuffle Split function from

the scikit-learn library. The MI scores between each feature

and target variable were computed, and the top nine fea-

tures were selected. As shown in Table 1, an index system

of risk assessment was built based on the selected features

and the field engineering situation.

The risk evaluation grade of the shield construction was

classified into five levels: safe (Level I), relatively safe

(Level II), low-risk (Level III), relatively high-risk (Level

IV), and high-risk (Level V). Referring to previous engi-

neering experience, the ten risk assessment indicators were

quantified based on the conditions of the current project,

and the results are listed in Table 2. Specifically, the

classification criteria for groups C11–C14 were inspired by

the foundational risk assessment standards outlined in

previous studies [17]. These criteria were then adjusted to

align with the mixed geological conditions by incorporat-

ing relevant findings from the literature [8] and engineering

insights from the case study [32]. Similarly, the classifi-

cation standards for groups C21–C23 were established based

on an amalgamation of empirical observations from the

case study site and the literature [32]. Regarding groups

C31–C32, the vibration data for Rings 1557, 1558, 1562,

1563, 1570, and 1578 from the case study were analysed

comprehensively in a previous study [23]. When integrated

with the practical field conditions, these findings can con-

tribute to the formulation of vibration-based classification

standards. In this case study, determining the risk level is

an involved process that entails a holistic evaluation of the

nine indicators above. This underscores the importance of

weights assigned to each indicator in the assessment

framework.

3.4 Risk level prediction

After developing the assessment model, the weight of each

evaluation indicator was determined. In accordance with

the proposed methodology, the CRITIC method, which

employs a meticulous evaluation process to determine

weights based on both the comparative strength and degree

of conflict, was employed to assign weights. The standard

deviation (S) and correlation coefficient (R) were calcu-

lated for each indicator to capture the variability degree

and quantify the conflicts between the indicator pairs.

Using Eq. 3, the study arrived at a weight vector of nine

indicators for the index system, which is represented as

W = (0.121, 0.092, 0.104, 0.077, 0.131, 0.135, 0.124,

0.116, 0.100). The weights assigned via this method reflect

the significance of each indicator in the overall assessment

process, providing a basis for objective evaluation and

decision making.

In addition, the FSPA method was utilised to compute

the connection number, and the results are presented in

Fig. 7. The connection number was then fed into the FCM
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Table 1 Index system of risk assessment

Target Index Assessment sub-index

Risk level of shield

tunnelling in soil-rock

mixed strata A

Tunnelling

parameter

B1

Thrust force (F: kN) C11

Tunnelling speed (V:
mm/min) C12

Cutter head torque (T:
kN�m) C13

Soil pressure (Ps: kPa)
C14

Deformation

parameter

B2

Ground settlement

above the tunnel face

(TFSsum: mm) C21

Building settlement rate

(BSRmax: mm/d) C22

Vault settlement rate

(VSRmax: mm/d) C23

Vibration

parameter

B3

Effective vibration

above (RMSup:
g = 9.80 m/s2) C31

Vibration margin above

(CLup) C32
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for clustering, while the weights were combined to the

distances, to obtain the membership of each indicator for

each ring. In this case study, c = 5 (i = 1, 2, …, 5), n = 21

(j = 1, 2, …, 21), and p = 9 (k = 1, 2, …, 9). Nine features

were considered in the calculation of Dij, namely, the

distance between xj (xj1, xj2, …, xj9) and ci (ci1, ci2, …, ci9)

in a nine-dimensional space. The membership degree was

subsequently calculated, as illustrated in Fig. 8.

The membership degree applied in the clustering anal-

ysis provides a comprehensive assessment of the distribu-

tion of risk levels across the tunnel rings. In Fig. 8, the

membership degrees of Ring 1560 to 1580, which belonged

to risk Level I to V, are shown in Fig. 8a to e. Based on the

principle of maximum membership, the risk level of each

ring was determined, as denoted by the red circles in

Fig. 8. For instance, the membership degrees of Rings

1565 and 1569, which represent Level I risk, reached peak

values of 0.30 and 0.77, respectively, thus indicating their

alignment with safety standards (Level I), as illustrated in

Fig. 8a. As shown in Fig. 8c, the maximum membership of

the eight rings (Ring 1562, 1564, 1566, 1568, 1570, 1578,

and 1580) was assigned to Level III risk, which constituted

the largest proportion. Notably, Ring 1575 possessed a

membership degree of 0.85 for Level V risk, thus signi-

fying a significantly high-risk level and considerable con-

struction challenges. Figure 8 illustrates the distribution of

risk levels across the tunnel rings, which provides valuable

insights into the overall risk of the construction process.

4 Results and discussions

4.1 Risk level of tunnelling

The results of risk-level assessment using the proposed

model are summarised in Fig. 10a, which indicate a high

level of risk fluctuation from Ring 1560 to 1580. From

Ring 1572 onwards, the risk of tunnelling was significantly

higher. Combining the results shown in Fig. 8, Rings 1565

and 1569 exhibited the highest membership degrees at

Level I, indicating the lowest risk levels for these two

rings. By contrast, Rings 1575 and 1576 indicated the

highest degree of membership at Level V, thus highlighting

the necessity for appropriate risk management strategies to

mitigate the potential hazards associated with these rings.

The remaining rings showed varying degrees of member-

ship at Levels II, III, and IV, thus reflecting the different

levels of risk for each ring. These membership degrees, as

illustrated clearly through graphical presentation, establish

a dynamic connection with the risk landscape. This array of

Table 2 Classification standard for evaluation index of shield tunnel construction

Indicator I (safe) II III IV V (high risk)

C11 (9 103 kN) \ 30 30*40 40*50 50*60 [ 60

C12 (mm/min) \ 15 15*30 30*45 45*60 [ 60

C13 (9 103 kN•m) \ 2.0 2.0*4.0 4.0*5.5 5.5*7.0 [ 7.0

C14 (kPa) \ 145 145*175 175*205 205*235 [ 235

C21 (mm) \ 12

[- 12

12*18

- 12* - 18

18*24

- 18* - 24

24*30

- 24* - 30

[ 30

\- 30

C22 (mm/d) \ 1.0

[- 1.0

1.0*1.5

- 1.0* - 1.5

1.5*2.0

- 1.5* - 2.0

2.0*3.0

- 2.0* - 3.0

[ 3.0

\- 3.0

C23 (mm/d) \ 0.5

[- 0.5

0.5*1.0

- 0.5* - 1.0

1.0*1.5

- 1.0 * - 1.5

1.5* 2.0

- 1.5 * - 2.0

[ 2.0

\- 2.0

C31 (g: m/s2) \ 0.04 0.04*0.10 0.10*0.15 0.15*0.20 [ 0.20

C32 \ 10 10*20 20*35 35*50 [ 50

The classification criteria are derived from Lyu et al. [17], Guo et al. [8], Zhang et al. [32], and Shen et al. [23]

C11

C12

C13

C14

C21

C22

C23

C31

C32

1560                1565                1570                1575                1580
-1.000

1.000

In
de

xe
s

Ring number

Fig. 7 Connection number of nine indexes from Ring 1560 to 1580
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membership degrees seamlessly translates into varying risk

profiles for each ring, thereby reflecting the complex

relationship among the geological, structural, and con-

struction factors. The risk assessment results can serve as

valuable references for tunnel risk management, facilitat-

ing safe and efficient construction.

4.2 Risk identification

Risk identification is essential for effective risk manage-

ment. In this study, the risk levels of the nine sub-indicators

were analysed to comprehensively assess the risk of each

tunnel ring, which is crucial in risk identification. Based on

the connection number shown in Fig. 7, the risk level of

each indicator for each ring can be calculated, as illustrated

in Fig. 9.
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Fig. 8 Membership degree of Ring 1560 to 1580 for each risk level:a Level I; b Level II; c Level III; d Level IV; e Level V
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As shown in Fig. 9, C11 and C14 exhibited consistently

high-risk levels from Ring 1560 to 1580. Therefore, the

shield tunnelling parameters (B1), particularly the thrust

force and earth pressure, should be regulated closely during

the construction of this project. Indicator C21 in the

deformation parameter (B2) demands specific attention as it

risk level changes abruptly from I to V between Ring 1571

and 1572. Similarly, the vibration parameter (B3) requires

additional attention during risk assessment, owing to its

significance for tunnelling in soil-rock mixed strata.

Specifically, for Ring 1575, which exhibited an overall

risk level of V, the five indicators (C11, C14, C21, C23, and

C31) reached a high-risk level of IV. Notably, C21, which

exhibited a risk level of V, significantly affected the ground

surface owing to shield tunnelling. The high settlement

data above the tunnel face at this location, as depicted in

Fig. 5a, support this finding. By contrast, for Ring 1576,

which shares a similarly high-risk level, the indicators with

the highest risk levels were C14, C21, and C32. This sug-

gests that the geological conditions at this location may be

challenging, thus resulting in higher earth pressure values

and vibration effects.

4.3 Model reliability

To assess the validity of the proposed method, the results

were compared with those of three other methods, as

shown in Fig. 10. The three methods were as follows:

Method 1, which uses a modified FCM algorithm with

weights to analyse the raw data; Method 2, which combines

the original FCM and FSPA methods and uses the original

FCM to analyse the connection numbers; and Method 3,

which directly uses the original FCM method to analyse the

raw data. Notably, the proposed model outperformed the

other methods, with a risk level closest to the field

situation. Among the other methods, Method 1 showed

considerable differences in the raw data analysis, whereas

while Method 2 did not consider the indicator weights. In

Method 3, the original FCM was applied directly to the raw

data, which yielded relatively inconsistent results. As

shown in Fig. 10, the four methods indicated a similar

upward trend in terms of the risk levels in the four meth-

ods. Thus, we demonstrate in the following that, compared

with other methods, the proposed method is superior in

terms of its accuracy and volatility, which renders it more

sensitive to risk identification.

To verify the reliability and feasibility of the proposed

model, three widely used evaluation metrics were

employed: the silhouette coefficient, Calinski–Harabasz

index, and Davies–Bouldin index. These three metrics

measure the similarity of each data point to its respective

cluster in comparison to other clusters, the ratio of dis-

persion between and within clusters, and the average

similarity between each cluster and its most similar cluster.

Higher values of the first two metrics signify clearer

clustering results and better separation between the clus-

ters. Conversely, a lower Davies–Bouldin index indicates

better clustering results. As presented in Table 3, the

evaluation results revealed favourable metric values for the

proposed model, thus indicating its high reliability and

feasibility for risk assessment in tunnel construction.

Notably, one should be relied solely on internal evaluation

indicators. For instance, if the normalisation of the raw data

is not performed, then Method 3 yields a silhouette coef-

ficient of 0.887; however, the evaluation result may not

accurately reflect the actual risk situation. Thus, the relia-

bility of the model results must be assessed with respect to

actual construction risk situations.

In practice, a faster and more efficient construction was

observed in Ring 1560 to 1571 (see Fig. 3), thus demon-

strating a lower risk, which is consistent with the actual

project. However, the construction speed does not accu-

rately reflect the level of construction risk. For example,

Ring 1570 was constructed rapidly, but exhibited a risk

level of III. Rings 1575 and 1576, which exhibited a risk

level of V, required a week to excavate but demonstrated

inferior poor settlement control. For Ring 1574, whose risk

level was VI, two weeks were required to complete the

construction because of the application of advanced

grouting and the extended waiting time for concrete con-

solidation. In general, the assessment results of the case

study agreed well with the actual engineering situation.

4.4 Model limitation

Despite its advantages, the proposed model presents some

limitations. In this study, the clustering of construction data

into five classes may have resulted a changed classification

1560
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Fig. 9 Construction risk of nine indexes from Ring 1560 to 1580
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labels every time the program was executed. Therefore,

additional research is required to combine these five classes

with their corresponding risk levels. In practical engi-

neering, risk-level clustering can be learned after deter-

mining the risk of construction area, which allow the model

to achieve a more direct risk classification. Additionally,

the risk level was generated for each tunnel ring, as the

settlement data were obtained from daily monitoring

reports. However, considering that the tunnelling parame-

ters and vibration data were recorded every minute, con-

tinuous settlement data should be collected in the future to

obtain more data for time-series analysis. Furthermore, a

feature-selection algorithm was adopted during the built of

the assessment index system. The removed features may be

less influential or strongly correlated with other charac-

teristics that are not necessary for the clustering methods.

In other numerical risk assessment methods, multiple input

parameters enable a more comprehensive consideration of

risk. Whereas the application of the proposed model

reveals its effectiveness in the case study, the adaptability

and generalisation of its results across diverse tunnelling

projects warrant further investigation. Future validations

employing datasets from various projects would provide a

more comprehensive verification of the research outcomes.

5 Conclusions

A novel FSPA-FCM-based model was developed in this

study for risk assessment during shield tunnelling in soil-

rock mixed strata. The following conclusions can be

drawn:

1) An integrated risk assessment method based on FSPA

and FCM was developed, via FSPA to transform raw

data into connection numbers within [-1,1] of each

risk level, followed by using FCM to cluster the risk

levels. This method not only solves the problem

wherein the membership degree is affected by the

value domain when predicting risk levels using AI

clustering algorithms, but also overcomes the disad-

vantage of the conventional data normalisation

without consideration of the physical risk

significance.

2) The FCM algorithm was modified to incorporate the

weights of individual indicators with the original

Euclidean distance in the objective function, thus

achieving balance among different features and

improving clustering accuracy. Owing to this mod-

ification, the effects of different features were taken

into account, resulting in a more realistic clustering

after processing the original data.

3) A scientific and systematic risk assessment index

system was developed. Tunnelling machine, defor-

mation, and vibration data were utilised to

1560 1565 1570 1575 1580 1560 1565 1570 1575 1580
 Method 3

Ring number

Method 2

 Method 1
R

is
k 

le
ve

l

Ring number

 Proposed novel modelV

IV

III

II

I

(a) (b)

(c)

(d)

Fig. 10 Construction risk levels from Ring 1560 to 1580 using four methods: a proposed method; b Method 1 (modified FCM); c Method 2

(FCM with FSPA); d Method 3 (FCM)

Table 3 Evaluation metrics results for the four clustering methods

Metrics Proposed Method 1 Method 2 Method 3

Silhouette

Coefficient

0.568 0.316 0.512 0.264

Calinski–Harabasz 21.735 15.105 15.631 12.132

Davies–Bouldin 0.584 0.820 0.681 0.852
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comprehensively consider the construction, environ-

mental and geological conditions, respectively.

Moreover, to ensure the scientific nature of the index

system, feature selection was performed using the MI

algorithm in an actual engineering situation.

4) The proposed method was applied to the Rings

1560–1580 in Guangzhou, China. The results showed

that the construction from Ring 1572 onwards

exhibited a significantly higher risk, with a high

level of risk fluctuation from Ring 1560 to 1580.

Findings from risk identification suggest that the

thrust force and earth pressure must be regulated

carefully during tunnelling. The assessment results of

the case agreed well with the actual engineering

situation, thus indicating that the proposed model can

provide a promising solution for risk assessment

during shield tunnelling in soil-rock mixed strata.
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