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Abstract
Availability of insufficient data is a frequent issue resulting in the inaccurate probabilistic characterization of properties

and, finally the inaccurate reliability estimates of rock structures. This study presents a Bayesian multi-model inference

methodology which couples multi-model inference with traditional Bayesian approach to characterize uncertainties in

both—(1) probability models, and (2) model parameters of rock properties arising due to insufficient data, and to estimate

the reliability of rock slopes and tunnels considering their effect. Further, this methodology was coupled with Sobol’s

sensitivity, metropolis–hastings Markov chain Monte Carlo sampling and moving least square-response surface method to

improve the computational efficiency and applicability for problems with implicit performance functions (PFs).

Methodology is demonstrated for a Himalayan rock slope (implicit PF) prone to stress-controlled failure in India. Analysis

is also performed using recently developed limited data reliability methods, i.e., traditional Bayesian (considers uncertainty

in model parameters only) and bootstrap-based re-sampling reliability methods (considers uncertainties in model types and

parameters). Proposed methodology is concluded to be superior to other methods due to its capability of considering

uncertainties in both model types and parameters, and to include the prior information in the analysis.

Keywords Bayesian inference � Data insufficiency � Multi-model Bayesian inference � Rock structures � Sobol’s sensitivity

1 Introduction

Stability analysis of rock structures is a complex problem

majorly due to uncertainties in rock properties emanating

due to inherent and knowledge-based reasons. Reliability

methods provide a suitable alternative to analyze the sta-

bility of these structures in the presence of these uncer-

tainties. Several reliability methods like Monte-Carlo

simulations (MCSs) [50], first/second-order reliability

methods (F/SORMs) [19, 20] and point estimate methods

(PEMs) [1] etc., have been developed over the years and

are currently used for different in situ problems

[2, 42, 52, 54, 60]. Although the mathematical and oper-

ational framework of different reliability methods vary,

their inputs are the parameters representing the uncertain-

ties in properties, i.e., (1) statistical parameters [i.e., mean

and standard deviation (SD)], and (2) best fit probability

model. Accurate estimation of these best fit distribution

model and model parameters is seldom possible for the

rock projects due to availability of insufficient data. This is

due to the high costs and significant practical difficulties in

lab and in situ testing of rock masses [21, 44, 62]. Fre-

quentist reliability approaches like MCSs, F/SORMs,

PEMs, etc., assumes that the model type and distribution

parameters estimated from the site-specific test data are

deterministic and accurate quantities which is not true in

the presence of limited data [31–33, 38, 43]. This in turn

raises the question on the accuracy of the analysis based on

frequentist reliability approaches.

Traditional Bayesian approaches provide an improve-

ment in the frequentist approaches by considering the

model parameters as random variables to consider their

uncertainties. This is performed by incorporating the

existing or prior available information from various sour-

ces with limited site-specific information [7]. Statistical
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inference is employed to determine a single ‘‘best’’ prob-

ability model and identified sole model is used to make

inference from the data. These methods, however, suffer a

major limitation of ignoring the uncertainty associated with

probability model selection. It is difficult to identify a

unique best probability model in the presence of a limited

data set, rather than a large data set. In rock mechanics,

most of the studies employing these approaches are

restricted to explicitly model the uncertainties in intact

rock properties and empirical models only [3–5, 8, 9, 12,

17, 57, 58]. Very limited studies are available in literature

employing these approaches for analyzing the stability of

practical rock slopes and tunnels as shown in Table 1.

Further, the available studies neglect the uncertainty rela-

ted to the probability model and consider the uncertainties

in the parameters of the unique ‘‘best’’ model. Therefore, a

methodology is required which can quantify both the

model type and model parameters uncertainties in rock

properties and propagate it to the reliability estimates of

rock structures.

In this spirit, a Bayesian multi-model inference (BMMI)

approach is developed to consider the effect of uncertain-

ties related to probability model type and model parameters

in input properties on the reliability estimates of rock

slopes and tunnels in the presence of limited test data. To

attain the objective, the multi-model inference approach

[13], wherein a set of possible probability models for a rock

property can be identified to incorporate the uncertainty

associated with model type, is coupled with the traditional

Bayesian approach. In addition, this methodology employs

Sobol’s global sensitivity and the moving least square-re-

sponse surface method (MLS-RSM) to enhance its com-

putational efficiency and applicability for analyzing the

problems with both explicit/implicit performance functions

(PFs). The developed approach was demonstrated for a

Himalayan rock slope prone to stress-controlled failure

(single implicit PF) in India. A comparative assessment is

also made with the results of the other methods currently in

use for estimating engineering reliability in the presence of

limited data—(1) traditional Bayesian approach (considers

only model parameter uncertainty), and (2) recently

developed resampling reliability method coupling boot-

strap re-sampling with frequentist approaches (considers

both model type and parameters uncertainties) [31, 32, 43].

2 Details of the components
of methodology

This section explains the components involved in the pre-

sent methodology.

2.1 Bayesian inference

The Bayesian inference is used to quantify the uncertainty

associated with the parameters of the probability model

(M). Bayesian inference treats model parameters (h)

probabilistically (as a random variable) by combining prior

knowledge in the formulation via prior distribution

(p h;Mð Þ) and site-specific observation data (d) expressed

in terms of the likelihood function (pðdjh;MÞ. The poste-

rior distribution p hjd;Mð Þ, i.e., the updated probability

density function of parameters h according to the Baye’s

rule can be written as given below [7].

p hjd;Mð Þ ¼ pðdjh;MÞp h;Mð Þ
p d;Mð Þ / p djh;Mð Þp h;Mð Þ ð1Þ

where p d;Mð Þ is known as the normalizing factor or evi-

dence used to make the cumulative distribution function

(CDF) of posterior distribution equals to one and can be

estimated as given below.

Table 1 A summary of the studies on the application of Bayesian

approach for the reliability analysis of rock structures

References Year Rock

structure

Description

Feng and

Jimenez

[22]

2015 Tunnel Predicted the squeezing and time-

dependent convergence

Li et al. [34] 2016 Slope Provided a stage-by-stage

performance updating framework

with new monitoring information

for progressive excavation

Zhou et al.

[66]

2017 Slope Performed a probabilistic kinematic

analysis for the discontinuity-

controlled rock slope instabilities

Aladejare

and Wang

[6]

2018 Slope Investigated the influence of rock

property correlation, i.e., between

cohesion and friction angle, on

the stability

Feng et al.

[23]

2019 Tunnel Proposed an approach to improve

time-dependent convergence

predictions by updating them with

new information provided

through successive convergence

measurements

Zhao et al.

[65]

2021 Tunnel Presented a Bayesian back analysis

approach to determine the

mechanical parameters of the rock

mass

Chang et al.

[16]

2022 Tunnel Proposed a probabilistic model to

predict tunnel convergence by

combining empirical model and

relevance vector machine
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p d;Mð Þ ¼
Z

pðdjh;MÞp h;Mð Þ ð2Þ

The likelihood function pðdjh;MÞ for a property with

observation data d ¼ d1:d2; . . .; dNf g which is being mod-

eled using probability distribution model M having

parameters h can be formulated as below [7].

p djh;Mð Þ ¼ f d1jhð Þ � f d2jhð Þ � � � � � f dnjhð Þ

¼
Yn
i¼1

f dijhð Þ ð3Þ

where f dijh;Mð Þ is the PDF value corresponding to model

probability distribution M evaluated at the i-th data point

di, and h represents the parameters of the M.

Estimation of posterior distribution p hjd;Mð Þ involves

multi-dimensional integration and analytical solutions are

computationally complex and in-efficient, except for the

conjugate prior distributions. To overcome this issue, a

numerical process known as Markov chain Monte Carlo

(MCMC) simulation can be employed to generate a

sequence of random samples from the posterior distribution

[6]. Details of MCMC sampling are presented in Sect. 2.3.

2.2 Multimodal selection and model uncertainty

This methodology employs the multi-model inference

approach [13, 63] to incorporate the uncertainty associated

with the model identification of properties. Kullback–Lei-

bler (K–L) information theory-based akaike information

criterion (AIC) was used for the model selection in this

study. The probability model with minimum AIC value is

considered as a best fit model to represent the data. For

small datasets, an updated AIC, i.e., AICc has been

developed as given below [26].

AICc ¼ �2 log p djĥ;M
� �� �

þ 2K þ 2K K þ 1ð Þ
N � K � 1

ð4Þ

where pðdjĥ;MÞ is the likelihood function given the max-

imum likelihood estimate of the parameters ĥ, K is the

number of parameters of the candidate model M, and N is

the sample size of the data set. AICc should be used when
N
K\� 40 and AICc converges to AIC with the increasing

value of N [13, 63]. Given the small datasets, AICc is

utilized for multi-model selection in this study. Once the

AICc value is known for each model in the candidate set,

the AIC differences values (DA) can be calculated to

interpret a ranking of candidate models as given below

[13].

D ið Þ
A ¼ AIC ið Þ

c � AICmin
c ð5Þ

where AICmin
c is the minimum of the AIC ið Þ

c values, i ¼
1; 2; 3; . . .;Nd and Nd is the total number of candidate

models in the set. This transformation forces the best

model to have D ið Þ
A ¼ 0 and all the other models to have

positive values. Further, the likelihood of the model Mi can

be expressed as exp � 1
2
D ið Þ
A

� �
and by normalizing these

likelihoods the AICc based model probabilities pi can be

estimated as given below.

pi ¼ p Mijdð Þ ¼
exp � 1

2
D ið Þ
A

� �
PNd

m¼1 exp � 1
2
D mð Þ
A

� � ð6Þ

Larger the pi or lesser the D ið Þ
A , the more plausible is

model being the best fit for the given dataset among the

candidate models. Therefore, pi and D ið Þ
A can be utilized to

rank the models among the candidate sets.

2.3 Metropolis–hastings (MH) MCMC sampling

MCMC sampling was used in this study due to its feasi-

bility to generate samples from an arbitrary distribution

particularly when the density function is difficult to express

analytically [11, 45]. Samples are obtained by exploring

the entire domain of uncertain parameters based on their

prior distributions. The MCMC was coupled with the

Bayesian inference to allow any general prior distribution

selection where the posterior distribution becomes complex

and difficult to express analytically. Among the available

options, the metropolis–hastings (MH) algorithm was

employed in this study due its simplicity and efficiency to

implement the MCMC sampling for the posterior of

parameter h [25, 39]. The procedure of the MH algorithm

can be summarized as given below.

(i) At stage t ¼ 1, assume an initial value of parameter

h ¼ h1, which can be chosen randomly from the prior

distribution or may simply be assigned the mean value.

(ii) At any subsequent stage t (t ¼ 2; 3; . . .Þ, generate a

new proposal value h� from a proposal distribution

Tðh�jht�1Þ, which is considered to be multivariate Gaussian

distribution for simplicity with mean value ht�1 and stan-

dard deviation s [6, 56, 59]. Parameter s is also known as

tunning parameter or width/scaling of proposal

distribution.

(iii) Calculate the ratio of the posterior density for the

candidate (h�) and current (ht�1) values as shown below.

r ¼ min
p h�jd;Mð ÞT h�; ht�1ð Þ
p ht�1jd;Mð ÞT ht�1; h

�ð Þ ; 1
� �

ð7Þ

For the symmetric proposal distributions, i.e.,

T h�; ht�1ð Þ ¼ T ht�1; h
�ð Þ, the ratio r is reduced to the

expression as shown below.

r ¼ min
p h�jd;Mð Þ
p ht�1jd;Mð Þ ; 1

� �
ð8Þ
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(iv) Draw a random number u from the uniform distribu-

tion U 0; 1ð Þ, i.e., u�U 0; 1ð Þ.
(v) Accept the candidate state ht ¼ h�, if r� u. Other-

wise, the current value is taken as the next value ht ¼ ht�1.

(vi) Repeat step (ii)–(v) till the target number of samples

(i.e., h2; h3; h4; . . .) are obtained.

The choice of initial value and proposal distribution

have strong influence on the convergence of the Markov

chain toward stationary condition. The initial samples may

be discarded as burn-in samples, as they might not be

completely valid depending upon the assumption of initial

value. The optimal selection (neither too high nor too low)

of tunning parameter or scaling of proposal distribution can

be made graphically through the trace plot (i.e., Markov

chain sample versus sample number) and autocorrelation

plot (i.e., autocorrelation function (ACF) against increasing

lag values) of the simulated Markov chain samples. For a

stationary Markov chain, trace plot should look like a hairy

caterpillar (not show apparent anomalies) and autocorre-

lation plot should show a quick, exponential decrease

between the correlation of sample. Beside visual inspec-

tion, the performance of chain can be assessed numerically

through acceptance rate (i.e., percentage of accepted sam-

ples). An acceptance rate in between 20 and 40% is con-

sidered sufficiently efficient [24]. A MATLAB code was

written to generate random samples from the posteriors.

2.4 Bootstrap re-sampling reliability approach

Bootstrap re-sampling approach is usually employed to

quantify the effect of statistical uncertainties associated

with both model type and parameters arising due to small

size of sample and to estimate its effect on the response of

structures by coupling this approach with frequentist reli-

ability approach, i.e., MCSs [31, 32, 43]. In this method, a

large number of re-constituted samples from the original

data sample are generated which are assumed to be in close

resemblance to the original sample. These surrogate sam-

ples are generated through random sampling with

replacement from the original sample. Figure 1 shows an

example of a bootstrap re-constituted sample for the vari-

able X ¼ X1;X2; . . .;XNf g with N sample data points. For

each re-constituted sample every data point in the original

sample has an equal probability of being chosen. Size of re-

constituted samples is kept same as that of original sample

that avoids any biasness resulting into sample statistics

[29]. From these re-constituted samples, the bootstrap

statistics [i.e., bootstrap mean lBa
and bootstrap standard

deviation (SD) rBa] for a sample statistical parameter a
(i.e., sample mean and sample SD) quantifying the statis-

tical uncertainty can be obtained as following.

lBa
¼ 1

B

XNB

b¼1

ab; rBa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NB � 1

XNB

b¼1

ab � lBa

� �2
vuut ð9Þ

where ab is the sample statistical parameter estimated for

the bth bootstrap re-constituted sample and NB is the total

number of re-constituted samples. For each re-constituted

sample, traditional reliability analysis was performed via

MCSs, and statistical parameters of Pf were estimated

using standard statistical methods.

2.5 Sensitivity analysis

Sensitive properties were identified with significant effect

on the PF using sensitivity analysis. This aided the

improvement in the computational efficiency of the

methodology by considering the uncertainties in sensitive

properties only. Sobol’s global sensitivity analysis (GSA)

[48] was employed in this study due to its efficiency to

explore the whole space of input variables. This is not

possible in the local sensitivity analysis. Total order/effects

(STi) quantifying the relative contributions of input prop-

erties on the output variability can be estimated as given

below.

STi ¼ 1� V½EðY jX� iÞ
V Yð Þ ð10Þ

where E and V are the expectation and variance; Xi is the

ith input parameter; X� i represents the components of

input vector X except Xi. Saltelli’s MCSs based numerical

method was employed to estimate STi in which quasi-ran-

dom samples for X were generated and arranged in the

matrices A and B as shown below.

Fig. 1 Procedure to generate re-constituted samples using bootstrap

approach from the original sample
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A ¼
x

1ð Þ
1 x

1ð Þ
2 � � � x

1ð Þ
i � � � x 1ð Þ

n

..

. ..
. . .

. ..
. . .

. ..
.

x
kð Þ
1 x

kð Þ
2 � � � x

kð Þ
i � � � x kð Þ

n

2
64

3
75 ð11Þ

B ¼
x

1ð Þ
nþ1 x

1ð Þ
nþ2 � � � x

1ð Þ
nþi � � � x

1ð Þ
2n

..

. ..
. . .

. ..
. . .

. ..
.

x
kð Þ
nþ1 x

kð Þ
nþ2 � � � x

kð Þ
nþi � � � x

kð Þ
2n

2
64

3
75 ð12Þ

where k is the base sample and n is the input vector

dimension. Ci is the matrix containing elements of B

except the ith column, which is taken from A.

Ci ¼
x

1ð Þ
nþ1 x

1ð Þ
nþ2 � � � x

1ð Þ
i � � � x

1ð Þ
2n

..

. ..
. . .

. ..
. . .

. ..
.

x
kð Þ
nþ1 x

kð Þ
nþ2 � � � x

kð Þ
i � � � x

kð Þ
2n

2
64

3
75 ð13Þ

The output column vectors YA;YB and YCi
are con-

structed by evaluating the PF, i.e., Y ¼ G Xð Þ, for the

realizations of A, B and Ci, respectively. STi for the input Xi

then can be calculated by employing Janon estimators [28]

as given below.

STi ¼ 1

�
1
k

� �Pk
j¼1 y

jð Þ
B y

jð Þ
Ci

� 1
k

� �Pk
j¼1

y
jð Þ

B þy
jð Þ

Ci

2

	 
� �2

1
k

� �Pk
j¼1

y
jð Þ

Bð Þ2þ y
jð Þ

Ci

� �2

2

2
4

3
5� 1

k

� �Pk
j¼1

y
jð Þ

B þy
jð Þ

Ci

2

	 
� �2

ð14Þ

where y
jð Þ

A ; y
jð Þ

B and y
jð Þ

Ci
are the jth element of column

vectors YA; YB and YCi
, respectively.

2.6 Moving least square-response surface
method (MLS-RSM)

MLS-RSM was used to obtain an explicit surrogate rela-

tionship between input–output for the problems lacking

explicit PFs, thus eliminating the requirement of repeated

numerical simulations. This issue will be shown in the later

sections. MLS-RSM can be mathematically expressed as

given below [37].

Ĝ Xð Þ ¼ p Xð Þa Xð Þ ð15Þ

where p Xð Þ ¼ 1x1x2:::xdx
2
1x

2
2:::x

2
d

� �
1�m

is a quadratic

polynomial basis of function (m ¼ 2d þ 1). a Xð Þ is a set of
unknown coefficients, which is dependent on the X and can

be determined, as given below.

a Xð Þ ¼ A�1
m�mBm�hYh�1 ð16Þ

where Y ¼ G X1ð ÞG X2ð Þ:::G Xhð Þ½ �T is the matrix of known

PF values obtained from the opted solution technique.

Matrices A and B can be written as given below.

A Xð Þ ¼ PTT
m�hWh�hPh�m;B Xð Þ ¼ PT

m�hWh�h ð17Þ

where

P ¼
p X1ð Þ
p X2ð Þ
:::

p Xhð Þ

2
64

3
75
h�m

;W ¼
w1 Xð Þ 0 0

0 ::: 0

0 0 wh Xð Þ

2
4

3
5
h�h

ð18Þ

where wi Xð Þ is the spline weighting function (C1 continu-

ous) with compact support as shown below.

wi Xð Þ ¼ 1�6r2i þ 8r3i �3r4i ; r	 1

0; r[ 1



ð19Þ

where r ¼ X�Xi2=li, li is the influence domain size chosen

as twice the distance between 1þ 2dð Þth sample point and

design point X, d is the number of random variables and h

is the number of sampling points. Latin Hypercube Sam-

pling (LHS) based design of experiments technique was

used for generating sampling points (random input vectors

realizations) from input parameter distributions [40].

Nash–Sutcliffe efficiency (NSE) index was adopted to

assess the accuracy of the RSM [41]. NSE was evaluated

by estimating the PF values using original solving tech-

nique and RSM, i.e., Goriginal
i Xð Þ and ĜRSM

i Xð Þ at p random

off-sample points of input properties generated via the

LHS, as given below.

NSE ¼ 1�
Pp

i¼1 Goriginal
i Xð Þ � ĜRSM

i Xð Þ
� �2

Pp
i¼1 Goriginal

i Xð Þ � Gmean
i Xð Þ

� �2

2
64

3
75 ð20Þ

where Gmean
i Xð Þ is the mean value of Goriginal

i Xð Þ. The RSM
is rated very good for NSE value 0.75–1.0.

3 Methodology

This section explains the steps involved in the proposed

BMMI methodology. As mentioned earlier, the main idea

of the BMMI methodology is to couple the multi-model

inference with traditional Bayesian and probabilistic tools.

Figure 2 shows the flowchart explaining the implementa-

tion steps for the methodology.

As mentioned earlier, analysis performed by the pro-

posed methodology was also compared with the recently

developed methodologies employed for the reliability

analysis in the presence of limited data. Two such

methodologies, i.e., traditional Bayesian methodology and

bootstrap re-sampling reliability were used for the analysis

in the next section. Hence, the steps involved in these
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Fig. 2 Flowchart to implement the proposed Bayesian multi-model inference (BMMI) approach along with the traditional Bayesian and

bootstrap re-sampling reliability approach
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methodologies are also briefly summarized in Fig. 2.

A MATLAB code was written to implement all the above

steps sequentially in analyzing the stability of rock slopes.

4 Application example

Application example used in this study is a rock slope

supporting the piers of world’s highest Chenab railway

bridge in the Jammu and Kashmir, India. The major reason

to select the case study for this study is the well-studied

geological and geotechnical properties of the rock mass at

the site. Slope under consideration is a large slope with

dimensions 293 9 196 m. Rock mass at the site was

heavily jointed dolomite (unit weight = 25 kN/m3) inter-

sected by three major joint sets along with some random

joint sets. Slope was adjudged to be prone to stress-con-

trolled failure due to very close joint spacing and large

dimensions. More details on the geology, location and

geotechnical of the slope can be found in the literature [52].

Analysis was performed using different methodologies via

the steps shown in flowchart in Fig. 2.

4.1 Analysis using Bayesian multi-model
inference (BMMI) methodology

4.1.1 Step 1: estimation of rock properties

Intact rock and rock joint properties were estimated for this

site using the standard tests conducted as per ISRM sug-

gested guidelines [27]. Table 2 shows the statistics of the

properties relevant to this study [52]. The original sample

of rock properties contains 22 data points only, which are

statistically small and insufficient.

4.1.2 Step 2: derivation of performance function (PF)

PF for the slope stability is usually expressed in terms of

factor of safety (FOS). Slope under consideration is prone

to stress-controlled failure and hence, the analytical for-

mulation of PF was not possible. Hence, an explicit sur-

rogate relationship between input rock properties and

output response parameter (i.e., FOS) was derived using

MLS-RSM. A total of h ¼ 200 sampling points of input

properties were generated using LHS based on their

statistics (Table 2). FOSs were estimated for these real-

izations using Shear Strength Reduction (SSR) [18] in

Phase2 [46] by assuming rock as elastic perfectly plastic

Hoek–Brown material. A typical finite element model of

the slope prepared in Phase2 is shown in Fig. 3. Vectors X

and Y were determined using the realizations of input

properties and corresponding FOSs (Sect. 2.6). NSE of the

constructed MLS-RSM was 0.9748 for p = 50 off-sample

points and hence, the performance of the RSM was rated to

be as very good.

It is important to note that the authors have used the

moving least square-response surface method (MLS-RSM)

to construct an explicit expression between the input rock

properties and FOS. MLS-RSM uses a locally weighted

regression approach to fit a surface to the input–output

data. In this method, the coefficients of the monomials

change for every observation, which makes it difficult to

write an explicit expression unlike the polynomial RSMs

where the coefficients of the monomials remain constant

for every observation [30, 37].

4.1.3 Step 3: identification of sensitive properties

Sensitive properties were identified using Sobol’s GSA and

only the identified sensitive properties were considered for

BMMI. Sobol’s analysis was performed using the PF

derived in the previous step. A total of k ¼ 105 quasi-

random samples were used for the Sobol’s analysis

(Sect. 2.5). Results are summarized in Fig. 4. STi of UCS

and GSI were estimated to be 30–64% more than those of

Ei and mi indicating their high sensitivities. Hence, the

Bayesian analysis was performed by considering statistical

uncertainties in UCS and GSI only while considering Ei

and mi as random variables.

4.1.4 Step 4: identification of plausible models

Initially, the candidate probability models for UCS and GSI

were decided with the requirement that their values (i.e., x)

are always non-negative and real (i.e., x [ [0, 1))

(Table 3). This is due to non-negative nature of rock

properties under consideration. Table 3 shows the esti-

mated AICc and probability pi values for these models

using Eqs. (4)–(6). Figure 5 also shows the histogram of

data for UCS and GSI along with the candidate models

pdfs. For UCS, the candidate probability models have

approximately similar AICc or probability pi values, except

exponential model. Further, the values of D ið Þ
A were esti-

mated to be minimal for these models indicating that any of

Table 2 Statistical parameters and best fit probability distribution

(PD) model of rock properties from the original sample

Property Mean SD Best fit PD

Hoek–Brown parameter mi 12.7880 4.4288 Weibull

Uniaxial compressive strength

(UCS) (MPa)

115.3636 48.7653 Loglogistic

Elastic modulus (EiÞ (GPa) 64.5000 19.4881 Lognormal

Geological strength index (GSI) 41.1364 6.4535 Inverse

Gaussian
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Fig. 3 Typical numerical model prepared in Phase2 for the stability analysis of rock slope

Fig. 4 Sobol’s indices indicating the sensitivities of rock properties

toward the FOS of the rock slope

Table 3 Candidate probability distribution models and their corre-

sponding AICc, AICc difference D ið Þ
A and AICc based probability pi

values for the UCS and GSI

Candidate

model

UCS GSI

AICc D ið Þ
A

pi AICc D ið Þ
A

pi

Rayleigh 235.604 0.294 0.172 180.773 33.823 0.000

Exponential 255.116 19.806 0.000 209.743 62.793 0.000

Lognormal 237.393 2.083 0.070 147.000 0.050 0.223

Weibull 236.092 0.782 0.135 150.483 3.533 0.039

Gamma 235.399 0.089 0.191 147.212 0.262 0.200

Inverse

Gaussian

238.373 3.063 0.043 146.950 0.000 0.228

Nakagami 235.420 0.110 0.189 147.562 0.612 0.168

Loglogistic 235.310 0.000 0.200 147.899 0.949 0.142

Text in bold represents the candidate models with D ið Þ
A [ 10 or

approximately zero pi values
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these models can be considered to fit the data satisfactorily.

Similar observations were made for GSI regarding AICc, pi

and D ið Þ
A values of candidate models, except Rayleigh and

exponential models. This reinforces the argument that the

identification of a best fit model is impractical from the

small sized sample. The models with D ið Þ
A \10 [13] have

much higher probabilities to be considered as the best fit

model to represent the data satisfactorily. Due to this rea-

son, all the models mentioned above (Table 3) except

exponential model for UCS, and Rayleigh and exponential

models for GSI were considered as plausible models for

further analyses.

Further, an analysis has been performed to emphasize

the effect of sample size on the determination of best fit

model. For this analysis, pi values for candidate models

were determined for the samples of sizes (Ns) varying

between 22 (size of original data) to 106 for GSI. Samples

of different sizes were obtained by generating random

realizations from the model having least AICc for original

dataset (best fit for original data). Best fit model form

original data of GSI was found to be inverse Gaussian

(Table 2). Figure 6 shows the analysis results. It can be

observed that the pi values for candidate models were of

approximately similar magnitudes for small sized samples

(Ns 	 300 approximately). As the sample size increases,

lognormal and inverse Gaussian were found to have

approximately similar pi values for Ns 	 8� 104. This

coincidence of pi values for these distributions up to a large

Ns value could be due to approximately similar AICc val-

ues from original sample. As Ns increases beyond this, pi
values for inverse Gaussian and lognormal distributions

monotonically increased and decreased, respectively. The

pi value for inverse Gaussian distribution became unity for

Ns ¼ 106. It can be concluded that Ns should be signifi-

cantly higher (Ns � 8� 104 for this case) to assess the best

fit model with acceptable certainty and much higher with

complete certainty (Ns ¼ 106) which is practically

impossible.

4.1.5 Step 5: estimation of posterior model parameters

Once the plausible models were known, the posterior

model parameters for these models (i.e., p hjd;Mð Þ) were
estimated through Bayesian inference utilizing MH-

MCMC sampling (Sect. 2.3). The prior distribution was

taken as the uniform distribution, i.e., p h;Mð Þ [6, 57, 58].
The bounds of mean and standard deviation (SD) for UCS

and GSI were adopted from the literature [5]. Aladejare

Fig. 5 Histogram plot of the original sample along with the candidate probability models for the a GSI and b UCS

Fig. 6 Variation of AICc based probability pi with the size of data

sample of the plausible models for GSI
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and Wang [5] summarized the typical ranges of mean and

SD of properties for sedimentary rocks based on extensive

literature review (* 135 research articles). Table 4 sum-

marizes the prior values for mean and SD of UCS and GSI.

To perform MCMC analysis, the range of model parame-

ters corresponding to each plausible model, i.e., h, were

estimated from the bounds of mean and SD using standard

relations [7]. Table 5 summarizes the estimated prior range

of model parameters. MCMC analysis was then performed

by generating a total of 5 9 104 random samples. Initial

5 9 104 samples were discarded by considering them as

burn-in samples identified via visual inspection of trace

plots. The convergence of simulated chains was assessed

through the trace and autocorrelation plots. Trace plots did

not show any anomalies and autocorrelation plot showed

an exponential decrease between the sample correlation.

Further, the acceptance rate of all Markov chains simulated

was within 20–40% for each model parameter. Figure 7

shows the typical trace and autocorrelation plots of the

Markov chain samples of lognormal distribution parame-

ters for the GSI. It was observed that the simulated Markov

chains are stationary for GSI. Similar observations were

made for all the plausible models of other properties.

Figure 8 also shows the joint probability density func-

tions (jpdf) and the marginal pdfs of model parameters for

plausible models of GSI quantifying the uncertainties in the

parameters. The red points along the jpdf show the

parameter values estimated from the original data. It can be

concluded that significant uncertainties exist in the model

parameters in the presence of limited data and should be

considered in the analysis.

4.1.6 Step 6: establishment of a MCSs model set

In this step, the MCSs model set of UCS and GSI were

constructed based on the pi values of candidate models.

The pi values were considered as the weighting factor

which is the ratio of the number of times a candidate model

pdf was generated to the total generated pdfs (M). For this

study, a total (M) of 104 models for the UCS and GSI were

generated. For example, a value of pi = 0.172 for a model

(for e.g., Rayleigh model for UCS) implies that this model

was generated for 1720 (pi �M ¼ 0:172� 104 ¼ 1720)

times out of 104 models. Associated model parameters for

the model were chosen at random from the posterior dis-

tribution of model parameters (Fig. 8 for GSI) evaluated in

the previous step. Figure 9 shows the results of total gen-

erated models (i.e., MCSs model set) of the plausible

models for UCS and GSI. These MCSs model sets were

used to quantify the uncertainties in the statistics of prop-

erties (i.e., mean and SD) and response parameter (proba-

bility of failure, Pf) of the slope from small sample size in

the next steps.

Table 4 Prior information/knowledge for the sedimentary rock

properties [5]

Statistical parameter UCS (MPa) GSI

Min Max Min Max

Mean 4.4 264 22.60 60.40

SD 0.0176 289.344 3.86 16.308

Table 5 Range of plausible model parameters to define the uniform prior distribution for the UCS and GSI

Candidate model Model parameter UCS GSI

min max min Max

Rayleigh Parameter 1 (k) 3.510 210.6415 – –

Lognormal Parameter 1 (a) 0 5.575949 2.9083 4.0989

Parameter 2 (b) 6.67E-05 2.893485 0.0638 0.6474

Weibull Parameter 1 (l) 1.27E-146 264.0044 24.1935 66.502

Parameter 2 (x) 0.0106 34,295.34 1.4251 19.8231

Gamma Parameter 1 (a) 0.0002 2.25E?08 1.92 244.8495

Parameter 2 (b) 1.17E-06 19,027.26 0.2466 11.7706

Inverse Gaussian Parameter 1 (l) 4.4 264 22.6 60.4

Parameter 2 (r) 0.0010 5.94E?10 43.3927 14,788.91

Nakagami Parameter 1 (l) 0.5 56,250,000 0.8808 61.5876

Parameter 2 (r) 19.3603 153,416 525.6596 3914.176

Loglogistic Parameter 1 (l) 1.4816 5.575949 3.1179 4.1009

Parameter 2 (k) 3.68E-05 36.25539 0.0352 0.3978
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4.1.7 Step 7: quantification of statistical uncertainties

Sample statistics, i.e., mean and SD, of the property were

estimated for total generated models in the previous step

via standard relations between model parameters of pdfs

and moments. This results in a total of 104 sample statistics

values from which their mean and SD were evaluated.

Table 6 and Fig. 10 summarize the analysis results. It can

be observed that the means of the sample statistics were

coinciding with the sample statistics estimated for the

original sample (Table 2). Further, the SDs of the sample

statistics indicate the statistical uncertainties in them due to

small size of samples.

4.1.8 Step 8: estimation of statistics of response parameter

In this step, a model from the MCSs set constructed in the

previous step was selected and traditional reliability anal-

ysis was performed resulting the values of Pf correspond-

ing to the model in the MCSs set. This step is repeated for

all models sequentially in the MCSs sets (M ¼ 104)

resulting into a total of 104 Pf values from which the

statistics Pf were estimated. Traditional reliability analysis

for the model in set was performed by carrying out MCSs

on the PF (prepared in step 2). MCSs was performed by

generating 5 9 104 random samples based on the statistics

of selected model from the MCSs set of UCS and GSI and

the best fit models of mi and Ei (Table 2). Pf was consid-

ered as the area under the pdf of FOS with value less than

1. Figure 11 and Table 7 show the analysis results

Fig. 7 Convergence analysis of the Markov chains a trace plot for parameter 1 ‘a’ b autocorrelation plot for parameter 1 ‘a’ c trace plot for

parameter 2 ‘b’ and d autocorrelation plot for parameter 2 ‘b’ of the lognormal probability model for GSI
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Fig. 8 Marginal and joint pdf of the posterior model parameters for the plausible models a Lognormal b Weibull c Gamma d Inverse Gaussian

e Nakagami and f Loglogistic of GSI
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including empirical CDFs Pf, respectively. The SD signi-

fies the effect of statistical uncertainties on the Pf due to

small size samples. The expected performance level of the

slope in accordance with probability descriptions provided

by the USACE [55] was mapped in the range of good to

unsatisfactory.

An important point is that the uncertainties in the sample

statistics and Pf could be affected by the D ið Þ
A values of

plausible models of a property. Data of a property with

multiple plausible probability models having very small

D ið Þ
A (close to zero) values may have higher effect of model

type uncertainty on the sample statistics and Pf. Reason is

the significant mixing of plausible models (approximately

equal contribution from multiple plausible models) in the

established MCSs model set which may eventually lead to

higher uncertainties in the sample statistics and Pf.

4.2 Analysis using traditional Bayesian
methodology

Initial three steps involved in the traditional Bayesian

methodology are same as that of the BMMI methodology.

The candidate probability models for UCS and GSI were

first chosen similar to BMMI. AICc values were estimated

for these models [Eq. (4)] corresponding to the original

sample. Best fit models for GSI and UCS (with least AICc

values) were estimated to be inverse Gaussian and loglo-

gistic, respectively (Table 3).

Posterior model parameters of the best fit models for the

UCS and GSI were estimated through Bayesian inference

utilizing MH-MCMC sampling by generating 5 9 104

random samples. The major difference, compared to the

BMMI, is that the analysis was performed only for best fit

models instead of all plausible models. Analysis details are

similar as explained in BMMI (step 5). Figure 8d shows

the jpdf and marginal pdfs of inverse Gaussian model

parameters (best fit for GSI) estimated from the MH-

MCMC sampling quantifying the uncertainties associated

with them. Further, the MCSs model sets having M ¼ 104

models based on the best fit models were constructed for

the UCS and GSI. The major difference is that all models

in the MCSs set were corresponding to best fit models

instead of the mixing of plausible models. Figure 12 shows

the constructed MCSs model sets corresponding to best fit

models for UCS and GSI.

Statistical uncertainties in the UCS and GSI were

quantified by estimating the sample statistical parameters

corresponding to each model in the MCSs set via standard

Fig. 9 MCSs model sets with a total of 104 models established for the a GSI and b UCS for the BMMI approach

Table 6 Statistics of the sample statistics for UCS and GSI estimated

via different reliability methodologies

Parameter Reliability

methodology

UCS (MPa) GSI

Mean SD Mean SD

Sample

mean

BMMI 115.9484 11.8974 41.1439 1.4561

Traditional

Bayesian

117.4880 11.5548 41.2311 1.3389

Bootstrap

reliability

115.1048 10.2045 41.1226 1.3124

Sample

SD

BMMI 44.8957 20.0365 6.6459 1.1739

Traditional

Bayesian

52.2661 9.6956 6.2886 1.0025

Bootstrap

reliability

46.2528 10.6103 6.2222 0.9109
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relations between model parameters of pdfs and moments.

Table 6 and Fig. 10 provide the results obtained from the

traditional Bayesian approach. It can be observed that the

means of the sample statistics were coinciding with sample

statistics estimated from the original sample (Table 2).

Statistical uncertainties due to the small size of sample is

indicated by the SDs of sample statistics. Finally, the tra-

ditional reliability analysis was performed corresponding

to each model (M ¼ 104) in the MCSs model sets for UCS

and GSI constructed in the previous step. Analysis details

are similar as explained for the BMMI (step 8). Figure 11

and Table 7 show the analysis results including empirical

CDF of Pf. The effect of statistical uncertainties due to

small size samples is indicated by the SD of Pf. From this

approach, the expected performance level of the slope was

mapped in the range of good to poor.

4.3 Analysis using bootstrap re-sampling
reliability methodology

Initial procedures in the bootstrap reliability methodology

are same to that of BMMI methodology. In this step, a total

of NB ¼ 104 number of bootstrap re-constituted samples

were generated for sensitive properties (i.e., UCS and GSI).

Re-constituted samples were generated from their original

samples as explained in Sect. 2.4.

Quantification of statistical uncertainties in the statistics

of sensitive properties was done by estimating their boot-

strap statistics. Sample statistics were estimated for indi-

vidual re-constituted sample of GSI and UCS. From these

values, the bootstrap statistics (mean and SD) of the sample

statistics were evaluated using Eq. (9). Table 6 and Fig. 10

summarize the results. It was observed that bootstrap

means of the sample statistics were coinciding with the

Fig. 10 Empirical CDFs of a mean of GSI and b SD of GSI estimated via different reliability methodologies

Fig. 11 Empirical CDF of the probability of failure Pf (%) for the

rock slope via different reliability methodologies

Table 7 Statistics of probability of failure (Pf) for the rock slope

estimated via various reliability methodologies

Reliability

methodology

Mean

of Pf

SD of

Pf

Confidence

interval

[2.5–97.5%]

Expected

performance

BMMI 0.9046 0.8875 [0.0480–3.1050] Good–

unsatisfactory

Traditional

Bayesian

0.4246 0.4489 [0.0330–1.6780] Good–poor

Bootstrap

reliability

0.7447 0.9439 [0.0060–2.9830] Good–

unsatisfactory
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ones estimated for the original sample (Table 2). Further,

significant bootstrap SDs were observed for sample

statistics of both properties signifying the statistical

uncertainties in sensitive properties invoked by the small

size of samples. Finally, the traditional reliability analysis

was performed for each re-constituted sample of the UCS

and GSI generated resulting in a value of Pf corresponding

to individual re-constituted sample. Firstly, the best fit

model with least AICc value was selected. Then, the tra-

ditional reliability analysis was performed (NB ¼ 104

times) via MCSs on the PF by generating 5 9 104 random

samples. Random samples were generated based on the

statistics of re-constituted samples of UCS and GSI and the

best fit models of mi and Ei. Figure 11 and Table 7 show

the analysis results. The SD signifies the effect of statistical

uncertainties on Pf due to small size samples. From this

approach the expected performance level of the slope was

mapped in the range of good to unsatisfactory.

5 Discussions

It is well-known that the rock projects often suffer with the

availability of insufficient data of rock properties. Limited

data restricts the capability of rock designers to accurately

perform the probabilistic characterization of input proper-

ties. It is very difficult to state a precise threshold number

of data points to classify the terminology ‘‘minimum

number’’ precisely. Ruffolo and Shakoor [47] observed that

for a 95% confidence interval and a maximum of 20%

acceptable strength deviation from the mean of UCS of

rocks, 10 UCS samples are needed to be tested. Some

studies state this threshold number to be 30 [38, 61]. These

guidelines are very crude as they lack statistical proof and

are based on limited data. Tang et al. [51], based on their

detailed statistical study, concluded that this ‘‘minimum

number’’ could be 54–458 for COV ranging from 0.3 to 0.1

for the marginals and 25–2577 for correlation coefficient

varying from - 0.9 to - 0.1 for the copula of geotechnical

properties, respectively.

An analysis was performed for the present case study to

determine the quantity of data required to obtain the best fit

model and convergence of model parameters for input

properties precisely. Figures 6 and 13 show the analysis

results. The observable differences between AIC values of

candidate models could initially be observed for a sample

size of * 500 and the clear identification of the best-fit

model could be made for * 100,000 samples. Amount of

data required to obtain the convergence for model param-

eters was significantly lower (* 103) than that to deter-

mine the best fit model accurately (106). Overall, it is

highly impractical to perform this quantity of lab/in situ

tests to obtain the precise statistics of geotechnical prop-

erties invoking statistical uncertainties which are required

to be considered in the analysis as suggested in the pro-

posed methodology which could be used for very limited

data of inputs. However, it is still practically impossible to

perform this amount of lab and in situ testing required to

determine even the parameters of the model (* 103)

accurately. This is due to practical difficulties (such as

sample collection, sample disturbance, site preparation and

data interpretation), high costs, time consumption, etc.,

involved in the rock testing. Hence, it is inaccurate to

assume that the best fit model and its parameters estimated

from the limited site-specific test data are ‘‘true estimates’’

of the statistics of rock mass properties under considera-

tion. This is even true for the high budget rock projects

where the quantity of in situ and laboratory testing is often

Fig. 12 MCSs model sets with a total of 104 models established for the a GSI and b UCS for the traditional Bayesian reliability methodology
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limited. For example, the number of in situ plate load tests

conducted for Chenab Bridge in India and Kazunogawa

hydro power cavern in Japan to determine the rock mass

deformability were approximately 20–30 [14, 53]. Condi-

tion is worser for small budget rock projects, where a very

limited amount is spent on rock investigation. Under these

conditions, analysis performed by the traditional reliability

methods are highly inaccurate which assumes that the best

fit model and its parameters estimated from the limited test

data are ‘‘true estimates’’ of the population parameters.

Previous section demonstrated the proposed BMMI

methodology for the reliability analysis of a rock slope

with limited data of input properties.

5.1 Comparative analyses

BMMI methodology differs from the traditional Bayesian

approach as it can consider the uncertainties in both model

type and associated parameters. It was observed that the

uncertainty associated with model type has significant

effect on the total uncertainty of input properties along with

that of response parameter (i.e., Pf) for the rock slope.

While the mean values of sample statistics were matching

well with each other (0.21–16.42% difference) for the case

study, the major difference was observed in the SDs of the

statistics of properties (2.88–51.61% difference) as shown

in Table 6. SD was significantly lower for the traditional

Bayesian approach compared to BMMI signifying the

underestimation of uncertainties in the statistics of prop-

erties majorly due to ignorance of model type uncertainty

in traditional Bayesian approach. These underestimated

uncertainties propagated during the estimation of statistics

of Pf also. Statistics of Pf were estimated to be approxi-

mately 50% lower (Table 7) for traditional Bayesian as

compared to BMMI methodology emphasizing the impor-

tance of considering the uncertainty in model type along

with uncertainties of model parameters.

In contrast, bootstrap-based methodology can consider

the uncertainties in both model types and parameters like

BMMI methodology. For this criterion (considering

uncertainties in both model and parameters), both boot-

strap-based method and BMMI are superior to traditional

Bayesian method. While the mean values of sample

statistics were matching with each other (0.05–3.02% dif-

ference) for the case study, the major difference was

observed in the SDs of the statistics of properties

(9.87–47.05% difference) as shown in Table 6. SDs were

significantly lower for the bootstrap-based methodology as

compared to BMMI. The reason could be the difference in

the analysis procedure adopted in these methodologies.

Bootstrap method estimates the sampling distributions of

properties by resampling (with replacement) from the

original sample (data at hand) and creating many bootstrap

samples [49]. There is no provision of inclusion of prior

information in this method and standard deviation may

only fluctuate in a range defined by the data of original

sample only. In contrast to this, BMMI includes the prior

information in the estimation of statistics of input proper-

ties. This prior information is usually collected from lit-

erature. Prior information can have wide range (hence

significant SD) in it since data are collected from the wide

variety of sites around the world as observed for this case

study. This may contribute to the higher SD in the esti-

mated statistics of input properties. These uncertainties

propagated during the estimation of statistics of Pf also.

Statistics of Pf were underestimated by 6.35–17.68% by

bootstrap reliability methodology as compared to the

BMMI (Table 7) for the considered case study. Effect of

Fig. 13 Variation of the a mean of GSI and b SD of GSI with the size of data sample
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prior knowledge on the statistics of input properties and Pf

are discussed in next section in detail.

A comparison was also made with the recently proposed

Bayesian Model Averaging (BMA) methodology. Details

of the methodology can be seen in the literature [35, 64].

The BMA starts from identifying the plausible probability

models for all the inputs. Then, a set of models comprising

all possible combinations from plausible probability model

are constructed and their corresponding fitting probabilities

are estimated. Then, for each combination the Bayesian

inference is performed and samples from the posterior

distribution of model parameters are generated via MCMC

sampling. Next, corresponding to each of these samples,

the probability of failure (Pf) is estimated using MCSs by

generating random realizations of inputs. Thus, for each

combination in the set a probability distribution function

(PDF) of Pf is estimated, which are then averaged as per

their fitting probabilities. The averaged PDF of Pf consid-

ered to have the impact of both the model selection and

model parameters uncertainties. An analysis was also

performed using the BMA and its results were compared

with those from the proposed methodology. While the

mean and SD of Pf from both approaches matched well

(* 5%), the BMMI required 99.52% less computational

efforts as compared to the BMA.

It could be observed that the proposed methodology is

relatively complex and mathematical compared to the tra-

ditional deterministic and reliability methods. Further, the

final decision-making in the proposed methodology is more

difficult as the outputs are the intervals of the probability of

Fig. 14 a Prior knowledge–I (PK–I), PK–II, PK–III and PK–IV with uniform distribution for Mean of GSI b probability of failure Pf (%)

corresponding to PK–I, PK–II, PK–III and PK–IV with uniform distribution from BMMI c PK–III with three prior distribution, Uniform (U),

Normal (N) and Weibull (W) [i.e., PK–III(U), PK–III(N) and PK–III(W)] for Mean of GSI and d Probability of failure Pf (%) corresponding to

PK–III(U), PK–III(N) and PK–III(W) from BMMI
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failure (i.e., Pf) in the proposed methodology as compared

to the precise values of performance functions (determin-

istic) and Pf (traditional reliability method). However, the

traditional methods often include the originally unavailable

information in the analysis, like assigning a precise value

to the inputs (generally mean), neglecting all other data (in

deterministic analysis) and/or assigning a precise PDF

using limited data (in traditional reliability). In contrast, the

proposed methodology accepts and considers (with no

subjective judgements) the lack of available input data and

propagates this imprecision to the outputs by estimating the

intervals of Pf. As per Dubois [10], ‘‘It is better for engi-

neers to know that you do not know than make a wrong

decision because you delusively think you know. It allows

one to postpone such a wrong decision in order to start a

new measurement campaign, for instance.’’

5.2 Impact of prior knowledge on the statistics
of properties and response parameter

Informativeness and confidence of prior knowledge is

regarded as a key factor in the uncertainty characterization

via Bayesian approach [15, 56]. To assess the importance

of prior information in BMMI methodology, an analysis

was performed to evaluate the effect of prior information

on the statistics of response parameter. Effect of prior

information was estimated for (1) range of statistics, and

(2) prior-distribution of properties. To evaluate the effect of

prior range of statistics of properties, ranges were narrowed

down by approximately 60%, 90% and 95%, respectively,

for prior knowledge II (PK-II), prior knowledge III (PK-III)

and prior knowledge IV (PK-IV) cases as compared to

original ranges represented by prior knowledge I case (PK-

I). Reducing range implies the higher (or more accurate)

information. Based on the information levels, these cases

could be arranged as: PK-IV[ PK-III[ PK-II[ PK-I.

Prior distributions of statistics of properties were assumed

to be same (i.e., uniform) for all the cases. Figure 14a

shows the corresponding prior distribution for the mean of

GSI. Results are summarized in Tables 8 and 9; and

Fig. 14b. With the increasing level of information, the

uncertainty in the sample statistical parameters was con-

tinuously reducing as indicated by decrease in SDs of

sample statistical parameters (0.51–53.25%). The uncer-

tainty in Pf was also continuously reducing as indicated by

the reducing length of confidence intervals. Minor change

Table 8 Statistics of the sample statistics of UCS and GSI for four

different prior knowledge ranges estimated through BMMI

Prior

knowledge

(PK)

Statistical

parameter

UCS GSI

Mean SD Mean SD

PK-I Sample

mean

115.9484 11.8974 41.1439 1.4561

Sample SD 44.8957 20.0365 6.6459 1.1739

PK-II Sample

mean

115.6923 11.1870 41.1797 1.4338

Sample SD 44.7801 20.1381 6.6095 1.1274

PK-III Sample

mean

115.3818 8.4591 41.0545 1.0980

Sample SD 43.2089 17.9698 6.4086 0.5488

PK-IV Sample

mean

115.5057 5.7374 41.0545 1.0980

Sample SD 41.4797 16.2779 6.4086 0.5488

Table 9 Statistics of probability of failure (Pf) for four different prior

knowledge ranges estimated through BMMI

Prior knowledge

(PK)

Mean of

Pf

SD of

Pf

Confidence interval

[2.5–97.5%]

PK-I 0.9046 0.8875 [0.0480–3.1050]

PK-II 0.8941 0.8838 [0.0460–3.1170]

PK-III 0.8225 0.8087 [0.0460–2.7660]

PK-IV 0.7211 0.7554 [0.0500–2.5800]

Table 10 Statistics of the sample statistics of UCS and GSI for three

types of prior distributions estimated through BMMI

Prior

knowledge

(PK)

Statistical

parameter

UCS GSI

Mean SD Mean SD

PK-III (U) Sample

mean

115.3818 8.4591 41.0545 1.0980

Sample SD 43.2089 17.9698 6.4086 0.5488

PK-III (N) Sample

mean

116.0917 6.3687 41.0541 0.8387

Sample SD 40.8307 16.2188 6.3870 0.3512

PK-III (W) Sample

mean

116.3206 6.2115 41.0853 0.7651

Sample SD 41.0003 16.2822 6.3954 0.3320

Table 11 Statistics of probability of failure (Pf), for three types of

prior distributions estimated through BMMI

Prior knowledge

(PK)

Mean of

Pf

SD of

Pf

Confidence interval

[2.5–97.5%]

PK-III (U) 0.8225 0.8087 [0.0460–2.7660]

PK-III (N) 0.6612 0.7643 [0.0420–2.5640]

PK-III (W) 0.6621 0.7626 [0.0440–2.5260]
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was observed in the confidence interval length for PK-II

case (0.46%), however, significant changes were observed

for PK-III and PK-IV cases (11.02–17.24%) as compared

to PK-I case. In the case of rock mechanics, the level of

prior information could be higher for a site if the data are

available from the nearby sites. In this scenario, the

uncertainty in the estimated Pf would be lower as com-

pared to the case, where the statistics of properties are

directly adapted from the literature which is based on the

world-wide collected data. Hence, it would be better if the

prior information could be collected from the nearby sites

to reduce the uncertainties in the prior information and

hence, the resulting uncertainties in the response estimates

for rock structures.

It should be noticed in the previous sections that the

analysis was performed by considering the prior distribu-

tion of properties to be uniform. To assess the effect of

prior distribution, an analysis was performed by changing

the prior distributions of statistics of properties with con-

stant ranges. PK-III case explained in the previous section

was considered for the analysis with three types of distri-

butions [i.e., Uniform (U), Normal (N) and Weibull (W)].

In other words, the analysis was considered for three dif-

ferent prior cases, i.e., PK-III (U), PK-III (N) and PK-III

(W). Figure 14c shows the distributions for mean of GSI.

Tables 10 and 11; and Fig. 14d summaries the analysis

results. It was observed that the uncertainty in the sample

statistical parameters was lower for Weibull and normal

distributions compared to uniform distribution as indicated

by decrease in SDs of sample statistical parameters

(9.39–39.05%). Similar trend was also observed for the

uncertainty in the Pf indicated by the reduced length of

confidence interval of Pf for Weibull and normal distri-

butions (7.28–8.75%) as compared to uniform distribution.

This could be due to less informative nature of uniform

distribution (also known as non-informative prior) as

compared to the normal and Weibull distributions [36]. In

other words, more confidence is shown by the normal and

Weibull distributions to central values as compared to the

uniform distribution.

6 Conclusion

This study presented a novel Bayesian multi-model infer-

ence (BMMI) approach to characterize the uncertainties

associated with both the probability model type and

parameters arising due to limited data of properties and to

assess their effect on the reliability estimates of rock

structures. For this methodology, model type uncertainty

was first quantified by employing the multi-model infer-

ence approach and then the uncertainties in the model

parameters were estimated via traditional Bayesian

framework. The proposed framework uses the MCMC

method with the MH algorithm to simulate the posterior

distributions of model parameters. Response surface

methodology and global sensitivity analysis were coupled

with this methodology to enhance its robustness and to

reduce computational efforts. The proposed methodology

was demonstrated for a Himalayan rock slope prone to

stress-controlled failure in detail. Further, analyses were

also performed using methods, i.e., traditional Bayesian

and bootstrap reliability, frequently employed to perform

reliability analysis with limited data. The proposed

methodology was found to be superior to other methods as

it can consider the uncertainties in both model types and

parameters and can include the prior information in the

analysis. Traditional Bayesian and bootstrap methods

underestimated the uncertainties in the statistics of input

properties (0.21–51.61% and 0.05–47.05%, respectively)

as compared to BMMI due to their inherent issue of

neglecting uncertainties in model type and prior informa-

tion in the analysis respectively. This leads to the under-

estimation of uncertainty in Pf (49.42–53.06% and

6.35–17.68%, respectively) by these methods as compared

to BMMI. Overall, this method overcomes the limitations

of traditional methods and can be used for a wide variety of

problems with explicit/implicit and single/multiple PFs.
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