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Abstract
The apparent permeability of a single rough fracture undergoes complex evolution in a non-Darcy flow regime, making

description of the nonlinear flow challenging. The inertial permeability can be used to effectively solve this problem but is

very sensitive to the geometric information and difficult to determine directly. Here, a model for predicting the inertial

permeability is proposed by considering the geometric information of rough rock fractures. A massive training database of

nonlinear flow in single rough fractures was built based on direct numerical simulations. The database consists of 1225

fractures and contains 12 geometric parameters, including 9 morphological and 3 aperture parameters. To predict the

inertial permeability, four geometric parameters highly correlated with the inertial permeability were selected by corre-

lation analysis. A robust prediction model was then established based on the support vector machine theory and the

artificial bee colony algorithm. Forty-five fractures constructed from Barton’s profiles were used to verify the model

performance. The validation results show that the proposed method can accurately predict the inertial permeability based

on the geometric information of rough fractures. Finally, the proposed prediction model was used to determine the critical

Reynolds number.
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1 Introduction

Many engineering applications are involved in the char-

acterization of nonlinear flow in single rock fractures,

including the construction of underground space [48], the

production of oil and gas [31], the design of impermeable

curtains [8], and the transport of pollutants [16].

Low-Reynolds-number flow in a fracture follows Dar-

cy’s law, and the apparent permeability of the fracture is a

constant equal to the intrinsic permeability [53]. However,

with an increasing Reynolds number, the flow will gradu-

ally change from linear Darcy flow to non-Darcy flow. The

apparent permeability will change in a complicated manner

with pressure or velocity, which makes it very challenging

to predict fracture permeability. To solve this problem,

Ergun [11] proposed the concepts of viscous permeability

(kv) and inertial permeability (ki) and successfully intro-

duced them into the Forchheimer equation.

�rP ¼ l
kv

vþ q
ki
v2 ð1Þ

where - rP is the hydraulic pressure gradient, v is the

average velocity of the fracture cross section, l is the

hydrodynamic viscosity coefficient, and q is the fluid

density. The first and quadratic terms on the right-hand side

of the equation represent the pressure gradient caused by

the viscous effect and inertial effect, respectively [53, 63].

For a given fracture, kv and ki no longer change with v and

are controlled only by the geometric information of the

fracture [63]. In addition, when v is relatively small, the

quadratic term can be ignored, and Eq. (1) is reduced to

Darcy’s law. The parameter kv has been fully studied and

lies outside the scope of this paper. Therefore, this study is

mainly about the quantitative characterization of ki.
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The Forchheimer equation is a semiempirical model

[12], whose initial expression is shown in Eq. (2). It has

been widely used in many kinds of geological media, such

as porous [1, 62], single fracture [34, 38] and fracture

networks [28, 46]. Considering the properties of the fluid

and the flow medium, Eq. (2) can also be converted into

another commonly used form (Eq. 3):

�rP ¼ AQþ BQ2 ð2Þ

�rP ¼ 12l

wb3h
Qþ qb

w2b2h
Q2 ð3Þ

where A and B are the viscous and inertial coefficients,

respectively, Q = wbhv is the volumetric flow rate or dis-

charge, w is the fracture width (in a two-dimensional (2D)

fracture, the default value is 1), bh is the hydraulic aperture,

and b is the non-Darcy coefficient. Combining Eqs. (1)–

(3), the relationship between ki and (B and b) can be

obtained:

ki ¼
1

b
¼ q

Bw2b2h
ð4Þ

The quantitative characterization of non-Darcy flow in

fractures has been a difficult problem in recent years,

attracting the attention of many scholars. Based on a large

number of relevant studies, the existing characterization

equations of B, b, and ki are summarized in Table 1. To

date, most research has been conducted on B. However, B

is related not only to the fracture geometry but also to the

fluid properties (q) and cannot intrinsically describe the

fracture permeability. The inherent parameters of the

Table 1 Parametric equation of B, b, and ki

References Parametric equation Geometric

information

Description of symbols

B Chen et al.

[9]
B ¼ k1

2b
qnk2

w2bbþ3
h

bh, n bh, bave, bh0, and C are the hydraulic aperture, the average mechanical

aperture, the initial hydraulic aperture, and the aperture parameter

related to the threshold aperture, respectively. ki and gi are the

regression coefficient and the constant. n is the peak asperity height. kn
is the normalized permeability. KD is the intrinsic permeability. JRC is

the joint roughness coefficient. Cc is the contact ratio. x is the scaling

coefficient. rP is the standard deviation of secondary roughness. Ra is

average roughness. Rrms is the root mean square roughness

B ¼ k1b
�k2
h

Zoorabadi

et al.

[68]

B ¼ k1
Z2
bh

� �k2 bh, Z2

Rong et al.

[39]
B ¼ k1

12l
wb3

h

� �k2 bh

Xiong

et al.

[55]

B ¼ 1þ k1Ccð ÞDk2
v

q
b2
h
w2

Cc, bave, Dv

Chen,

et al. [7]
B ¼ k1q

b3
h
w2

bh0
bh

� �k2
log k3n

bh

� �k4 bh, bh0, n

Zhu et al.

[67]
B ¼ aq

w2b3
h

bh
Lc

� �b 1�Dvð Þ bh, Dv, Lc

Rong,

et al.

[38]

B ¼ k1
C log rP

2bh

� �k2 q
w2b2

h

C, rP, bf

Wu et al.

[50]
B ¼ k1

l
wb3

h

� �k2 bh

Liu et al.

[27]
B ¼ k1 �tanh k2 �JRCð Þþk3

gwaba�4
h

bh, JRC

b Foroughi,

et al.

[13]

b ¼ k1 1
kn
� 1

� �k2
�K1=4

D b
�2=3
ave

bh, bave

Ni et al.

[31]
b ¼ 0:042JRC

bh
bh, JRC

Yin, et al.

[56]
b ¼ k1Z

k2
2

b
k3
ave

bh, Z2, n

Li et al.

[24]
b ¼ JRC

k1

bh
k2 þ k3

bave
bh

� �k4
� �

bh, JRC,
bave

Xing et al.

[54]
b¼k1R2

rmsR
k2Rrms�1
a � ð0:9185baveÞk3Rrms bh, Rrms, Ra

ki Zhou et al.

[63]
ki ¼ xkk=2v

-
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fracture, ki and b, do not change with the Reynolds number.

However, there have been few reports on the direct study of

ki. Zhou et al. [63] proposed the following universal rela-

tionship between ki and kv through a collection of 4000

geologic or analogous-geologic porous medium samples:

ki ¼ xk3=2v ð5Þ

where x is a scaling coefficient. However, the value range

of x is very wide (107–1013), and it is therefore impossible

to accurately determine ki for fractured media [53].

The inertial permeability is mainly determined by the

geometric information of the fracture. The prediction

model in Table 1 contains a large number of fracture

geometry parameters including the peak asperity height (n),
the standard deviation of the secondary roughness (rP), the
root mean square roughness (Rrms), the root mean square of

the first deviation of the profile (Z2), the joint roughness

coefficient (JRC), the average roughness (Ra), the fractal

dimension (Dv), the horizontal length (Lc), the fitting

coefficient of the cumulative distribution curve of aperture

(C), and the average aperture (bave). However, only one or

two geometric parameters are typically considered in the

model. If too few parameters are used to establish the

prediction model, then the geometric information of frac-

tures cannot be fully and accurately described, which may

lead to a large deviation between the predicted results and

the true values. In contrast, if too many parameters are used

to establish the model, then the practicality of the model is

lost, and the accuracy of the model is impaired because of

the information redundancy between input variables.

Therefore, correlation analysis and selection of an appro-

priate combination of geometric parameters are critical to

establishing a prediction model for ki.

Correlation analysis identifies how closely two or more

variables are associated with each other [60]. Various

methods have been proposed to address this issue, such as

the Pearson correlation coefficient [4], Spearman rank

correlation coefficient [26] and Kendall’s tau-b rank cor-

relation coefficient methods [60]. However, these classical

methods cannot be used for geometric parameters and ki
with highly nonlinear relations. The maximal information

coefficient (MIC) provides a good solution to this issue

[37]. The MIC is not concerned with the specific functional

relationship between two variables, but rather based on

mutual information, such that MIC(X, Y) represents the

information content of Y that can be explained by X. This

method is very sensitive to various relationships between

two variables and can detect various relationship types,

including both functional and non-functional relationships,

as well as supra-functional relationships, among others.

Therefore, the MIC is used here to select the input vari-

ables of the prediction models for ki.

The prediction models in Table 1 are mainly established

through dimensional analysis or data fitting. There are

many undetermined regression coefficients in these equa-

tions, making it very challenging to directly determine ki.

In addition, there is a highly nonlinear relationship between

the geometric parameters and ki, which may cause using

traditional data fitting methods to fail but can be well

accommodated by machine learning (ML). Recent progress

in developing various ML techniques has benefitted the

study of various problems in porous media and geoscience

across disparate scales, such as the prediction of dissipation

coefficients [20], fluid flow [19], velocity fields [49] and

macroscopic permeability [21]. However, research on

nonlinear flow in fractures by ML has not been reported.

Since the support vector machine (SVM) algorithm pro-

posed by Vapnik [44] has favorable robustness [40], SVM

is used to establish the prediction model of ki in this paper.

The Reynolds number (Re), as a parameter describing

fluid flow behavior, can be used to quantitatively describe

the flow regime within fractures. The Reynolds number

corresponding to the point where the Darcy flow changes to

a non-Darcy flow is called the critical Reynolds number

(Rec). The quantitative characterization of Rec is of great

significance and has been widely studied [35]. Many

scholars have used B or b to establish the characterization

equation of Rec [7, 54]. The critical Reynolds number can

also be determined by ki, but this has not yet been reported.

Considering the above issues, the primary motivation of

this study is to develop a fracture inertial permeability (ki)

prediction model that utilizes fracture geometric informa-

tion. First, 1225 two-dimension rough fractures were con-

structed, and 12 parameters were calculated to describe the

geometric information of these fractures. Additionally,

numerical simulation and the Forchheimer equation were

used to obtain the kv and ki values of these fractures. The

controlling factors of ki were selected through the maximal

information coefficient (MIC), and a training database with

1225 samples was constructed with the controlling factors

as input variables and ki as input variables. Based on this

database, a prediction model for ki was constructed by

combining the artificial bee colony (ABC) algorithm with

support vector regression (SVR). The model was then

validated using 45 rough fractures constructed from 10

profiles proposed by Barton. The validation results showed

that the established model had excellent prediction per-

formance, and further exploration was conducted on how

this methodology could be applied to predict ki in three-

dimensional fractures. The global flowchart for developing
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the inertial permeability prediction model is shown in

Fig. 1. Finally, the model was successfully applied to

predict the critical Reynold’s number.

2 Theoretical background

2.1 Fracture geometry information
characterization method

The inertial permeability is controlled by geometric

information such as fracture wall morphology and aperture

characteristics and is very sensitive to them. The geometric

information of rough fractures can be used to directly

predict the inertial permeability; accurate description of the

geometric information of rough fractures with strong

heterogeneity is essential for prediction accuracy.

The wall morphology of fractures, including the asperity

height and asperity inclination angle, tortuosity, and texture

structure, has been extensively studied [3, 29, 45, 51]. In

this paper, three parameters are selected to describe the

asperity height characteristics of the fracture wall, namely,

the average relative height (Rave), the standard deviation of

the height (rH), and the maximum relative height (Rmax).

Among them, Rave is defined as the ratio of the average

height of the asperity to the projected length. The param-

eter rH describes the dispersion of the height distribution of

the asperities; a larger value corresponds to a rougher

fracture wall. Rmax represents the asperity height difference

of the whole profile line. Then, two parameters, the average

inclination angle (have) and the standard deviation of the

inclination angle (rh), are used to describe the asperity

inclination angle of the fracture wall. The parameter rh
represents the degree of inclination deviation from have,
and the larger rh is, the rougher the wall surface is. In

addition, the root mean square of the first deviation of the

profile (Z2) is selected to characterize the spatial structure

of the fracture wall, which is defined as the root mean

square of the average local slope [30]. The curvature

degree of the fracture wall also significantly impacts the

flow. The curvature coefficient (Rp) is selected to quanti-

tatively describe the degree of curvature, which is defined

as the ratio of the true length to the projected length.

Magsipoc et al. [29] noted the difficulty of accurately

describing the morphological characteristics of natural

fractures with a single statistical parameter. Therefore, the

structure function (SF) is used to compensate for this

deficiency. SF is a functional proposed by Sayles and

Fig.1 Global flowchart for developing the inertial permeability prediction model
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Thomas [41] to quantitatively evaluate the texture changes

of a profile. Finally, the correlation coefficient (RU, D) of

the upper and lower wall surfaces is selected to describe the

coincidence degree of fractures [66]. In this way, the

combination of 9 parameters can comprehensively describe

the morphology of rough fractures. Note that the fracture is

composed of upper and lower walls and that all the above

parameters except for RU, D are taken as the mean value of

the corresponding parameters of the upper and lower walls.

Please refer to Eqs. (22)–(33) for the calculation equations

of the nine morphological parameters.

The aperture refers to the distance between the upper

and lower walls, and its size and distribution characteristics

control the flow capacity in the fracture. Two commonly

used statistical parameters, including the average aperture

(bave) and root mean square of aperture (rb) of the fracture,
are selected to describe the size and discreteness of the

rough fracture aperture. The parameter bave describes the

average fracture aperture, which is defined as the ratio of

the area enclosed between the upper and lower profiles to

the horizontal projection length of the fracture. The

parameter rb can be used to evaluate the fluctuation in this

value, where a large rb corresponds to a large deviation in

the aperture from bave. The fitting coefficient of the

cumulative distribution curve of the aperture (C) is selected

to quantify the aperture distribution (please refer to Rong

et al. [38]). These three parameters can fully represent the

spatial distribution of the fracture aperture. Please refer to

Eqs. (34)–(36) for the calculation equations of the three

aperture parameters.

Thus, a total of 12 parameters, including 9 morpholog-

ical parameters and 3 aperture parameters, are selected to

describe the geometric information of the fracture.

2.2 Variable selection for the prediction model

A total of 12 fracture geometric parameters are selected to

comprehensively describe the fracture geometric informa-

tion. However, if all the parameters are used as the input

variables of the inertial permeability prediction model, then

the information redundancy will result in reduced predic-

tion performance as well as the loss of application value of

the model. Therefore, it is necessary to reduce the dimen-

sionality and select the main controlling factor of inertial

permeability through correlation analysis.

The MIC is used to select the input variable of the ki
prediction model by calculating the correlations among all

variables (Rave, rH, Rmax, have, rh, Z2, Rp, SF, RU, D, bave,

rb, C, kv, ki). The calculation steps for MIC values between

any two variables X and Y are as follows. Variables X and Y

are first combined into a set D = {(X1, Y1), (X2, Y2),…, (Xn,

Yn)}. Then, c cells and d cells are divided along the hori-

zontal and vertical axes to obtain a grid G by referring to

the range of two variables. Different values of c and d

correspond to different grid divisions, from which a max-

imum mutual information value can be obtained:

I� D;X; Yð Þ ¼ max IðDjGÞ ð6Þ

where D|G is the distribution of set D on grid G. After

Eq. (6) is standardized, the normalized mutual information

value characteristic matrix is obtained:

MðDÞx;y ¼
I� D;X; Yð Þ
logmin x; yf g ð7Þ

The MIC value can be obtained by calculating the

maximum value of the characteristic matrix of the mutual

information value:

MICðDÞ¼ max
xy�B�ðnÞ

MðDÞx;y
n o

ð8Þ

where B*(n) = n0.6 is the upper limit of the number of

grids. The MIC value corresponds to the determination

coefficient of the regression analysis method. The value

range of MIC(X, Y) is [0, 1]. In particular, when MIC(X, Y)

is 1, it indicates that variable Y is completely correlated

with variable X; when MIC(X, Y) is 0, it indicates that the

two variables are completely independent. The MIC has the

advantages of generality and equitability because the esti-

mations of the Shannon entropy and conditional entropy

are robust [43]. The selection of statistical parameters for ki
follows two principles: (1) the variable with a high MIC

value with ki is preferred, and (2) the input variables are

mutually independent to the greatest extent possible.

2.3 Prediction model establishment method

Support vector machine (SVM) [44] and the artificial bee

colony (ABC) [23] algorithm are used to establish the

prediction model for inertial permeability.

The SVM algorithm was proposed based on statistical

theory combined with the principle of minimum structural

risk. The complexity of an SVM model depends on the

number of support vectors rather than the number of

samples, which effectively solves the problem of dimen-

sionality. This makes the SVM model suitable for data with

high-dimensional and nonlinear characteristics between the

fracture geometric information and the inertial permeabil-

ity. The SVM algorithm has classification and regression

functions. The prediction of ki in this paper is a regression

problem, so the classical e-SVR model is selected. This is

mathematically described as follows:

ki ¼
Xi¼N

i¼1
�ai þ a�i
� �

e�g SVi;Xk k þ b ð9Þ

where N is the number of support vectors, (- ai ? ai
*) is

the Lagrange multiplier, SV is the support vector, g is the

radial basis function (RBF) parameter, and b is the bias
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constant. A detailed introduction to SVR theory can be

found in Sun et al. [42]. There are three parameters to be

optimized, which are the sensitive loss coefficient (e)
describing the sparsity of the solution of the model, the

penalty factor (c) weighing the error and model complex-

ity, and the RBF parameter (g) controlling the complexity

of the mode. The optimization method adopted in this

paper is the ABC algorithm, which is a swarm meta-

heuristic intelligent optimization algorithm based on

swarm foraging behavior [23]. This algorithm has the

advantages of simple individual behavior, distributed

control, strong robustness and scalability. The ABC model

consists of four basic elements: hirer bees, follower bees,

scout bees, and nectar food sources. Among them, the

location of the food source represents the feasible solution

to the optimization problem, and the nectar richness of the

food source represents the quality of the feasible solution.

When the ABC algorithm is used to optimize the three

parameters of SVR based on training data, the mean square

error of cross-validation (CVMSE) is taken as the objective

function as follows [22]:

fu ¼ CVMSEu ¼ 1

M

XS
S¼1

X
i2GS

yi � f xið Þ uj½ � ð10Þ

where u = (e, c, g) is a solution in the optimization process,

M is the number of training data, S is the number of subsets

used for cross-validation, GS is the Sth subset for

validation, yi is the target value, which here represents the

value of the numerical test for the inertial permeability, and

f(xi)|u is the value predicted based on SVR when the SVR

hyperparameters are set as u. The CVMSE can be obtained

directly by opening the cross-validation module of

LibSVM [5].

The main steps in optimizing SVR models with the ABC

algorithm are summarized as follows (Fig. 2): (1) Deter-

mine the ranges of (e, c, g), the population size (NP), the

maximum number of iterations (maxCycle), and a prede-

termined number (NPD). Next, generate NP/2 solutions

ui = (ei, ci, gi) through uij = Lj ? rand(0,1)(Dj- Lj), where

Lj and Dj are the lower and upper bounds of (e, c, g).
Calculate the corresponding fitness fiti of each solution

though fiti = 1/(1 ? fu). (2) Update solutions for employed

bees through vij = uij ? hij(uij-ukj), and calculate the cor-

responding fitness; then, determine new solutions by

greedy selection. (3) Calculate the probability pi of each

solution being selected through pi ¼ fiti=
PNS

j¼1 fitj, and

determine the solution to be updated according to roulette

choices. (4) Update solutions for onlookers through vij-
= uij ? hij(uij-ukj), and calculate the corresponding fit-

ness; then, determine new solutions by greedy selection.

(5) Examine whether the number of times the solution has

not been updated NNU[NPD. If so, skip to step (6), and

if not, skip to step (7). (6) Update the solution ui = (ei, ci,
gi) for a scout through uij = Lj ? rand(0,1)(Dj-Lj). (7)

Examine whether the number of iteration steps (NIS) has

reached maxCycle. If not, then return to step (2). If so, then

output the values of (e, c, g) corresponding to the smallest

CVMSE; these values represent the optimal parameter

combination.

3 Fracture model development and direct
flow simulation

Focus of this research is to simulate fluid flow in a fracture

in 2D instead of 3D, as explained in detail below. The key

to building an accurate ki prediction model using the ML

method is to obtain a database containing a large number of

fracture samples. There are two substantial problems in

conducting numerical experiments on 3D fractures: (1) the

grid number for 3D fractures is far more than that for 2D

fractures under the condition of ensuring the accuracy of

calculation; and (2) the solution of the Navier–Stokes (NS)

equations for 3D fractures is very complex and does not

readily converge. Based on the above two problems, it is

clear that the numerical experiments using 3D fractures

would consume considerable time and computer resources.

Therefore, building a database containing massive 3D

fractures certainly face great challenges. Compared withFig. 2 Flowchart demonstrating how the ABC algorithm optimizes

SVR parameters
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3D fractures, the grid number of 2D fractures is greatly

reduced to a level that can be easily accommodated by a

computer. The solution of 2D NS equations is relatively

simple and reliable and has been widely used to study fluid

flow or solute transport in rock fractures [6, 52]. The key to

the present study is to propose a method that can directly

predict the rough fracture ki based on geometric informa-

tion. The 2D rough fracture is sufficient to meet our pur-

pose, and the method can be extended to the 3D rough

fracture in the future, as discussed in detail in Sect. 4.1.5.

3.1 Rough-walled fracture model development

The construction of a database containing a large number

of samples is the key to building a model using machine

learning methods. The generation of the rough fracture

model mainly includes two parts: determining the top and

bottom walls of all fractures, and combining the top and

bottom walls to generate rough fractures. The walls of all

fractures in this study are selected from 102 profile lines

collected by Li and Zhang [25]. The detailed steps to

determining the top and bottom walls are as follows. �

Level the profiles. All the profiles need to be levelled,

which is very important for the calculation of later mor-

phological parameters. A detailed introduction is given in

another article [47]. ` Sort the profiles. These profiles have

projected lengths ranging from 72 to 119.6 mm, and a

uniform length is needed to eliminate the size effect. Pro-

files shorter than this length are deleted, and profiles longer

than this length are truncated (Fig. 3a). In this study, a

uniform length of 99.6 mm was chosen, and a total of 50

profiles were selected as the walls of fractures (please refer

to Online Appendix (S1)). Their JRC values are approxi-

mately 4.0–20, almost covering the roughness of fractures

in nature. ´ Determine the top and bottom walls. Number

the 50 profiles from 1 to 50. First, determine the top wall;

there are 49 possible cases. Then, determine the bottom

wall, which must be determined according to two princi-

ples: the top and bottom walls cannot share the same profile

(to ensure that the studied objective is an unmatched

fracture), and the average JRC value of the top and bottom

walls must not be the same. For example, when the top wall

is profile No. 1, the bottom wall can accept only the profiles

Nos. 2–50. When the top wall is profile No. 2, the bottom

wall can accept only profile Nos. 3–50, and so on. There-

fore, there are (49 ? 48 ? _ ? 1 = 1225) choices

(Fig. 3b).

Since this study deals with 2D fractures, where zero

aperture is not admissible, the minimum aperture is uni-

formly fixed at 0.2 mm. The detailed steps to combine the

top and bottom walls into a fracture are as follows. �

Generate coordinate point files for fracture walls with an

interpolation spacing of 0.4 mm. Each fracture wall con-

tains 250 coordinate points; ` Fix the bottom profile above

Fig. 3 Diagram for generating 1225 rough fractures
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and tangent to the x-axis, and place the top profile above

the bottom profile (Fig. 3c); ´ Calculate the distance

between all points on the lower wall and all points on the

upper wall to form a distance matrix D = {dij, i = 1, 2,…,

250; j = 1, 2,…, 250} where dij indicates the distance

between points i on the bottom wall and j on the top wall:

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xuj � xlx
� �2þ yuj � ylx

� �2q
. The minimum value of

matrix D is the minimum distance between the two pro-

files, namely, bmin. ˆ Examine whether the minimum

distance satisfies |bmin - bmin0|B 10-7 (bmin0 = 0.2 mm).

If so, export the discrete point coordinate files of the top

and bottom walls, and if not, move the top wall vertically

and return to step ´. In addition, the inlet and outlet

coordinate files are generated according to the coordinates

of the head and end points of the fracture. A fracture model

is composed of four coordinate files: lower wall, upper

wall, inlet, and outlet. Additional details regarding the

method of fracture model development were provided by

Sun et al. [42]. In total, 1225 2D rough fracture models are

generated by using the above method.

3.2 Direct numerical simulation

Fluid flow within a fracture at a steady state is governed by

the Navier–Stokes equations, which can be expressed as:

qðu � rÞu ¼ �rpþ lr2u

r � u ¼ 0
ð11Þ

where q and u are the density and velocity vectors of the

fluid, respectively. These equations can precisely capture

the nonlinear flow characteristics in rough fractures. In this

study, FLUENT software is used to solve the Navier–

Stokes equations [10, 59, 69].

Before the FLUENT simulations, the mesh of the frac-

ture model needs to be generated. As a powerful mesh

generation software, Integrated Computational Engineering

and Manufacturing (ICEM) software can generate high-

quality meshes [61], which facilitate accurate numerical

solutions and good computational convergence [57].

Therefore, the entire fracture medium is covered by a

quadrilateral structured mesh, and each fracture wall is

further refined using a boundary layer mesh. Mesh inde-

pendence analysis is carried out to illustrate the rationality

of mesh generation. As illustrated in Fig. 4, when the

number of cells is 180,000, the value of ki can be consid-

ered unchanged. The number of nodes parallel to the flow

direction is 61, and the number of nodes perpendicular to

the flow direction is 3001. The thickness of the first layer of

mesh near the wall is set to 1e-4 mm, and both parameters

that control the mesh size growth rate (ratio 1 and Ratio 2)

are set to 1.2. Finally, the structured meshes are converted

to unstructured meshes that can be used with FLUENT (as

shown in Fig. 5).

When FLUENT is used to solve the NS equations, some

appropriate settings are required for nonlinear flow. The

number of fractures in this study is large, and the mor-

phology varies greatly, so there may be a large grid area

and a narrow calculation area. Therefore, a dual-precision

2D solver was chosen. Considering the effects of the

occurrence of recirculation zones [65] and boundary layer

separation on the flow field in the fracture media, the

realizable k-e model and the wall surface enhancement

function are chosen for the simulation [59]. The direct

numerical simulations assume room temperature (approx-

imately 20 �C), so the viscosity and density of water are

1.003 9 10-3 kg/m�s and 998.2 kg/m3, respectively. The

inlet was modeled as a velocity-inlet, with the velocity

magnitude being set as needed. The outlet was modeled as

a pressure-outlet with a pressure value of 0. The top and

bottom walls were modeled as no-slip boundaries (Fig. 5).

In this study, over a thousand fractures needed to be sim-

ulated, and each fracture needed to be simulated with 10

different flow velocities. To balance the simulation time

and calculation accuracy, the residual convergence crite-

rion was set to the default value of 1e-3 in fluent (Fig. 6).

In addition, the simulation duration was also controlled by

the geometric characteristics of the fractures. Overall, the

simulation duration for most fractures was approximately

1 h, while for some extremely complex fractures, it could

exceed 2 h. All the simulations were conducted on a

computer equipped with an AMD Ryzen Threadripper

PRO 3975WX processor and 128 GB RAM. Before each

calculation begins, the entire flow velocity field within the

fracture media is initialized based on the given flow

velocity value at the input point. After the calculation

Fig. 4 Mesh independence analysis of fracture no. 841
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begins, the pressure value at the input is monitored and

recorded for use in the inversion of ki.

ICEM and FLUENT can perform batch processing

through journal files. The journal files were generated

based on MATLAB to automatically perform all operation

steps, including the import of four fracture coordinate files

(lower wall, upper wall, inlet, and outlet), the generation

and storage of grid files in ICEM, the import of grid files,

calculations and the storage of monitoring data in FLU-

ENT. In this study, all fracture calculations are performed

by calling journal files, which improves the calculation

efficiency and avoids manual operation errors.

4 Results and discussion

4.1 Establishment of the ki model

Based on the numerical experiment results of FLUENT, the

viscous permeability (kv) and the inertial permeability (ki)

Fig. 5 Two-dimensional fracture mesh of fracture No. 3

Fig. 6 Convergence profile of the No. 3 fracture with v = 0.082 m/s

Fig. 7 Streamlines and velocity distribution in the interval

x = [0.0 m, 0.4 m] of the No. 3 fracture under different inlet

velocities. a vinlet = 0.002 m/s; b vinlet = 0.022 m/s; and c vinlet-
= 0.182 m/s
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of all fractures were obtained through inversion of the

Forchheimer equation, and the geometric information can

be obtained based on the point cloud of the fracture wall. In

this way, a database with 1225 samples and 14 variables

was established. The MIC is used to analyze the correlation

of all variables and determine the main controlling factor

of ki. The controlling factors were used as input variables,

and ki was used as the output variable to construct a

training database for establishing a prediction model of ki.

Based on this database, a ki prediction model was estab-

lished using the ABC-SVR method. Finally, the perfor-

mance of the established ki model was validated using 45

rough fractures constructed from 10 Barton standard

profiles.

4.1.1 Acquisition of the training dataset

The acquisition of the training dataset is the first step in

using SVR to build a prediction model. The training

database contains 1225 fractures, and the flow behavior in

these fractures is directly simulated by using FLUENT to

solve the NS equations. Based on the ICEM journal file,

1225 fractures are meshed, and calculations are performed

based on the FLUENT journal file. To reflect the nonlinear

relationships of rP and v, the inlet boundary conditions of

each fracture are set at 10 levels from 0.002 to 0.182 m/s

with an interval of 0.02 m/s. Figure 7 shows the streamli-

nes and velocity distribution in the interval x = [0.0 m,

0.4 m] of the No. 3 fracture (Fig. 5) under different inlet

velocities. With increasing velocity, the areas of recircu-

lation zones increase gradually, and the width of the

mainstream channel decreases gradually. This phenomenon

indicates that non-Darcy flow easily occurs in rough frac-

tures and that the non-Darcy effect becomes increasingly

significant with increasing velocity.

After the calculation and monitoring are carried out, 10

values of rP are obtained. The inertial permeability (ki) is

obtained by fitting 10 pairs of rP and v values with the

Forchheimer equation (Eq. 1). Figure 8 presents the rela-

tionship of - rP and v for 1225 fractures. The color

represents the standard deviation of the asperity height

(rH). At the same v, the rougher the fracture wall is, the

greater the pressure loss, which indicates that the wall

morphology has a significant impact on the fracture per-

meability coefficient. The coefficients of determination

(R2) values of all fitting curves are greater than 0.99, which

indicates that it is reliable to use the Forchheimer equation

to describe nonlinear flow through a single rough fracture.

Based on the point cloud of the fracture wall, the geo-

metric parameters of 12 fractures can be calculated by

Eqs. (22)–(36). In this way, a database containing 1225

fractures is obtained, and it is composed of 12 statistical

parameters related to the fracture geometry and inertial

permeability (please refer to Online Appendix (S2)).

4.1.2 Selection of variables based on the MIC

There may be a strong correlation between the geometric

parameters of the 12 fractures. For example, there is a

highly linear correlation between Rave and rH (R2 is 97.3%)

(Fig. 9a); the correlation between have and rh is greater

(R2 = 99.5%) (Fig. 9b). Using all geometric parameters to

establish the ki prediction model can cause information

redundancy, which would reduce model performance.

Therefore, it is necessary to carry out correlation analysis

on many factors and determine the main controlling factors

of inertial permeability. The MIC is used to analyze the

correlations between the 12 parameters and ki. The greater

the MIC value is, the greater the correlation between the

two variables. Figure 10 shows the MIC analysis results.

The numbers and colors in Fig. 10 represent the size of

the MIC. The last column represents the MIC value

between all variables and ki. The correlation between the

aperture and ki is stronger than that between the mor-

phology and ki. Among all the morphological parameters,

the correlation between the asperity height and ki is

stronger than that between the asperity height and the other

parameters, such as inclination angle and curvature degree.

According to the principle of the MIC method to screen the

main control factors, the geometric parameters of 12

fractures are selected as follows. First, the MIC values of

two parameters (RU, D and C) and ki are smaller than other

parameters (MIC\ 0.25), so they can be discarded. Sec-

ond, the MIC values between the two asperity height

parameters (Rave and Rmax) and rH are close to 1, which

means that the influence of Rave and Rmax on ki can be

replaced by rH. Therefore, only rH needs to be selected as

the parameter to describe the asperity height. Third, the
Fig. 8 Relation between - rP and v for 1225 rough fractures. The

color represents the value of rH
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MIC values of the other five morphological parameters

(have, rh, Rp, Z2 and SF) are close to 1, so it is sufficient to

select only SF with the highest MIC value with ki. Finally,

the MIC values of the two aperture parameters (bave and rb)
and ki are both large, so bave and rb are selected as input

variables.

In addition, according to previous research results

(Table 1), the equivalent hydraulic aperture (bh) is

considered in almost all the prediction models of B and b.
Considering the relationship between bh and kv (kv = bh

2/

12) and the strong correlation between kv and ki (MIC =

0.68), kv is also selected as the input variable of the ki
prediction model.

Finally, two morphological parameters (rH and SF), two

aperture parameters (bave and rb), and kv are selected to

calculate ki. A training database {(rH)i, (SF)i, (bave)i, (rb)i,

Fig. 9 Relationships between geometric parameters: a relationship between Rave and rH and b relationship between have and rh

Fig. 10 MIC analysis results
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(kv)i, (ki)i; i = 1,…,1225} serving to build the ki prediction

model is constructed (please refer to Online Appendix

(S2)).

4.1.3 SVR-based model establishment

(1) Normalization of the sample data. There are large

differences in units and magnitudes between the

input variables and the output variable, which may

affect the accuracy and speed of modeling. For

example, the magnitude of bave is 101, while the

magnitude of the viscous permeability is 10–9, with a

difference of 10 orders of magnitude. Therefore, it is

necessary to normalize the data and eliminate these

effects before training and modeling. Normalization

and anti-normalization are treated as follows:

Normalization : x0 ¼ x� xminð Þ= xmax � xminð Þ ð12Þ

Antinormalization : x ¼ x0ðxmax � xminÞ þ xmin

ð13Þ

where x is the sample value that needs to be nor-

malized and x’, xmax and xmin are normalized values

and maximum and minimum values, respectively.

All of the samples are normalized to [0, 1] based on

Eq. (12), and the normalized data can be reversely

normalized through Eq. (13).

(2) Parameter optimization for the prediction model. The

studies discussed in Sect. 2.3 suggested that the SVR

hyperparameters (e, c and g) must be simultaneously

optimized. The global optimization of hyperparam-

eters in this paper adopts the LIBSVM library and

ABC algorithm. The optimization calculation is

performed according to the steps in Sect. 2.3. The

population size (NP), the maximum number of

iterations (maxCycle), the predetermined number

(NPD), the number of subsets used for cross-

validation, and the search range of hyperparameters

are set to 20, 10 100, 10, and [1e-3, 1e3], respec-

tively. The final optimization result of the SVR

hyperparameters (e, c, and g) is (0.001, 13.5992, and

0.9912).

(3) Establishment of the prediction model for the inertial

permeability. Once the SVR hyperparameters are

determined, the prediction model of the inertial

permeability can be obtained by combining the

whole training database containing 1225 samples:

ki ¼
Xi¼1211

i¼1

�ai þ a�i
� �

e�0:9912 SVi;Xk k þ 0.4493 ð14Þ

In this model, there are 1211 SV and 1211 (-a ? a*) in
total, and the bias constant is 0.4493. For a given fracture,

the four morphological parameters rH, SF, bave, and rb are
easily obtained by using Eqs. (25), (32), (34), and (35),

respectively. It is worth emphasizing that there exists a

large body of literature proposing various predictive

models for kv. Our previous work has conducted a com-

prehensive investigation into this topic [42]. Here, we do

not discuss the applicability of these models for kv com-

putation, as this is not the focus of our current study. Once

all input variables X = (rH, SF, bave, rb, kv) are obtained,

the ki of any fracture can be directly determined by

Eq. (14), which can further provide an accurate estimation

of the permeability of fractures in practical geoengineering.

The above modeling process can be easily realized through

MATLAB. For the convenience of application, all data and

MATLAB codes used in the model are uploaded as sup-

plementary data (please refer to Online Appendix (S3)).

Equation (14) is used to calculate ki of 1225 fractures,

and the results are compared and analyzed with the reverse

Fig. 11 Comparison of the predictive and simulation values of ki in
the training database

Table 2 Comparison results of the prediction model performance

Model Expression Fitting parameters NOF c

SVR Equation (14) – 0.155 1.017

Zhou ki ¼ xkk2=2v
x = 3.01e12, k = 1.95 0.186 0.970

Xing b¼k1R2
rmsR

k2Rrms�1
a � ð0:9185baveÞk3Rrms k1 = 2.70, k2 = -4.47, k3 = 3.58 0.517 0.876
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calculated value of the numerical experiments. The com-

parison results are shown in Fig. 11, and the R2 value is

90.61%.

4.1.4 Validation of the model

To verify the accuracy and generalization performance of

the ki prediction model, 10 profiles (please refer to Online

Appendix (S4)) proposed by Barton and Choubey [2] are

used to generate the fracture model of the validation

database. The 10 profiles at high-frequency are applied to

the construction of rough fractures [27, 36], and their JRC

values include a wide distribution from smooth (JRC =

0.4) to rough (JRC = 18.7). Two profiles are selected

randomly from the 10 standard profiles as the upper and

lower wall surfaces of the fractures, and finally, 45 rough

fracture models are generated. The experimental values of

ki and kv of 45 fractures are obtained based on direct

numerical simulation, and the geometric parameters (rH,
bave, SF, and rb) are calculated based on the coordinate

files (please refer to Online Appendix (S5)).

Based on the numerical experimental inversion value of

45 rough fractures, the SVR model is compared with the

two models proposed by Zhou et al. [63] and Xing et al.

[54]. Two criteria are used to quantitatively evaluate the

prediction equation, that is, the normalized objective

function (NOF) and the slope c of the regression line in the

plot of the predicted versus experimental values of ki. The

NOF is defined as the ratio of the root mean square error

(RMSE) to the mean of the experimental data. The closer

to 0 the NOF value is, the higher the accuracy for the

predicted value is [64]. The slope c reflects the model bias

for the overestimation (c[ 1) or underestimation (c\ 1)

of numerical experimental data [64], which can be obtained

with ORIGIN software.

Table 2 and Fig. 12 show the predictive performance of

the three models; please refer to ‘‘Appendix 2’’ for the

predicted values. The prediction performance of Xing’s

model for these 45 fractures is not as good as that of the

other two models (NOF = 0.517, c = 0.876), which may be

due to the following two aspects. (1) Xing’s model data-

base is not extensive enough. All 2D fractures serving for

the prediction model are collected from the same 3D rough

fracture. The range of Rrms, Ra and bm values is relatively

small, and the prediction deviation for fractures beyond this

range is large. (2) The geometric parameters of Xing’s

model are insufficient. Only the average aperture (bave) is

selected to describe the aperture distribution characteris-

tics, and the influence of bave on ki may be exaggerated.

However, for the study of the non-Darcy effect of complex

rough fractures, in addition to bave, the root mean square of

the aperture (rb) will also have a complex and significant

impact. Zhou’s model performs better (NOF = 0.186,

c = 0.970), but the predicted values are still more discrete.

This is because Zhou’s model is a universal model for

geologic porous media, not just a single fracture. In addi-

tion, Zhou’s model uses only one scale parameter (x) to
describe the geometric information, which makes it inad-

equate for predicting ki of 45 rough fractures with strong

heterogeneity. The predictive performance of the SVR

model is the best (NOF = 0.155, c = 1.017). The input

variable of the SVR model is the main control factor

screened through correlation analysis, which can accurately

describe the geometric information of rough fractures. In

addition, the modeling method adopts the support vector

machine methodology that can skillfully handle complex

relationships. Crucially, Zhou’s model and Xing’s model

contain uncertain parameters that make it impossible to

directly determine ki, while the SVR model can directly

obtain ki of any single rough fracture by using supple-

mentary materials.

4.1.5 Extension of the ki model

To further enable this research to serve practical geoengi-

neering, this section provides an approach on how to

establish a predictive model of 3D fracture inertial per-

meability using the proposed method and outlines the

detailed methods. The aim is to provide readers with

inspiration and guidance in this field. The specific steps are

as follows. (1) Generation of the 3D rough fracture model.

Considering the wall morphology, aperture distribution,

contact area and other characteristics, Synfrac software

[33] is used to generate a large number of 3D fracture

models. To facilitate the mesh generation and numerical

calculation, the aperture of the contact area is set to

Fig. 12 Comparison of the predictive and simulation values of ki in
the validation database
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0.01 mm (Fig. 13a). (2) Mesh generation of the 3D fracture

model. ICEM CFD software is used to mesh the 3D frac-

tures. The accuracy of the direct simulation is controlled by

the quality of the mesh. Therefore, the structured mesh

method is used, and the mesh near the boundaries is refined

(Fig. 13b). (3) Direct simulation of nonlinear flow. Non-

linear flow in 3D fractures can be directly simulated by

solving NS equations with FLUENT (Fig. 13c). The set-

tings of FLUENT are similar to those of 2D fractures. The

inlet is modeled as the velocity inlet, and the outlet is

modeled as the pressure outlet. By monitoring the pressure

at the inlet, a series of pressure gradient and velocity values

can be obtained. (4) Acquisition of the database. Based on

the numerical calculation results, the inertial permeability

can be obtained by fitting the Forchheimer equation. The

geometric parameters of 3D fractures can be calculated by

referring to 2D fractures through statistical methods [29].

(5) Establishment of the ki model. Based on the training

database composed of a large number of 3D fractures, the

main controlling factors of ki can be selected by the MIC

method, and then the prediction model of ki is established

by the ABC-SVR method.

However, there are two main challenges to the database

collection of 3D fractures: (1) The NS equations of 3D

fractures may not converge in the calculation [52], which

leads to the failure to obtain ki. (2) The workload of the

direct simulation of 3D fractures is tremendous. Compared

with 2D fractures, the construction of a 3D fracture data-

base consumes massive amounts of time and computer

resources. For the above two problems, further research

investment is needed in the future. Once the database is

obtained, the method proposed in this paper can be used to

establish the ki prediction model of 3D fractures.

4.2 Application of the ki model

The Reynolds number (Re), defined as the ratio of inertial

forces to viscous forces, can be used to quantitatively

describe the flow regime within fractures. The expression

for Re is as follows:

Re ¼ qvbh
l

ð15Þ

Fig. 13 Modeling and direct simulation of 3D fractures
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When the Re of fluid flow within fractures is sufficient

low, the flow within fractures exhibits linear Darcy flow.

However, as Re increases, the inertia effect becomes

gradually significant, and linear laminar flow gradually

transforms into non-Darcy flow. The Reynolds number

corresponding to the turning point is called the critical

Reynolds number (Rec). The quantitative characterization

of Rec is very meaningful and has attracted the attention of

many scholars. The critical Reynolds number can be

determined by the prediction model of ki (Eq. 14) proposed

in this paper.

Similarly to Re, The Forchheimer number (Fo) is also

widely pursued in the assessment of the flow regime

[15, 54, 58], which is defined as the ratio of the inertial

term to the viscous term:

Fo ¼
q
ki
v2

l
kv
v
¼ qkvv

lki
ð16Þ

Combining Eqs. (15)–(16), the relationship between Re

and Fo can be obtained as follows:

Re ¼ bhki
kv

Fo ð17Þ

Equation (17) includes both the equivalent hydraulic

opening (bh) and viscous permeability (kv), and the rela-

tionship between them can be obtained from Eqs. (1)–(3).

bh ¼ ð12kvÞ1=2 ð18Þ

An expression of Re can be obtained by introducing

Eq. (18) into Eq. (17).

Re ¼ kiffiffiffiffiffiffiffiffiffi
12kv

p Fo ð19Þ

According to Eq. (19), Re is connected with kv, ki, and

Fo, and when Fo attains the critical value Foc, the corre-

sponding Re reaches the value Rec.

In addition to Rec and Foc, the non-Darcy effect factor

(E) is a widely used indicator for distinguishing between

Darcy flow and non-Darcy flow [18, 46]. E represents the

starting point of non-Darcy flow and is defined as the ratio

of the pressure gradient caused by inertia effect to the total

pressure gradient. By combining the Forchheimer low

(Eq. 1), E can be expressed as:

E ¼
q
ki
v2

l
kv
vþ q

ki
v2

¼ Fo

Foþ 1
ð20Þ

For fractures, the widely recognized value of E = 0.1

indicates that when the inertia-effect-caused pressure gra-

dient accounts for 10% of the total pressure gradient, the

flow transforms into non-Darcy flow [18, 46]. From the

definition, it is evident that E and Rec are consistent, so the

relationship between them can be obtained by solving

Eqs. (19) and (20).

Rec ¼
kiffiffiffiffiffiffiffiffiffi
12kv

p � E

1� E
¼ ki

18
ffiffiffiffiffiffiffi
3kv

p ð21Þ

Based on the numerical experimental inversion value of

45 rough fractures, the performance of Eq. (21) is verified,

and the verification results are shown in Fig. 14 and

‘‘Appendix 2’’. The second to last column of ‘‘Appendix 2’’

is the result obtained by substituting the numerical simu-

lation-obtained kv and ki into Eq. (21), and the last column

is the result obtained by substituting the numerical simu-

lation-obtained kv and predicted ki into Eq. (21).Therefore,

the method of using the ki prediction model to obtain a

critical Reynolds number is reliable.

5 Conclusions

In this study, we proposed a method for determining the

inertial permeability of rough rock fractures by considering

their geometric information. A total of 1225 nonmated

fractures were generated through the combination of 50

profiles with different roughnesses, and 10 numerical

experiments with different flow velocities were carried out

for each fracture. A massive database consisting of 9

morphological parameters, 3 aperture parameters and the

inertial permeability was obtained. Based on this database,

four geometric parameters (rH, SF, bave, rb, kv) highly

correlated with the inertial permeability were selected as

input variables by using the MIC method, and a prediction

model of the inertial permeability was established through

ABC-SVR. The MATLAB program and all data related to

solving the model were uploaded as Supplementary data.

Forty-five fractures constructed from Barton’s profiles

were selected to verify the performance of the prediction

model. Two quantitative evaluation criteria (NOF and c)Fig. 14 Comparison of the predictive and simulation values of Rec in
the validation database
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show that the model has high prediction accuracy and good

generalization performance. Finally, the application of the

model in the critical Reynolds number was discussed in

detail. This work is of great significance for further

research on rough 3D fractures. In addition, the method-

ology in this study could be extended to the study of other

engineering geological problems, such as the stability of

slopes and underground spaces, the long-term safety of

support engineering, and evaluations of underground

resources.

Appendix

Appendix 1. Calculation of statistical
parameters for fracture geometric
information

(1) Average relative height, Rave

Rave ¼ have=L ð22Þ

have ¼
1

L

Z x¼L

x¼0

yj jdx

¼
Xi¼N�1

i¼1

yiþ1 þ yij j xiþ1 � xið Þ
2L

ð23Þ

L ¼
Xi¼N�1

i¼1
xiþ1 � xið Þ ð24Þ

(2) Standard deviation of the height, rH (mm)

rH ¼ 1

L

Z x¼L

x¼0

y� haveð Þ2dx
� �1=2

¼ 1

L

Xi¼N�1

i¼1

xiþ1 � xi
2

�

yi � haveð Þ2þ yiþ1 � haveð Þ2
� �i

ð25Þ

(3) Maximum relative height, Rmax

Rmax ¼
hp � hv

L
ð26Þ

(4) Average inclination angle, have (�)

have ¼ tan�1 1

L

Z x¼L

x¼0

dy

dx

	 

dx

� �

¼ tan�1 1

L

Xi¼N�1

i¼1

yiþ1 � yij j
xiþ1 � xi

� �
ð27Þ

(5) Standard deviation of inclination angle, rh (�)

SDh ¼ tan�1 1

L

Z x¼L

x¼0

dy

dx
� tan have

	 
2

dx

" #1=2

¼ tan�1 1

L

Xi¼N�1

i¼1

yiþ1 � yi
xiþ1 � xi

� tan have

	 
2

xiþ1 � xið Þ
" #1=2

(6) Root mean square of the first deviation of the

profile, Z2

Z2 ¼
1

L

Z x¼L

x¼0

dy

dx

	 
2

dx

" #1=2

¼ 1

L

Xi¼N�1

i¼1

yiþ1 � yi
xiþ1 � xi

	 
2
" #1=2

ð29Þ

(7) Roughness profile index, Rp

Rp ¼ Lt=L ð30Þ

Lt ¼
Xi¼N�1

i¼1
xiþ1 � xið Þ2þ yiþ1 � yið Þ2

h i1=2

ð31Þ

(8) Structure function of the profile, SF (mm2)

SF ¼ 1

L

Z x¼L

x¼0

f xþ dxð Þ � f xð Þ½ �2dx ¼

1

L

Xi¼N�1

i¼1
yiþ1 � yið Þ2 xiþ1 � xið Þ

ð32Þ

(9) Correlation coefficient, RU, D

RUD¼
CUDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CUU � CDD

p ð33Þ

(10) Average aperture, bave (mm)

bave ¼
1

L

Z x¼L

x¼0

bdx ¼ 1

N � 1

Xi¼N�1

i¼1
bi ð34Þ

(11) Root mean square of the aperture, rb (mm)

rb ¼
1

L

Z x¼L

x¼0

b� bmð Þ2dx
� �1=2

¼ 1

N

Xi¼N

i¼1
bi � bmð Þ2

� �1=2

ð35Þ

(12) Fitting coefficient of the cumulative distribution

curve of the aperture, C

A� ¼ 1

1þ b�=baveð ÞC
ð36Þ

2120 Acta Geotechnica (2024) 19:2105–2124

123



Appendix 2. Parameters ki and Rec of 45
single rough fractures

Number log10ki (FLUENT) log10ki v (SVR) log10ki (Zhou) log10ki (Xing) Rec (FLUENT) Rec (SVR)

F1 - 1.9081 - 1.8758 - 2.4800 - 0.3684 2.7001 2.4468

F2 - 1.8026 - 1.9144 - 2.3058 - 0.6729 3.1067 2.1888

F3 - 2.1712 - 1.7402 - 1.9928 - 0.6788 1.1053 3.2473

F4 - 2.5227 - 2.8670 - 3.0297 - 1.5718 0.9071 0.4763

F5 - 0.5773 - 1.1291 - 1.1108 - 2.4329 25.7858 11.4400

F6 - 1.4278 - 1.8628 - 1.9367 - 1.7447 5.9222 2.1636

F7 - 0.2646 - 1.0972 - 0.9543 - 2.8170 48.2946 12.7399

F8 - 2.7174 - 2.5200 - 2.1607 - 2.0174 0.3469 0.6915

F9 - 2.5062 - 2.9164 - 2.1205 - 1.8695 0.5510 0.2420

F10 - 1.9444 - 1.7195 - 2.2419 - 0.7262 2.1585 3.3593

F11 - 2.5031 - 2.3966 - 1.8897 - 1.0042 0.4843 0.8038

F12 - 2.6747 - 2.9602 - 3.1548 - 1.5507 0.6883 0.3740

F13 - 1.2773 - 1.6026 - 1.3615 - 2.5986 5.9642 4.5248

F14 - 1.8498 - 2.1418 - 2.1369 - 1.8301 2.5220 1.2643

F15 - 0.7680 - 1.0294 - 0.8054 - 2.9889 13.8797 11.2597

F16 - 2.7223 - 2.5305 - 2.0653 - 2.1360 0.3243 0.6507

F17 - 2.6584 - 3.0285 - 2.3197 - 2.0264 0.4366 0.2119

F18 - 2.1776 - 2.0958 - 2.0043 - 1.0829 1.0964 1.4642

F19 - 2.4736 - 2.7813 - 2.7694 - 1.5975 0.8712 0.4499

F20 - 1.5319 - 2.0007 - 1.7905 - 2.5478 4.2751 2.0442

F21 - 2.1862 - 2.1429 - 2.0110 - 2.0134 1.0792 1.3237

F22 - 0.2788 - 0.8360 - 0.7705 - 2.9059 41.9360 18.9416

F23 - 2.8885 - 2.6036 - 2.3860 - 2.0532 0.2673 0.5770

F24 - 2.6491 - 2.7892 - 2.0455 - 2.2981 0.3793 0.3580

F25 - 2.9484 - 2.7185 - 2.5412 - 1.8881 0.2552 0.5243

F26 - 1.3731 - 1.6934 - 1.4605 - 2.4479 5.0721 3.2068

F27 - 2.0928 - 2.2183 - 2.1341 - 1.9788 1.4392 1.0679

F28 - 0.7154 - 0.9723 - 0.7786 - 2.8691 15.4214 9.8367

F29 - 2.8598 - 2.5176 - 2.1069 - 2.2696 0.2421 0.6083

F30 - 2.8156 - 3.2029 - 2.8883 - 2.1543 0.4251 0.1656

F31 - 1.6354 - 2.1963 - 1.7650 - 3.0188 3.3181 0.9924

F32 - 2.0434 - 2.4760 - 2.4250 - 2.1728 1.9145 0.7106

F33 - 0.6266 - 0.9776 - 0.8523 - 3.2617 19.7625 14.6363

F34 - 2.5721 - 2.4068 - 2.0752 - 2.3590 0.4610 0.8229

F35 - 2.3943 - 2.3081 - 1.8430 - 2.3742 0.6053 0.7436

F36 - 3.0202 - 3.4328 - 3.4571 - 3.0608 0.3713 0.1638

F37 - 2.9515 - 3.5877 - 3.4018 - 3.4547 0.4210 0.1034

F38 - 3.8247 - 3.5776 - 3.5717 - 3.3465 0.0623 0.1118

F39 - 3.5064 - 3.2758 - 2.7905 - 3.1292 0.0818 0.1281

F40 - 2.2945 - 2.1279 - 1.7940 - 2.8385 0.7400 1.2674

F41 - 2.6894 - 2.5214 - 2.5775 - 1.9922 0.4732 0.6627

F42 - 3.0921 - 3.0446 - 3.4402 - 3.1810 0.3115 0.2921

F43 - 3.3323 - 3.2255 - 3.5333 - 2.5974 0.1893 0.2992

F44 - 3.9014 - 3.3192 - 3.7300 - 3.9015 0.0573 0.2456

F45 - 2.8595 - 3.1070 - 3.0171 - 2.7746 0.4146 0.2245
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