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Abstract
As the displacement of step-like wading landslides is highly nonlinear and complex, it is difficult to develop a reasonable

and accurate prediction model. Effective prediction of landslide displacement depends on the performance of the prediction

model and the quality of monitoring data, which is greatly affected by sudden rainstorm and flood. To improve the

prediction accuracy of the study model, Global Navigation Satellite System (GNSS) is used to monitor surface dis-

placement. The GNSS-based displacement data are used to develop a hybrid model by combining Particle Swarm Opti-

mization (PSO), Gravitational Search Algorithm (GSA) and Support Vector Regression (SVR). The displacement of

Jiuxianping landslide, a typical wading rock landslide in Yunyang, China, has obvious step-like distribution characteristic.

Firstly, the deformation characteristics and failure modes of Jiuxianping landslide are inductively analyzed. The step-like

landslide displacement is decomposed into trend term and periodic term after reducing data noise by singular spectrum

analysis (SSA). Then, a polynomial fitting model for the trend term prediction is developed, while multi-models are

developed by PSO-SVR, GSA-SVR and PSO-GSA-SVR for predicting the periodic term. The three models were com-

pared, and the sequence of removing the random term was evaluated again after it was reconstructed. Finally, the

cumulative displacement was obtained by superimposing the trend displacement and the periodic displacement. Also, it

was compared with the actual monitoring displacement. The results show that: (1) the step-like phenomenon of landslide

displacement is mainly affected by rainfall and reservoir water level (RWL), and the displacement of the abrupt segment of

the landslide exhibits an overall convex deformation; (2) SSA could effectively decompose the highly nonlinear step-like

landslide displacement into trend term and periodic term; (3) the correlation coefficient of the hybrid-optimized PSO-GSA-

SVR model for predicting the periodic displacement is more than 0.85, and the correlation coefficient of the overall

displacement prediction model is 0.99. This work provides a better displacement prediction model for predicting a typical

step-like wading rock landslide.
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1 Introduction

Landslide is one of the most common natural disasters

worldwide, particularly in reservoir banks and mountain-

ous areas, posing a significant threat to human life and loss

of their properties [10, 30]. With the rapid economic

development in China, the construction of hydropower

projects has become a top priority. The Three Gorges

Reservoir (TGR) project in China is a prominent example

of such a project. Due to the complex geological envi-

ronment, the TGR is susceptible to numerous rock mass

movements. Based on an incomplete survey,
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approximately 5000 landslides have occurred since the

initial impoundment of the TGR Dam in 2003, with around

3000 of them being wading rock landslides [13, 33, 34].

Landslides are more prone to creep and sudden change

with RWL variation or rainfall [29, 37, 44].

In recent years, many scholars have analyzed and pre-

dicted the occurrence of landslides caused by both rainfall

and RWL [19, 24]. They have also proposed some effective

models for landslides prediction [28, 32]. Currently, these

methods employed for analyzing landslide displacement

mainly involve laboratory physical model tests and time

series machine learning model [26]. The laboratory phys-

ical model is derived from a wide range of actual observed

creep tests. It has a solid physical foundation and can be

used for effective prediction of landslides. However, this

model has strict limitations [11, 23, 33]. With the devel-

opment of computer technology, nonlinear machine

learning models based on nonlinear theory have been

gradually developed, including traditional nonlinear mod-

els [17], neural networks [4, 14], XGboost [42, 43], SVR

[3, 22, 31, 45] and extreme learning machines [1]. As

science and technology gradually improved, artificial

intelligence scientific algorithm began to flourish, which in

turn led to the fruitful results obtained from the prediction

of landslide displacement. Zhang [39] applied an advanced

deep machine learning method-gated recurrent unit (GRU)

to predict the displacement of Jiuxianping landslide in

Yunyang County, Chongqing. Zhou and Yin [45] used the

displacement of Bazimen landslide, in TGR, as an example

to study typical step-like landslides displacement. Based on

the time series theory, the average movement method was

used to divide the total displacement of Bazimen landslide

into trend items and periodic items. Polynomial fitting

method and PSO-SVM model were used for its prediction.

Han and Shi [7] used Support Vector Classification (SVC)

to classify and identify the displacement of Majiagou

landslide and used PSO-SVR to predict its abrupt dis-

placement section. Single intelligent optimization algo-

rithm used for data processing leads to incomplete

identification, easy to local optimization, slow convergence

and stagnation, which result in large errors. Multiple hybrid

models have stronger prediction and improved general-

ization ability [38, 40, 46]. Single optimization algorithm

needs to be improved, so it is necessary to apply hybrid

intelligent optimization algorithm model [43].

From the displacement monitoring curve, landslides can

be divided into four categories: stable-type landslides,

exponential-type landslides, step-like landslides and con-

vergence-type landslides [22]. For the displacement of

step-like deformation of wading rock landslides, there are

more unpredictable disasters, and it has been a hot issue

[16, 20]. Landslide displacement prediction is mainly

divided into three stages: empirical prediction stage,

statistical prediction stage and nonlinear prediction stage

[38]. In the nonlinear prediction stage, the total displace-

ment of landslides accumulates periodic displacement by

trend displacement. The trend term is always controlled by

the internal evolution of the landslide and its own condi-

tions, and the periodic term is induced by external factors,

such as rainfall, RWL, etc. [35]. The trend displacement is

predicted by function fitting method, and the periodic

displacement can be predicted by machine learning meth-

ods [12]. Choosing a reasonable and fast method for

decomposing the total displacement is the primary factor in

verifying its reliability [9]. Displacement time series

decomposition methods include moving average method,

double exponential smoothing (DES), discrete wavelet

transform (DWT), empirical mode decomposition (EMD),

etc. [15]. Filter method is simple, but it needs to determine

the trend item type. Wavelet method does not need to

determine the trend, but it needs to estimate the basic

function in advance. The process of smoothing method is

simple, but the parameter selection is complex, and the

displacement of trend term is step-like. Empirical mode

method can easily be used to mix different modal signals

[3, 21]. SSA is a method that deals with nonlinear time

series data. It has no model, does not require stationary

time series and does not assume a parametric model. It can

be widely used in various time series. The time series to be

studied are decomposed and reconstructed to identify dif-

ferent signals in the original sequence, so as to extract the

trend term, periodic term, etc. [25]. However, field moni-

toring data sets are often contaminated and highly nonlin-

ear. Golyandina [6] used a case to demonstrate SSA

combined with R for analysis, prediction and parameter

estimation, proving that SSA is a powerful tool for ana-

lyzing and predicting time series. In this context, Zhang

and Wang [36] combined SSA with support vector machine

(SVM) and cuckoo search (CS) algorithm. Compared with

other methods (SVM, CS-SVM, SSA-SVM, SARIMA and

BPNN), they found that the model can significantly

improve the accuracy of forecasting short-term power load.

Liu [18] proposed a novel multistep wind speed prediction

model by combining Variational Mode Decomposition

(VMD), SSA, Extreme Learning Machine (ELM) and a

forecasting model. The wind speed is decomposed into

several sub-layers, and it is found that the prediction speed

of the sub-layer is fast and the generalization performance

is good. Based on the aforementioned findings, this study

combines SSA method with intelligent optimization algo-

rithm, and achieves remarkable results in the field of short-

term power load forecasting, medical forecasting and

weather forecasting. However, it is less used in landslide

disaster forecasting and has application prospects.

In summary, this paper uses Jiuxianping wading rock

landslide as an example to analyze the displacement of
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step-like landslides. Firstly, the deformation characteristics

and failure modes of the landslide are analyzed for the

monitoring data set. Then, the SSA algorithm is used to

decompose the landslide monitoring displacement, remove

the random signal and extract the trend displacement and

periodic displacement. After the SSA algorithm was

reconstructed, it was evaluated to prove that the trend term

and periodic term are reasonable enough after they were

randomly decomposed. For the evaluation of the trend term

using power function polynomial fitting prediction, the

periodic displacement is trained and tested by the improved

GSA-PSO and SVR model. Finally, the trend term and the

periodic displacement are accumulated and compared with

the actual monitoring displacement. The mean absolute

error (MAE), mean square error (MSE) and correlation

coefficient (R) are used as evaluation indexes to prove the

feasibility of the method. This idea provides a new intel-

ligent algorithm for predicting landslide displacement and

it can be used as a new reference for predicting and pro-

viding early warnings about the occurrence of landslides.

2 Research areas and data

2.1 Jiuxianping landslide and geological
environment

Jiuxianping landslide is located on the left bank of the

Yangtze River in the lower reaches of Yunyang County,

Chongqing. It is found in the TGR area, 239 km away from

the dam site. It is a typical wading rock landslide. The

coordinates of the center point are 108� 460 57.3500 E, 30�
560 27.6300 N. The main sliding direction is 144�, the length
is about 1200 m, the middle width is about 850 m, the

average thickness is 40 m, the area is 144 9 104 m2 and

the volume is about 5700 9 104 m3. The boundary is

roughly fan-shaped, and can be seen in the UAV ortho-

graphic projection (Fig. 1).

The bedrock orientation at the trailing edge of the

Jiuxianping landslide is 137�\24�, while the leading edge

of the Jiangbian landslide exhibits an orientation of

326�\9�. This region features an erosion-prone low

mountain valley landform, with higher elevations in the

northeast gradually declining towards the southwest. The

ground elevation ranges from 134 to 587 m, with a relative

height difference of 453 m. The angle between the flow

direction of the Yangtze River and the strike of the

underlying bedrock strata ranges from 40� to 60�, resulting
in an oblique slope shape. Generally, the longitudinal ter-

rain is characterized by gentle slopes or platform-like

features. The leading edge of the Jiuxianping landslide

extends 145 m below the water level of the Yangtze River,

indicating a wading landslide. The annual RWL before

dam fluctuations ranges between 145, 175 and 145 m,

significantly impacting the stability of the landslide due to

RWL changes.

2.2 Deformation characteristics and failure
modes

According to the description from site, many cracks

appeared during this period, mainly tensile cracks, fol-

lowed by shear cracks. Chongqing Institute of Geology and

Mineral Resources conducted a detailed investigation of

the area, and observed surface cracks on the landslide, up

to 1 m deep and 0.5 m wide (Fig. 2c), tensile cracks clearly

visible on the cement floor of residential courtyard and

Concrete pavement (Fig. 2a and b), shear cracks and other

macroscopic cracks on the wall of the house (Fig. 2a and

d), and the bare rock of the wading part, which shows

bedding rock (Fig. 2e). For wading rock landslides, in

addition to the sliding body, sliding zone, free deformation

space, internal and external forces, the primary condition

for sliding deformation is to have lateral boundary and

trailing edge boundary conditions. Under the action of

structure, creep or slip deformation, the trailing edge

boundary condition of tension crack is formed. The front

edge of landslide is free, and the trailing edge is bounded

by tension crack groove and slope top.

Based on the above investigation and analysis, the

landslide failure mode is slip-bending, which mainly

occurs in the bedding slope. When the dip angle of the rock

layer in the bank slope is steeper than the slope of the bank

itself, indicating a steep dip in the same direction, and the

dip angle of the sliding surface exceeds the comprehensive

friction angle of the surface, the overlying rock mass

possesses the conditions necessary to slide along the sliding

surface. However, the sliding surface is not free, preventing

its sliding. Under certain conditions, there could be bend-

ing deformation of the middle and lower rock mass until

there is buckling failure. Generally, it can be divided into

three stages: bending stage, uplift stage and penetration

stage. During the deformation process, a certain amount of

elastic strain energy is stored in the bending part. There-

fore, once the lower sliding body starts, the release of

elastic strain energy can accelerate the additional thrust of

the sliding body.

2.3 Monitoring scheme and result analysis

The conditioning factor of the landslide is the early tec-

tonic movement, which leads to the development of

sandstone joints during the formation of syncline. The

weak surface (belt) and main sliding surface (belt) are

produced in the contact surface of sand mudstone and

mudstone strata. The new tectonic movement, crustal
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uplift, river incision, the leading edge of the free landslide

along the sliding deformation provide deformation space.

The triggering factors of landslides are rainstorm or

extreme rainfall and RWL fluctuation. The primary factor

that causes the instability of landslides is RWL fluctuation.

The landslides displacement in the TGR area have step-

like characteristics, and the short-term deformation of

Chongqing

Fig. 1 Location of Jiuxianping landslide and UAV orthophoto

(a) (b)

(d) (e)

(c)

6 °

Fig. 2 Jiuxianping landslide deformation characteristics: a house deformation characteristics, b road deformation characteristics, c landslide

trailing edge tensile cracks, d wall deformation characteristics, e landslide front edge bare rock
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landslides is affected by RWL and rainfall. In the stage of

landslide mutation, the displacement–time curve of land-

slide deformation evolution stage has three obvious pro-

cesses: initial deformation stage, constant deformation

stage and accelerated deformation stage [22]. Therefore, it

is particularly important to identify the stages of landslide

displacement to warn against disaster. To understand

landslide deformation in the area, Jiuxianping landslide

monitoring network is arranged for real-time and accurate

monitoring (Fig. 3). In this paper, the II–II0 section is taken

as the research object (Fig. 4), and the monitoring data and

geological data of the section are selected correspondingly.

To facilitate the study of step-like displacement in the

main sliding direction, the landslide surface displacement

data collected by YY208, YY209 and YY210 displacement

monitoring stations are selected for research. From Fig. 5,

the displacement of the three monitoring points showed

step-like-change, the periodic law is obvious, and it is easy

to study the relationship between displacement and rainfall

and RWL.

The rainfall of Jiuxianping landslide is most vigorous in

summer and autumn, and the regulation of RWL shows

obvious periodicity (Fig. 5). Under the combined action of

RWL drop and rainstorm, the displacement of landslide has

obvious step-like phenomenon (Fig. 5). The rise of RWL

leads to stable deformation of the landslide. The decrease

of RWL has sudden change on the landslide, and there is an

obvious lag effect. When RWL rises, the RWL between

160 and 175 m points to the hydrodynamic pressure inside

the landslide, which enhances the stability of the landslide.

When RWL drops, the RWL is between 160 and 145 m

and produces hydrodynamic pressure pointing out of the

slope and downward. This accelerates the deformation of

the landslide. The time point at which mutation of the

Fig. 3 Jiuxianping landslide monitoring network
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landslide displacement occurs each year is the low RWL

point, and each may belong to the accelerated deformation

stage (Fig. 6).

Rainfall is also one of the factors that lead to landslide

displacement. September to October 2017 were a dense

rainfall period during autumn; there was relatively heavy

rainfall, and the RWL increased (the dynamic water pres-

sure pointed to the landslide interior to stabilize the land-

slide). However, the monitoring point YY210 near the

water end of the RWL has a large mutation displacement.

The sudden displacement that occurred in November 2017

occurred during a period of high RWL and without heavy

rainfall. This indicates a lag effect in rainfall, with a rela-

tively long delay. Furthermore, it can be observed that the

infiltration of rainfall (due to material properties and slow

seepage) leads to much slower changes in pore water

pressure compared to the decrease in the RWL (Fig. 5).

Based on the above, the deformation of landslide is

affected by RWL level and rainfall. RWL plays a major

role in the displacement and deformation of landslide, but
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Fig. 4 II-II0 profile and displacement monitoring layout
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the influence of rainfall cannot be ignored. Based on this,

RWL and rainfall are selected as influencing factors.

The triggering of landslides (Segments A, B, C and D) is

induced by rainfall. The cumulative displacement of the

transitional segment exhibits an overall convex deforma-

tion. Under the interaction of RWL and rainfall, low RWL

correspond to convex deformation displacement, while

heavy rainfall corresponds to concave deformation dis-

placement (Fig. 6).

3 Method and model developing

3.1 SSA

The steps are as follows[8]:

(1) Embed

Assume that the one-dimensional displacement data

time series is X = (x1, x2,…, xN), 1\ L\N. The positive

integer L is the length of the sliding window, where sam-

pling is equally spaced and the length is N. One-dimen-

sional displacement data is mapped into a multi-

dimensional trajectory matrix, which is a Hankel matrix

and can be expressed:

X ¼

x1 x2 x3 � � � xK
x2 x3 x4 � � � xKþ1

..

. ..
. ..

. ..
.

xL xLþ1 xLþ2 � � � xN

2
6664

3
7775 ð1Þ

where L is the embedding dimension, andXi = [xi, xi?1,…,

xi?L-1]. Each element of the matrix is equal diagonally.

(2) Decomposition

Calculate XXT and obtain L eigenvalues k1, k2,…, kL;
U1, U2,…, UL is the orthogonal eigenvectors corresponding

to the eigenvalues. L = max(I, ki[ 0) = R(A), then the

following equation is obtained:

X ¼ X1 þ X2 þ � � � þ XL

Xi ¼
ffiffiffiffi
ki

p
UiV

T
i

Vi ¼ XTUi

� ffiffiffiffi
ki

p
i ¼ 1; 2; . . .; L0ð Þ

9=
; ð2Þ

where Xi is the elementary matrix,
ffiffiffiffi
ki

p
is the singular value

of matrix X, Ui is the empirical orthogonal function of

matrix X, Vi is the main component of matrix X, and
ffiffiffiffi
ki

p
,

Ui and Vi is the i th triple eigenvector of matrix X.
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Fig. 6 A, B, C and D detail of regional monitoring data
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(3) Grouping

The matrices contained in each group are added, as

shown in the following:

X ¼ XI1 þ XI2 þ � � � þ XIm

XI ¼ Xi1 þ Xi2 þ � � � þ Xip

�
ð3Þ

where the contribution rate of Xi is a ¼ ki=
PL
i¼1

ki:
(4) Reconfiguration

The reconstructed sequence can be obtained by the

following:

yrck ¼
1

k

Xk
m¼1

y�m;k�mþ1 1� k\L�

yrck ¼ 1=L�
PL�
m¼1

y�m;k�mþ1 L� � k�K�

yrck ¼
PN�K�þ1

m¼k�K�þ1

y�m;k�mþ1=N � k þ 1 K�\k�N

9>>>>>>>>=
>>>>>>>>;

ð4Þ

3.2 PSO-GSA

In GSA, the definition of the gravitational mass of the

particle and the updating formula of the inertial mass are

obtained from the fitness function in the following equation

[5]:

MiðtÞ ¼
miðtÞ

PN
j¼1

mjðtÞ

miðtÞ ¼
fitiðtÞ � fworstðtÞ
fbest ðtÞ � fworstðtÞ

9>>>>>=
>>>>>;

ð5Þ

where, fitiðtÞ is the moderate function value of particle i at

time t, and the MSE of SVR is taken as the fitness function;

fbest ðtÞ and fworstðtÞ are the best and worst fitness function

values of the group at time t. Gravity mass is generally

expressed in units of MiðtÞ.
After using the PSO-GSA, the calculation formulas of

the resultant force Fk
i ðtÞ, acceleration aki ðtÞ, position Xk

i ðtÞ
and velocity Vk

i ðtÞ of the k-dimensional particle i are

updated as follows [27]:

Fk
i ðtÞ ¼

PN
j¼1;j6¼i

kFk
ijðtÞ

aki ðtÞ ¼
Fk
i ðtÞ

MiðtÞ
Viðt þ 1Þ ¼ xViðtÞ þ c1r1aciðtÞ

þc2r2 Pbest � XiðtÞð Þ
Xiðt þ 1Þ ¼ XiðtÞ þ Viðt þ 1Þ

9>>>>>>>>>=
>>>>>>>>>;

ð6Þ

where k is a random number in [0, 1], b is a uniform

random distribution in [0, 1], and k is the dimension space.

Fig. 7 Flowchart of the prediction method
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c1 and c2 are constants in [0, 1], r1and r2 are random

numbers between [0, 1], Pbest is the local optimal value and

x is the inertia weight.

3.3 SVR

The optimal regression function is given in the following

equation [41]:

f ðxÞ ¼ xTxþ b ð7Þ

where x is the weight vector, b is the bias vector. The

prediction data f ðxiÞ is obtained according to the input

influencing factor xi. By introducing the relaxation factor,

the objective optimization function of SVR is given in the

following equation:

min
1

2
wk k2þC

Xm
i¼1

ni þ n�i
� �

s.t: f xið Þ � yi � eþ ni
yi � f xið Þ� eþ n�i
ni � 0; n�i � 0; i ¼ 1; 2; . . .;m

9>>>>=
>>>>;

ð8Þ

where C is the penalty function, e is the maximum

regression error, ni and n�i is the slack variable. By intro-

ducing a Gaussian radial basis (RBF) kernel func-

tion:K xi; xj
� �

¼ exp � x� xik k2
.
2g2

� �
and Lagrange

multiplier a�i and ai, the prediction regression equation is

written again in the following equation:

f ðxÞ ¼
Xm
i¼1

a�i � ai
� �

K xi; xj
� �

þ b ð9Þ
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Fig. 8 Trend and periodic terms after SSA decomposition results: a YY208, b YY209, c YY210
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3.4 Model developing and validation

The calculation flow chart of the SSA-PSO-GSA-SVR

model is shown in Fig. 7. Each monitoring displacement in

time series is composed of several factors. After removing

the influencing random factors, Jiuxianping landslide dis-

placement is decomposed into trend term and periodic

displacement by SSA algorithm. Therefore, the cumulative

displacement is expressed as follows:

st ¼ ut þ vt ð10Þ

where St is the cumulative displacement time series of

landslide displacement, ut is the trend displacement series

and vt is the periodic displacement series. The cumulative

displacement of the landslide can be obtained by super-

imposing the trend displacement and the periodic

displacement.

The trend term is always controlled by the internal

evolution of the landslide and its own conditions, and the

periodic term is induced rainfall and RWL. The trend term
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Fig. 9 Comparison of time series of actual displacement and reconstructed displacement results: a YY208, b YY209, c Y210

Table 1 Evaluation of reconstructed sequence and actual displace-

ment fitting results

MSE (mm2) MAE (mm) R

YY208 0.357 0.331 0.999

YY209 0.332 0.359 0.999

YY210 0.438 0.397 0.999

Table 2 Polynomial coefficient

a0 a1 a2

YY208 1.528 4.364 - 0.032

YY209 11.18 4.231 - 0.031

YY210 6.532 4.346 - 0.033
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Fig. 10 The displacement–time curve of the three monitoring points trend prediction results: a YY208, b YY209, c YY210
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is fitted and predicted by multiple polynomials, and the

periodic term is trained and predicted by PSO-GSA-SVR

algorithm. Finally, the cumulative displacement is

evaluated.

In this paper, mean absolute error (MAE), mean square

error (MSE) and correlation coefficient (R) are used to

evaluate the error of the model in the following:

MAE ¼
Pn
i¼1

x� xið Þ
	

n

MSE ¼
Pn
i¼1

x� xið Þ2
	

n

9>>=
>>;

ð11Þ

R ¼

PN
i¼1

xi � xð Þ x̂i � x̂
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
i¼1

xi � xð Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1

x̂i � x̂
� �2

s ð12Þ

Table 3 Evaluation of trend displacement prediction results

MSE (mm2) MAE(mm) R

YY208 23.121 3.664 0.989

YY209 12.539 2.811 0.988

YY210 11.889 2.787 0.984
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Fig. 11 a Periodic displacement. b Relationship between rainfall and periodic displacement. c Relationship between RWL, RWLchange and

periodic displacement. d Relationship between annual displacement, monthly displacement and periodic displacement
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where x is the measured value, xi is the predicted value and

n is the sample size. The lower the MAE and MSE, the

higher the predictive intensive reading; the closer R is to 1,

the stronger the correlation.

4 Results and discussion

4.1 Decomposition and reconstruction of trend
and periodic terms

In order to simultaneously verify the feasibility of the

proposed method, three monitoring points are selected. The

time series data of YY208, YY209 and YY210 displace-

ment monitoring points are decomposed by SSA. SSA is

used to analyze the data for classification and dimension

transformation. There are 3 monitoring point data (each

monitoring point for 60 months) for trend term displace-

ment from June 2016 to June 2021. Through the decom-

position and reconstruction process, it was found that the

optimal choice for L is 9, as it achieves the best results.

This selection of L strikes a balance between capturing the

trend and periodic components, making it the most ideal

configuration. After the decomposition and reconstruction

of the trend term and periodic term, it is the most ideal.

When L selects 28, the reconstruction error is the smallest,

but it is not conducive for the decomposition of reasonable

trends and periodic terms, and needs to be debugged back

and forth. The small L often causes the sequence trend term

and the periodic term to be mixed together. Selecting a

larger L can often minimize random components hidden in

the original signal, and very large L causes the singular

value decomposition time to increase [2]. The number of

singular values is determined to be 5 by infinite approxi-

mation of Fourier transform iterative experiment, and the

first 4 groups are selected for reconstruction. When they are

reconstructed, the fifth group of data are messy and non-

periodic and considered to be a random sequence. Thus,

they are eliminated. Finally, the trend term and the periodic

term are obtained (Fig. 8).

SSA removes random parts, decomposes them into trend

term and periodic term and then performs cumulative

comparisons (Fig. 9). The trend term and periodic term

reconstructed are evaluated with the actual displacement

time series, and the reconstruction sequence is evaluated by

MAE, MSE and R. The evaluation indicators are shown in

Table 1.

4.2 Trend displacement prediction

From the SSA of Sect. 4.1, all monitoring points are

selected for trend displacement extraction. The trend

training and test are also programmed in pycharm, and then

the polynomial expansion coefficient and power order are

fitted and solved. Training data are taken from June 2016 to

June 2020 (80%), and test data are taken from July 2020 to

June 2021 (20%). At present, the trend term of landslide

prediction is generally predicted by time step, because the

trend term is affected by the internal potential factor, and

the influencing factor is difficult to quantify. In previous

landslide displacement predictions, most monitoring peri-

ods can last 5–10 years, and the monitoring interval is

typically 1 month. That is, limited monitoring data is dis-

tributed over a long time span. In all the fitting methods,

the decomposition of the sequence in Sect. 4.1 can be seen

to increase the trend more stably. In extracting the trend

term displacement using multiple fitting is better. Iterative

approximation fitting helps to select the most reasonable

power and number of items. The polynomial fitting is the

Table 4 Relationship between periodic displacement and eight

influence factors

Impact factors YY208 YY209 YY210

Rainfall during this month 0.767 0.767 0.767

Rainfall during the last 1-month 0.773 0.771 0.771

Rainfall during the last 2-months 0.712 0.711 0.711

RWL elevation 0.892 0.902 0.901

RWL change in the last 1-month 0.632 0.682 0.684

RWL change in the last 2-months 0.697 0.692 0.711

Displacement during the last 1-year 0.724 0.7 0.709

Displacement during the last 1-month 0.751 0.782 0.794

Table 5 Optimal SVR model parameters

YY208 YY209 YY210

PSO GSA PSO-

GSA

PSO GSA PSO-

GSA

PSO GSA PSO-

GSA

C 3.498 3.375 11.178 3168 3.605 9.704 5000 2.654 8.374

g 0.617 0.629 1.550 0.535 0.745 1.569 0.755 0.613 4.965
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best after repeated attempts. The polynomial coefficients

are shown in Table 2, and the fitting formula is shown in

Eq. (13). The extracted trend items are fitted and trained,

and the prediction results are obtained by the test data

(Fig. 10). MAE, MSE and R evaluation indicators were

used for the evaluation, as shown in the following equation

and Table 3.

f ðxÞ ¼ a0 þ ai
Xi

1

xi ð13Þ

where a0 and ai is the expansion coefficient.

4.3 Periodic displacement prediction

4.3.1 Factor selection and evaluation

Rainfall: Rainfall is one of the triggering factors that leads

to landslide deformation. During the infiltration-seepage

process of rainfall, the stability of the landslide is destroyed

by changing the soil pressure, matrix suction and

Table 6 Evaluation and error comparison of all optimized SVR models

YY208 YY209 YY210

PSO GSA PSO-GSA PSO GSA PSO-GSA PSO GSA PSO-GSA

MSE (mm2) 5.867 5881 5.357 4.923 5.217 3.935 6.000 6.364 5.244

MAE (mm) 1.603 1.587 1.374 1.599 1.645 1.560 1855 1.974 1.870

R 0.795 0.805 0.856 0.832 0.818 0.865 0.805 0.812 0.862
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Fig. 12 Comparison of actual–predicted periodic displacement by different optimized models: a YY208, b YY209, c YY210
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hydrodynamic pressure of the soil. This results in the

deformation of the landslide. On the other hand, infiltration

of rainfall in soil causes chemical reaction, and soil–water

reaction leads to the reaction of mudding, softening and

chemical dissolution of hydrophilic substances. Finally, it

leads to the change of internal cohesion and internal fric-

tion angle of soil, which indirectly changes the stress–strain

state. This is because rainfall infiltration-seepage is a slow

process, including runoff rainwater. Therefore, rainfall

during this month, rainfall during the last 1-month and

rainfall during the last 2-months are the rainfall factors

selected for evaluation (Fig. 11a).

RWL: RWL is the major triggering factor that leads to

landslide deformation. The fluctuation of RWL affects the

distribution of underground hydrodynamic stress field,

which affects the reduction of soil strength and the weak-

ening of permeability. The rise of RWL leads to the

dynamic water pressure pointing to the landslide, and the

dynamic water pressure caused by the rapid decline of

water level changes sharply. The landslide is most vul-

nerable to instability at this moment. The influence of

RWL depends on its fluctuation. The step-like mutation

displacement of the wading landslide in the TGR is

affected by the decline of RWL every year. At this

moment, RWL elevation, RWL change in the last 1-month

and RWL change in the last 2-months are the RWL factors

selected for evaluation (Fig. 11b).

Displacement increase: Due to the annual stepwise

change of the landslide, it has periodic change. Displace-

ment during the last 1-year and displacement during the

last 1-month are the influencing shadows selected for

evaluation (Fig. 11c).

In order to verify the rationality of factor selection, the

degree of geometric similarity of curves composed of two

Table 7 cumulative displacement and actual monitoring displacement

accuracy and error

YY208 YY209 YY210

MSE (mm2) 6.043 6864 5.975

MAE (mm) 1.744 1.823 1.706

R 0.998 0.998 0.998
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Fig. 13 Comparison of predicted–actual total displacement of each monitoring point: a YY208, b YY209, c YY210
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or more sequences (sequences can be understood as factors

or indicators in the system) is studied by using grey cor-

relation degree. Table 4 shows the relationship between the

displacement of the three monitoring points YY208,

YY209, YY210 and the influencing factors. Resolution

coefficient greater than 0.5 is considered to have a corre-

lation, and that greater than 0.6 is considered to have a

close relationship. It indicates that the selected factors are

reasonable enough. Using grey correlation analysis

(YY208, YY209 and YY210), the spatial location plays a

significant role in the correlation with rainfall, RWL and

displacement. Specifically, for the rainfall category, the

highest correlation was observed with the rainfall from the

previous month. In the case of RWL category, it was

associated with the elevation of the RWL. As for the dis-

placement category, it was primarily correlated with the

displacement from the previous month. However, the

magnitude of correlation varied depending on the spatial

location.

4.3.2 Parameter optimization and displacement prediction

As a single optimization algorithm cannot solve the opti-

mization problem of high-dimensional search space, an

improved GSA is proposed, which combines the GSA with

PSO algorithm. By manipulating the boundary and acti-

vating the stagnated particles in the new search space, the

particles jump out of the local area to find the optimal

solution. The training data are taken from June 2016 to

June 2020 (80%), and the test data are taken from July

2020 to June 2021 (20%) (Fig. 11a). In this paper, the

improved GSA-PSO-SVR model is used to develop the

periodic displacement model. The influencing factor and

the sample data are read together, the parameters are

selected according to the fitness in the iterative process,

and SVR is selected to train and test the model. MSE is

used as the fitness function return value of SVR. The

specific settings are as follows.

(1) Optimal settings for PSO-GSA algorithm: the parti-

cle swarm population is 20, the maximum iteration is

100, the gravitational constant is 3, the reference

function is [1, 10] learning factors C1 = 0.5,

C2 = 0.5 and the optimal penalty function is found

in Table 5

(2) Optimal settings for PSO algorithm: the number of

population is 20, the maximum iteration is 100,

inertia weight W = 1, learning factor C1 = 0.5,

C2 = 0.5, the optimal penalty function is found in

Table 5

(3) Optimal settings for GSA algorithm: the number of

population is 20, the maximum iteration is 100, the

gravitational constant is 3, the optimal penalty factor

and kernel function parameters are shown in Table 5.

The optimal penalty factor C and kernel function g

are used to train and predict the samples

Compared with the prediction results of PSO, GSA and

PSO-GSA (Fig. 12), the accuracy and error of each model

are shown in Table 6. In terms of the goodness of fit,

employing a hybrid optimized SVR approach resulted in an

average improvement of 5% in the R. Additionally, both

MAE and MSE were reduced to some extent. This indi-

cates that by sufficiently optimizing the model, it is pos-

sible to enhance its predictive performance. Further

analysis shows that the PSO-GSA-SVR prediction model

works best as the final periodic displacement prediction

model.

4.4 Cumulative displacement prediction
and evaluation

Based on the time cumulative sequence observed in

Eq. (10), the total predicted displacement is to add the

trend term and the periodic term using PSO-GSA-SVR

model. From Fig. 10 and 12, the corresponding predicted

displacements of the three monitoring points from June

2016 to June 2021 can be obtained, and the predicted

displacements are compared with the actual monitoring

displacement values (Fig. 13). According to the error cal-

culation and accuracy evaluation, it is concluded that the

change trend is consistent with the actual situation. MSE

and MAE are smaller, and the correlation coefficient R is

relatively larger (in Table 7). It has engineering application

prospects and predicts short-term displacement changes.

5 Conclusion

This paper proposed the hybrid optimization algorithm-

based displacement prediction model. Taking Jiuxianping

wading rock landslide with obvious step-like displacement

as an example, three monitoring displacement points are

selected for modeling and validation. The major contribu-

tions of this study are as follows:

(1) The periodicity of RWL affects the step-like distri-

bution of landslide displacement, and the rise of

RWL makes the landslide displacement to change

steadily. Under the combined action of low RWL

and rainstorm, the landslide displacement shows

obvious step-like characteristic. RWL is the major

factor that induced the landslide deformation. RWL

below 160 m is prone to cause landslide disaster,

followed by rainfall, which accelerates landslide

deformation tendency
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(2) Due to the influence of SSA in short-term power load

and medical results, the introduction of SSA is

applicable. SSA in time series decomposition is

model-free, parameter-free and does not require

stationary time series. It has a good performance in

decomposing the nonlinear step-like landslide dis-

placement. The reconstructed sequence error is small

after removing the random term. The MSE and MAE

of the prediction model of the decomposed periodic

term are small, and the correlation coefficient is high

(3) The selected three monitoring points YY208, YY209

and YY210 have obvious step-like state, and the

small sample data are collected once a month. Using

the hybrid optimization coupled SVR model, the

predicted total displacement of the three monitoring

points has small MSE and MAE. It shows that the

improved PSO-GSA has good optimization charac-

teristics and can activate the stagnated particles to

jump out of the local area. It also shows that SVR has

enough advantages in solving the problem of small

sample and high dimension nonlinear regression

As the displacement of Jiuxianping landslide is analyzed

once in a month as well as its sample size, the improved

GSA-PSO-SVR model is applied to predict the displace-

ment of Jiuxianping landslide in the TGR area. It is reliable

and has great engineering referencing significance.
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