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Abstract
Based on the finite-discrete element method (FDEM), this paper proposes a continuous-discrete mixed seepage model that

considers the fluid exchange and the pore pressure discontinuity across the fracture. The continuous-discrete seepage model

uses the cubic law to express the fluid flow in the fracture and Darcy’s law to describe the pore seepage in the rock matrix.

Combining the continuous-discrete mixed seepage model with the FDEM, a hydro-mechanical coupling model is con-

structed to solve fluid-driven fracturing of a rock mass. The continuous-discrete seepage model and hydro-mechanical

coupling model update the node sharing relationship of triangular elements on two sides of the fracture during fracture

propagation which sufficiently consider the influence of the fracture propagation on the pore seepage. In this paper, the

analytical solutions are used to verify the model’s accuracy with the help of four examples. In addition, the hydro-

mechanical coupling model is used to simulate a hydraulic fracturing problem for rock mass involving a complex fracture

network. According to the simulation results, this hydro-mechanical coupling model can catch fracture initiation, propa-

gation, the interaction between hydraulic fractures and discrete fracture, as well as the evolution of pore pressure and

fracture pressure.

Keywords Finite discrete element method (FDEM) � Fluid-driven fracturing � Fracture-pore mixed seepage �
Hydraulic fracturing � KGD

1 Introduction

The coupling of two processes means that one process

affects the occurrence and development of another process.

The research on the hydro-mechanical coupling of porous

media began in the 1940s, and Terzaghi first proposed the

concept of effective stress when studying soil mechanics.

Then, Biot studied the hydro-mechanical coupling

problems in soil consolidation and foundation subsidence.

Since then, the theory has been applied to study the open or

close of fractures or joints in the rock mass, hydraulic

fracturing, and earthquakes triggered by fluid injection.

Many problems in geotechnical engineering are related

to hydro-mechanical coupling. For example, landslides and

slopes failure, dam foundations failure, stability of under-

ground excavation, stability of boreholes in oil and gas

extraction, hydraulic fracturing, geothermal mining, and

coal mining are all related to rock fracturing under the

effect of hydro-mechanical coupling. Therefore, building a

seepage and hydro-mechanical coupling model considering

rock fracturing is of great significance for solving the

engineering problems related to hydro-mechanical cou-

pling that widely exist in geotechnical engineering.

Moreover, many authors have investigated this issue,

which is summarized in three parts below: (1) computa-

tional method for seepage in complex fractured rock mass;
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(2) hydro-mechanical coupling analytical model; (3)

hydro-mechanical coupling numerical model.

1.1 Computational method for seepage
in a complex fractured rock mass

The computational method for seepage in the complex

fractured rock mass is relatively advanced. The fracture

and pore seepage can be considered directly or indirectly,

and they can be divided into the equivalent continuum

model (ECM) [42, 60], dual-porosity model (Dual-Porosity

Model) [18, 43], discrete fracture network model (DFN)

[13, 33], and discrete fracture-matrix model (DFM) [17].

Among these, the discrete fracture network model (DFN)

employs the cubic law to describe the fluid flow of frac-

tures in the rock mass through a more comprehensive

modeling of the fractures. However, the permeability of

rock itself is ignored in DFN. The ECM cannot accurately

characterize the fractures, which does not directly model

the fracture seepage. Instead, the fracture permeability is

equivalent to the entire medium. Therefore, it is difficult to

characterize the preferential conductivity of the local area

at the fracture. In the dual-porosity model, the fractured

medium is regarded as a medium whose permeability is

much larger than that of the rock matrix, so the preferential

conductivity of the fracture is considered. However, the

pore pressure across the fracture is continuous because the

elements on both sides of the fracture share nodes. Since

fractures usually are very narrow, the mesh needs to be

very dense. The discrete fracture-matrix model absorbs the

advantages of the discrete fracture network model to

describe the fracture seepage accurately. It also considers

the pore seepage of the rock matrix [21, 23]. The above

research mainly limits pure seepage problems in fractured

rock masses and rarely considers hydro-mechanical cou-

pling and fluid-driven fracturing of a rock mass.

1.2 Hydro-mechanical coupling analytical model

The classical coupling model of porous media like rock and

soil can be derived from Biot’s consolidation theory.

Another significant force that drives the research of rock

mass fracturing under hydro-mechanical coupling is the

widespread use of hydraulic fracturing technologies in oil

and gas production. In response to this problem,

researchers have established a series of analytical models

for hydraulic fracturings, such as the PKN model [38, 39],

KGD model [15, 24], and the axisymmetric penny-shaped

model [1]. Under some simplified assumptions, Khris-

tianovic [15, 24] proposed a hydraulic fracturing model,

namely the KGD model, for continuous, uniform, and

isotropic linear elastic media. According to this model, the

fracture tip process controls fracture propagation;

therefore, it is more suitable for the formation of fractures

whose height is much greater than the fracture length. The

asymptotic solution of the KGD model shows that the

fluid-driven fracture propagation process is mainly con-

trolled by two competing mechanisms: energy dissipation

and fluid storage. Energy dissipation includes fracture

propagation and the viscous flow of fracturing fluid in

fractures. The fluid storage includes fluid storage in frac-

tures and fluid loss in porous media. Detournay [9] has

done an in-depth study on the mechanism of energy dis-

sipation and found that there are four main types of energy

dissipation: storage-toughness, storage-viscosity, leak-off-

toughness, and leak-off-viscosity.

In the past few decades, scholars have studied the

asymptotic solution of KGD. Adachi, Detournay [3]

derived a self-similar solution to the 2D hydraulic frac-

turing problem driven by a power-law fluid. Garagash,

Detournay [14] obtained a similar solution for a fluid-dri-

ven fracture propagating in the viscous-dominated zone in

the case of plane strain. Bunger et al. [5] derive the small-

time asymptotic solution and the large-time asymptotic

solution, respectively, under the conditions of fluid storage

in fractures or fluid permeability in rocks. Although these

models have certain limitations, they can be used as

benchmarks for numerical simulations and to analyze the

effects of different parameters on hydraulic fracturing.

1.3 Hydro-mechanical coupling numerical model

To conduct a more in-depth study of hydraulic fracturing,

many scholars have built different numerical models and

verified the numerical models through the KGD model.

Lecampion et al. [26] reviewed the basics of the hydraulic

fracture problem and its intrinsic peculiarities and the

benefits and limitations of the recently developed contin-

uum and meso-scale numerical methods. Various numeri-

cal models based on the finite element method are widely

used for hydraulic fracturing simulation. Carrier, Granet

[8] established a hydro-mechanical coupling model in the

finite element method to study the four energy dissipation

mechanisms in the fracturing process. Manzoli et al. [32]

proposed an approach for simulating the formation and

propagation of fractures in rocks based on high aspect ratio

(HAR) elements, which uses standard finite element tech-

niques to deal with discontinuities in porous media.

Hunsweck et al. [19] proposed a finite element algorithm to

study the problem of hydraulic fracture propagation in a

plane strain impermeable formation, which can simulate

fluid leakage phenomena with non-Newtonian rheology.

Compared with the classic finite element method, the

fracture propagation in the extended finite element method

can be independent of the computational mesh and simu-

late the propagation of fractures in any direction. Yan et al.
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[63] proposed a new hydromechanical coupling stratified

simulation method for fractured shale gas reservoirs, which

uses the finite difference method and stable extended finite

element method to discretize the seepage model and

geomechanical model, and a sequential implicit method is

adopted for solving the model. Zhang et al. [78] proposed a

new formula for the stability of anisotropic double-porosity

media based on the smooth finite element method (NS-

FEM) and realized the coupling between double porosity

flow and deformation formulation. Li et al. [28] proposed a

multi-fracture coupling simulation algorithm based on

extended finite element that does not require the intro-

duction of a leak-off coefficient to describe the fluid loss

phenomenon and to pre-determine the direction of fracture

propagation. Dugdale [11] and Barenblatt [4] first proposed

a cohesive zone model, which provides a new approach for

simulating hydraulic fracturing. Mahdi Haddad, Sepehr-

noori [16] proposed a cohesive zone model (CZM) based

on extended finite elements, which can effectively simulate

the extension of fractures in any direction and consider the

fluid loss in the rock matrix. Li et al. [29] used a 2D pore

pressure cohesive zone model to simulate hydraulic frac-

ture propagation in naturally fractured formations. How-

ever, this model does not consider the influence of fluid

loss into the rock matrix on hydraulic fracturing. Sal-

imzadeh et al. [41] proposed a fully coupled three-dimen-

sional finite element model for hydraulic fracturing in

permeable rocks.

In addition to the finite element method, the discrete

element method has been used to simulate hydraulic frac-

turing in recent years. Liu et al. [31] revised the hydro-

mechanical coupling model in PFC and proposed a fractured

porous media permeability model to simulate the interaction

between two adjacent fractures after fluid injection. Zan-

geneh et al. [76] used 2D discrete element code (UDEC) to

simulate the propagation of hydraulic fractures in fractured

rock masses. The Voronoi subdivision scheme is used to add

the necessary degrees of freedom to provide as many paths

as possible for fracture propagation.

In addition, some other numerical methods, such as the

displacement discontinuous method (DDM) and numerical

manifold method (NMM), are also used to simulate hydraulic

fracturing. Kresse et al. [25] proposed an unconventional

fracture model (UFM) to simulate the propagation of fractures

in naturally fractured formations, using the 2D discontinuous

displacement method (DDM) to calculate the induced stress

of any fracture in the rock. Xie et al. [46] improved the hydro-

mechanical coupling function in the fracture mechanics

modeling code (FRACOD) to simulate hydraulic fracturing.

Wu et al. [45] proposed a Voronoi particles numerical man-

ifold method based on bonding elements, which can simulate

hydraulic fracture propagation from a microscopic perspec-

tive. However, this method has limitations due to the

complexity of rock microstructure and the interaction

between rock microstructure and fracturing fluid. Since the

cohesive zone model assumes that fractures can only propa-

gate on the element’s boundary, the propagation direction of

fractures is restricted.

The finite-discrete element method (FDEM) was first

conceived by Munjiza at Tohoku University Japan in 1989

and initially developed in Swansea and MIT in 1990–1992,

which combines the advantages of the finite element

method and discrete element method [35]. At present, three

classic monographs about FDEM have published: The

Combined Finite Discrete Element Method [34]; Compu-

tational Mechanics of Discontinua [36]; Large strain Finite

element method a practical course [37], and Computational

Particle Mechanics special issue [40] on FDEM was pub-

lished in 2020. FDEM can effectively simulate the fracture

and deformation of solid materials, and it is also the pre-

ferred method for simulating the fracture and fragmenta-

tion of solid materials recently [2, 27, 44, 47]. However,

FDEM initially did not have a seepage calculation module

and could not deal with the hydro-mechanical coupling

problem. Many scholars combine FDEM with some com-

putational fluid dynamics solvers for fluid–structure cou-

pling calculations. For example, Lei et al. [27] combined

FDEM and fluid computational software to solve the

seepage-stress coupling problem in a fractured rock mass.

However, it mainly considers the deformation of the rock

mass and the opening or closing of fractures but does not

consider the fracture initiation and propagation in the rock

mass. However, this approach cannot consider a fluid loss

because the pore seepage is ignored. AbuAisha et al. [2]

investigated the relationship between microseismic activity

and hydraulic fracture propagation using FDEM. Cao

et al. [6, 7] applied FDEM to realize formation fracturing

by high-energy impulsive mechanical loading and studied

the empirical scaling. Ju et al. [22] used an adaptive finite

discrete element method to simulate the extension of

hydraulic fractures in the strata bedding interface and

analyze the influence of the layered interface on the

extension of hydraulic fractures. Yan et al. [52, 55–59, 62]

proposed four FDEM-flow2D/3D models for simulating

rock mass fracturing under hydro-mechanical coupling,

which can directly perform hydro-mechanical simulation in

FDEM. These models have been integrated into a GPU

parallel multiphysics finite-discrete element software

MultiFracS developed by Yan [70], which has been used to

simulate soil desiccation cracking [53, 65, 66, 72], grouting

[71], rock experimental [54], contact heat transfer and in-

duced thermal cracking [48–51, 61, 67–69, 73–75]. The

first model describes fracture seepage but not fluid loss,

whereas the second model considers the surrounding rock

matrix from the fracture. However, the pore seepage is

equivalently represented by the fracture seepage in the
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unbroken joint element. Therefore, the permeability of the

rock matrix is determined by the initial aperture of the

unbroken joint element. When dealing with the problem of

unsteady pore seepage, this equivalent method has fluid

flow hysteresis. The hydro-mechanical coupling model

developed by Lisjak et al. [30] based on FDEM is the same

as the second model. The third model is a fully coupled

model which considers two seepage types instead of using

fracture seepage to express the pore seepage. The third

model overcomes the shortcomings of the first two models.

However, the model cannot consider the discontinuity of

pore pressure across fracture and the influence of fracture

propagation on the computational mesh for pore pressure

calculation. The fourth model overcomes shortcomings of

the first three models. However, due to the introduction of

unbroken joint elements in the pore seepage calculation of

the continuous medium, the unbroken joint elements hinder

the fluid exchange between the adjacent triangular ele-

ments. To make the hindrance of the joint element small

enough, the exchange coefficient of the unbroken joint

element is required to be 100k=ðlLeÞ. Due to large

exchange coefficient, the time step for pore seepage cal-

culation is reduced by 100 times, which greatly reduces the

efficiency of pore seepage calculation.

Therefore, a new 2D continuous-discrete mixed seepage

and hydro-mechanical coupling models are established and

implemented in the GPU parallel multiphysics finite-discrete

element software MultiFracS. The model considers two

seepage types simultaneously. The node sharing relationship

of triangular elements on both sides of the fracture will be

updated dynamically in the process of fracture propagation.

The adjacent triangular elements on the two sides of the

fracture do not share nodes. The pore pressure discontinuity

across the fracture and the influence of fracture propagation

on the seepage are well-considered. Thus, there is no need to

add virtual unbroken joint elements. The time step for pore

seepage calculation is not needed to reduce. Combining the

continuous-discrete mixed seepage model with FDEM can

establish a hydro-mechanical coupling model to simulate the

deformation and fracturing of fracture-porous media. In

addition, the hydro-mechanical coupling model has obvious

advantages compared with the traditional numerical model for

simulating hydraulic fracturing, which can simulate hydraulic

fracturing in any complex fractured reservoir. The traditional

numerical model for hydraulic fracturing can only consider

simple fractures and cannot deal with the extension and

intersection of complex fractures.

This paper is structured as follows. First, the existing

related analytical and numerical models about seepage and

hydro-mechanical coupling are introduced. Then, the details

of the continuous-discrete seepage model are presented. The

third section is about the basic principle of hydro-mechan-

ical coupling, FDEM, application of fracture pressure and

pore pressure, fracture-stress-seepage coupling, and the

influence of fracturing on the pore seepage computational

mesh or the node shared relationship between adjacent tri-

angular elements at the fractures. In Sect. 4, the continuous-

discrete mixed seepage model and hydro-mechanical cou-

pling model are thoroughly verified by a single fracture pore

mixed seepage problem, pore seepage problem in porous

media with impervious fractures, multi-fractures pore mixed

seepage problems, and some hydro-mechanical coupling

problems, including pore seepage-stress coupling problem

(soil consolidation), fracture seepage-stress coupling prob-

lem (KGD). In the end, an application example of hydraulic

fracturing is given to investigate interaction between

hydraulic fractures and discrete fracture.

2 A 2D continuous-discrete seepage mixed
model

2.1 Fracture seepage model

As shown in Fig. 1, when fluid flows in a fracture, a cor-

responding fracture pressure is exerted on both sides of the

fracture. The fracture aperture increases or decreases under

fracture pressure. According to the cubic law, the change of

the fracture opening affects the flow rate of the fluid and

the fracture pressure.

Figure 1 shows a part of the fracture network for the fracture

seepage calculation. The empty area between each adjacent

fracture node at the fracture represents a pathway for fluid flow

in the fracture network (as shown in Fig. 1, a flow path formed

by the blank empty area between fracture node c1 and fracture

node c2). There is no fracture seepage in the remaining parts.

The steps to solve the flow between the two fracture nodes

are first to determine the fracture pressure difference between

the two fracture nodes. For fracture node c2, the total fracture

pressure difference between fracture node c2 and c1 is:

Fig. 1 Fluid flow in the fracture network
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Dp ¼ pc1 � pc2 þ qwgðyc1 � yc2Þ ð1Þ

where p2 is the fracture pressure at fracture node c2, p1 is

the fracture pressure at node c1,yc1 and yc2 is the ordinate

of fracture nodes c1 and c2, respectively. Then, according

to the cubic law, the flow rate of fracture node c1 into c2

can be obtained as:

qc1!c2 ¼
1

12l
a3

Dp
L

ð2Þ

where l is the fluid viscosity coefficient, a is the average

aperture of the fracture and L is the distance between two

fracture nodes.

Since fracture node c2 is also connected to fracture

nodes c3, c4, and c6, the flow from fracture nodes c3, c4,

and c6 into c2 qc3!c2,qc4!c2,qc6!c2 can be solved similarly.

Therefore, the total flow into fracture node c2 is:

Qc2 ¼ qc1!c2 þ qc3!c2 þ qc4!c2 þ qc6!c2.

Then, the fracture pressure of fracture node 2 can be

updated by:

ptþDt
c2 ¼ ptc2 þ KwQc2

Dt
V

� Kw
DV
Vm

ð3Þ

where ptc2 is the fracture pressure of fracture node c2 at the

previous time step, Kw is the bulk modulus of the fluid, and

Q is the total flow into fracture node c2. Dt is the time

step,DV ¼ V � V0,Vm ¼ ðVþV0Þ
2

. where V is the volume of

fracture node c2 at the current time step and V0 and V is the

volume of fracture node c2 at the previous time step.

2.2 Pore seepage model

According to Darcy’s law, the flow velocity in the i

direction can be expressed as:

qi ¼ �kij
o/
oxj

ð4Þ

where kij is the permeability coefficient tensor, / is the

total head, which is defined as:

/ ¼ ðp� qwxkgkÞ=ðqwgÞ ð5Þ

where qw is the fluid density, g is the modulus of the

gravitational acceleration vector, and the subscript symbol

g represents two components.

This paper uses a 2D mixed seepage model to discretize

the fractured rock mass into a computational mesh, as

shown in Fig. 2. There are no nodes on either side of the

fracture shared by the adjacent triangular elements. This

work established the pore seepage model. The pore pres-

sures at pore nodes 1–18 are used to describe the pore

pressure distribution of the entire medium. The topological

relationship represented how to calculate the pore pressure

evolution in fractured porous media.

For pore node 1 in Fig. 2, the triangular elements

sharing pore node 1 have 2 triangular elements D123 and

D137. Consider one of the triangular elements D123 as an

example. Assuming that the total head distribution is a

linear distribution for triangular elements and the total head

gradient is constant which can be expressed as:

o/
oxi

¼ 1

A

Z

A

o/
oxi

dA ð6Þ

According to the Gaussian divergence theorem, Eq. (6)

can be written as:

o/
oxi

¼ 1

A

Z

s

/nids ¼
1

A

X3
m¼1

/
m 2ij Dx

m
j ð7Þ

where A is the area of the element, /
m
is the average pore

pressure at the edge m of the triangular element, ni is the

external normal unit vector and 2ij is a 2D permutation

tensor, namely 2¼ 0 1

�1 0

� �
.qi is the flow rate in the i

direction and can be obtained by substituting Eq. (7) into

Eq. (4):

qi ¼ �kij
1

A

X3
m¼1

/
m 2jk Dx

m
k

 !
ð8Þ

Therefore, the flow into the node 1 is:

QD123!1 ¼ �
qin

ð1Þ
i
Lð1Þ

2
ð9Þ

where nð1Þ
i

and Lð1Þ are the external normal unit vector and

length of the edge opposite to pore node 1 in the triangular

element.

The flow into pore node 2 QD123!1 from the triangular

element D231 can be obtained in this way. The flow into

pore node 1 from other triangular elements that directly

connect to the pore node can be obtained. In this way, the

total flow into pore node 1 can be expressed as:

Qtotal ¼ QD123!1 þ QD137!1 ð10Þ

According to Eq. (6), the pore pressure at pore node 1 is

updated by:

Pp
tþDt ¼ Pp

t þ
MðQtotal � DVmechÞ

V
Dt ð11Þ

where M is the Biot modulus, if the Biot coefficient a is

equal 1, M ¼ Kw

n . Otherwise, M ¼ Kw

nþða�nÞð1�aÞKwK
, where K is

the drained bulk modulus of the porous medium, Kw is the

fluid bulk modulus, a is the Biot coefficient, n is porosity.

Please see references [20, 77].

The time step must be less than the critical time to

ensure the stability of the numerical calculation. The crit-

ical time step is given by:
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Dtf ¼ min
V

M
P

i qwgki

� �
ð12Þ

where ki is the isotropic permeability coefficient.

2.3 Fluid exchange at the fracture

In Fig. 3, assume the fracture pressure at fracture nodes c1

and c2 is pc1,pc2, and the pore pressures at pore nodes 1, 7,

and 0, 16 on both sides of the fracture are p1; p7 and p0; p16,

respectively. The length of the fracture is L and h is the

exchange coefficient of the fluid at the fracture. Therefore,

the fluid exchange per unit time between the fracture c1c2

and the edge 17 is:

Qe ¼ h
ðpc1 þ pc2Þ

2
� ðp1 þ p7Þ

2

� �
L

¼ h
ðpc1 � pc7Þ

2
Lþ h

ðpc2 � p1Þ
2

L ð13Þ

Therefore, the fluid exchange per unit time at fracture

c1c2 is distributed to pore node 1 as follows:

Qc1c2!1 ¼ h
ðpc2 � p1Þ

2
L17 ð14Þ

Similarly, the fluid exchange per unit time at fracture

c2c3 is distributed to pore node 1 as follows:

Qc2c3!1 ¼ h
ðpc2 � p1Þ

2
L12 ð15Þ

Therefore, the pore pressure of pore node 1 located in

the fracture is finally updated by:

Pp
tþDt ¼ Pp

t þ
MðQtotal þ Qc1c2!1 þ Qc2c3!1 � aDVmechÞ

V
Dt

ð16Þ

For the fracture node c2, the pore nodes 0, 1, 4, and 8 all

exchange fluid with it. Therefore, the total fluid exchange

between the fracture node c2 and the porous medium is:

Qe ¼ h
ðp0016 � pc2Þ

2
L0016 þ h

ðp1 � pc2Þ
2

L17

þ h
ðp1 � pc2Þ

2
L12 þ h

ðp4 � pc2Þ
2

L46

þ h
ðp4 � pc2Þ

2
L45 þ h

ðp8 � pc2Þ
2

L8010

ð17Þ

Therefore, the pore pressure at the fracture node c1 is

finally updated by:

Fig. 2 Pore seepage model for fractured rock mass

Fig. 3 Pore seepage-fracture seepage coupling treatment
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pftþDt ¼ pft þ KwðQc þ QeÞ
Dt
V

� Kw
DV
Vm

ð18Þ

2.4 The effect of fracture extension
on the fracture seepage and pore seepage

Existing fractures may extend or new fractures may be

generated. The node sharing relationship of adjacent tri-

angular elements at the fractures should be updated. The

flow calculation of these nodes at the newly generated

fractures also changes. As shown in Fig. 4, the original

adjacent triangular element 137 and triangular element 123

are separated, and a new fracture c2c7 is generated. Pore

node 3 is separated into two pore nodes 3 and 3’, and pore

node 1 is separated into two pore nodes 1 and 1’.

The effect of fracture propagation on the calculation of

fracture seepage is shown in Fig. 4. The fracture node c2 is

still taken as an example. The flow rate at this fracture node

needs to add qc7!c1, QL13!c2 ¼ h ðp1�pc2Þ
2

L13, and

QL1030!c2 ¼ h ðp10�pc2Þ
2

L1030 to the original Eq. (14), where

qc7!c2¼
1

12l
a3

Dp
L

ð19Þ

The triangular element D123 and D137 in Fig. 3 are

separated. Therefore, from the triangular element D1023’,
no longer flows directly into pore node 1 but from a newly

generated fracture c2c7 into node 1. That is why it is

necessary to replace QD123!1 with Qc2c7!1 in Eq. (10),

where

Qc2c7!1 ¼ h
ðpc2 � p1Þ

2
L13 ð20Þ

Fig. 4 The influence of fracture propagation on seepage calculation

Fig. 5 Fluid flow and force in the fracture
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3 Hydro-mechanical coupling model

3.1 The basic idea of hydro-mechanical coupling

The mixed seepage model can be combined with FEM,

DEM, FDEM, DDA, NMM, and other numerical methods

to construct appropriate hydro-mechanical coupling mod-

els. The general framework for constructing the hydro-

mechanical coupling model is given here, i.e., the hydro-

mechanical coupling model includes the following pro-

cesses: (1) Fluid flowing in a fracture exerts a

corresponding fracture pressure on the fracture. Under the

action of the fracture pressure, the fracture may close or

open. According to the cubic law, the opening or closing of

the fracture affects the flow rate of the fluid in the fracture

and thus, changes the fracture pressure; (2) The pore

seepage in the matrix exerts pore pressure. The volume of

the pores changes under stress, which changes the perme-

ability of the matrix. The change in permeability of the

matrix, in turn, affects the flow rate and pore pressure of

the fluid in the matrix.

Fig. 6 Geometric model and computational mesh

Fig. 7 Pore pressure distribution obtained by the 2D continuous-discrete mixed seepage model: a pore pressure distribution, b pore pressure

distribution at the monitoring line y = 0.7
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Taking FDEM as an example, a hydro-mechanical

coupling model is constructed based on the 2D continuous-

discrete mixed seepage model. First, we briefly introduce

the basic principles of FDEM.

3.2 Basic principles of FDEM

In 2D FDEM, the continuum is discretized into a finite

element mesh of triangular elements. A four-node cohesive

joint element is added on the common edge of adjacent

triangular elements, as shown in Fig. 1. FDEM uses the

finite element method to solve the stress and strain of the

constant strain triangular elements and uses the discrete

element method to deal with the contact between the tri-

angular elements. In addition, the breaking of the joint

element characterizes the fracture and fragmentation of the

continuum. Please refer to the literature for potential

contact force, the governing equation, contact detection,

and fracture criterion of joint elements in FDEM [52].

3.2.1 Deformation of solid medium

In FDEM, the solid domain of interest is meshed into a

series of triangular solid elements. The deformation and

stress of a single solid element are calculated by a large

strain displacement formulation for the finite element side

of FDEM. Recently, this formulation has been generalized

through the so-called Munjiza material element concept.

For homogeneous and isotropic materials, the constitutive

relation is given by

T ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
detFj j

p E

1þ m
Ed þ

E

1þ m
Es þ 2lD

� �
ð21Þ

where T is the stress tensor in the overall coordinate after

element deformation; F is the deformation gradient; Ed and

Fig. 8 Model geometric conditions and monitoring line settings

(a)Le=0.4                              (b)Le=0.1            (c)Le=0.05 

Fig. 9 Pore pressure distribution under different element sizes
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Es are Green and St. Venant strain tensors due to the shape

and volume change, respectively; E and v are Young’s

modulus and Poisson’s ratio, respectively; l is viscous

damping coefficient, and D is the strain rate tensor. As

triangular solid elements in FDEM yield constant strains,

the equivalent nodal force of each edge caused by the

deformation of triangular elements can be calculated by

fn ¼
1

2
Tn ¼ 1

2

rxx rxy
ryx ryy

� �
nx

ny

" #
ð22Þ

where n is the outward normal vector of the triangular

element edge.

3.3 The influence of fluid on solids

3.3.1 The effect of fracture seepage on solid

As shown in Fig. 5, suppose the fracture pressure at frac-

ture nodes 1 and 2 are pc1 and pc2, respectively. Then, the

total normal force acting on two walls of the fracture is:

fn ¼
ðpc1 þ pc2Þ

2
Lc1c2 ð23Þ

The two walls of the fracture are subjected to a tan-

gential viscous force exerted by the fluid. The total tan-

gential force acting on the fracture walls is

fs ¼ Lc1c2sf0 ¼
a

2
DP ð24Þ

Fig. 10 The pore pressure distribution at the monitoring line y = 1

under different element sizes

(a) Le=0.15 (b) Le=0.1 

Fig. 11 Pore pressure distribution under different element sizes

Fig. 12 The pore pressure distribution along the monitoring line

y = 1.2 m under different element sizes
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where Lc is the length of the fracture.

In this way, the fracture fluid pressure and viscous force

can be obtained by introducing the fluid flow algorithm

mentioned above.

3.3.2 The influence of pore seepage on solid

The effective stress in the rock matrix can be expressed as:

r0ij ¼ rij � apdij ð25Þ

where a is the Biot coefficient.

Thus, the stress increment induced by the pore pressure

is:

Drij ¼ �apdij ð26Þ

We apply the stress increment as a body load to the

triangular element.

3.4 The effect of solid on fluid

3.4.1 The influence of solid deformation and fracturing
on fracture seepage

The aperture of the fracture is affected by the change of

solid deformation effects and thus, changes the perme-

ability of the fracture. According to Eq. (4), the intrinsic

permeability of the fracture becomes k ¼ k0ða=aiÞ2 when

the aperture of the fracture changes, where k0 is the

intrinsic permeability of the fracture at the initial moment,

ai is the hydraulic aperture of the fracture at the initial

moment and a is the hydraulic aperture at the current

moment.

The flow network of fracture seepage is altered by solid

fracturing. Fracture pressure and flow rate are also altered.

Combined with the fracturing of the joint element and

Eq. (4), these changes will be automatically handled in the

hydro-mechanical coupling model. In conventional seep-

age-stress coupling models, the effect of fracturing on the

seepage in the fracture cannot be considered.

3.4.2 The influence of solid deformation and fracturing
on pore seepage

The following coupling equation expresses the influence of

solid deformation on pore seepage:

kijðr; pÞ ¼ k0e
�b ðrii=3�apÞ

H

� �
rii ¼ r11 þ r22 þ r33

ð27Þ

where b is the coupling parameter, H is Biot constant, and

rii=3 is the average total stress, representing the degree of

influence of stress–strain on permeability coefficient. The

smaller is the b, the smaller the influence of stress on

matrix permeability, and its value is determined by the

experiment.

The fracturing effect on pore seepage is automatically

considered by updating the pore node shared relationship

of triangular elements across the fracture.

4 Examples

4.1 Single fracture-pore mixed seepage

We use the 2D mixed seepage model in this paper to cal-

culate a porous media with multiple horizontal and vertical

Fig. 13 Model geometry conditions

Fig. 14 Results of water pressure distribution
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fractures [12], as shown in Fig. 6. The coordinates of

points A, B, and C are (0.5, 0.5), (0.625, 0.625), and (0.75,

0.75), respectively. A constant injection flow rate of 1m3/s

is applied on the model’s left side, and the pore pressure on

the right side is 0 Pa. The intrinsic permeability of the

model is 1 9 10–7 m2, fluid viscosity coefficient

l¼0:001 Pa � s. The aperture of the fracture is 0.00865.

The numerical solution obtained by the 2D continuous-

discrete mixed seepage model is shown in Fig. 7. The

distribution of pore pressure exhibits a trend similar to the

literature results [12].

4.2 The seepage problem of porous media
with impervious fractures

We use the 2D continuous-discrete mixed seepage model

to study the effects of impermeable fractures on pore

seepage. As shown in Fig. 8, both computational models

have 2 m 9 2 m square areas and the pore pressure at the

left boundary is fixed at 1000 Pa. The pore pressure at the

right boundary is fixed at 0 Pa, and the other boundaries are

impermeable. In model 1, there is only one vertical frac-

ture, while in model 2, there are two diagonal fractures

perpendicular to each other. The intrinsic permeability of

the model is 1 9 10-12m2, fluid viscosity coefficient

l¼0:001 Pa � s.

(a) Y=1 m (b) Y=1.5 m

Fig. 15 Water pressure distribution along the monitoring line

Fig. 16 Model geometry conditions

Fig. 17 Water pressure distribution results
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For model 1, we used three different mesh sizes for the

simulation. The sizes of the smallest element Le = 0.4, 0.1,

0.05 m, and the simulation results are shown in Fig. 9. In

addition, there is a monitoring line at y = 1. The pore

pressure distribution along the monitoring line is shown in

Fig. 10. For Le = 0.1 and 0.05 m, the pore pressure dis-

tribution along the monitoring line is essentially the same.

While for Le = 0.4 m, the pore pressure has a large devi-

ation compared with that of Le = 0.1 or 0.05 m; because of

the large size of the element, the calculation accuracy is

insufficient. Nevertheless, for the three mesh sizes, all the

pore pressure distribution and the monitoring line jump at

the fracture.

For model 2, we use Le = 0.15 and 0.1 m to discretize

the domain. The simulation results are shown in Fig. 11.

The pore pressure distribution along the monitoring line

y = 1.2 m is shown in Fig. 12. The results of the two ele-

ment sizes are in good agreement. The pore pressure along

the monitoring line also jumps at the intersection of the

monitoring line and the two fractures.

Fig. 18 Water pressure distribution along the monitoring line

Fig. 19 Computational mesh for KGD model

Fig. 20 Evolution of fracture length with time

Fig. 21 Evolution of fracture width over time
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4.3 Mixed seepage problem for porous media
with permeable fracture

4.3.1 Multi-fractures-pore mixed seepage

This section uses the 2D continuous-discrete seepage

model to calculate an example with two sets of inclined

and horizontal permeable fractures. Fluids flow not only in

the rock matrix but also in the fractures. In Fig. 13, the

pore pressure setting is the same as in the calculation

example in 4.2.

Figure 14 shows the result of the water pressure distri-

bution. From the water pressure distribution at y = 1.5

shown in Fig. 15, it is evident that there are obvious

inflection points of the water pressure at the intersections of

the fractures. In contrast, the water pressure is linearly

distributed in other areas. This reflects the influence of the

seepage water from the fractures on the pore pressure.

4.3.2 Arbitrarily complex fracture-pore mixed seepage

We use the 2D continuous-discrete mixed seepage model

to solve the complex problem of mixed seepage from

fractures and pores. A rectangular area of 10 9 10 m

contains 12 intersecting fractures, as shown in Fig. 16. The

pore pressure setting is the same as in the calculation

example in 4.2.

The simulation results are shown in Fig. 17. The water

pressure displays a step-like distribution, reflecting well the

influence of fracture seepage on the pore pressure. The

monitoring line at Y = 3.5 m, and the pore water pressure

distribution along the monitoring line are shown in Fig. 18.

Initially, the pore pressure dropped slowly along the

monitoring line. When passing through point A at the

intersection of two fractures, the pore pressure is signifi-

cantly reduced, reflecting the preferential diversion effect

of the fractures. The pore water pressure also suddenly

decreases when the next fracture endpoint B is given.

4.4 Hydro-mechanical coupling problem

4.4.1 Fracture seepage-stress coupling (KGD)

In this section, the KGD model is employed to verify the

hydro-mechanical coupling model. As shown in Fig. 19,

the model is a rectangle of 45 m 9 60 m. The left and

right boundaries are fixed along the x-direction, and the

upper and lower boundaries are fixed along the y-direction.

The injection point is set to the origin of the x-axis. The

injection flow rate Q is a constant 0.001m2/s, and the four

boundaries are impervious. The fluid density q = 1000 kg/

m3, fluid viscosity coefficient l¼0:001 Pa � s, the solid

elastic modulus E is 17 GPa, and Poisson’s ratio v is 0.2.

This example does not consider the in situ stress and fluid

loss in the fracture. The analytical solution to this problem

is as follows [9]:

Fig. 22 The distribution of soil pore pressure along with the height at

different times

Fig. 23 The soil displacement distribution along with the height

distribution at different times
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L ¼ 0:48
4E0Q3

l

� �1
6

t
2
3 ð28Þ

W ¼ 1:32
16lQ3

E0

� �1
6

t
1
3 ð29Þ

where E0 is the elastic modulus of plane strain,E0¼ E
1�v2

, Q

is the injected flow.

The numerical solutions obtained by the hydro-me-

chanical model are shown in Figs. 20 and 21. In the present

paper, the numerical solutions are in good agreement with

(a) 30° Dilated (Modeling)

(b) 60° Arrested (Modeling)

(c) 90° Crossed (Modeling) 

Fig. 24 The influence of discrete fracture on hydraulic fracture propagation under different natural fracture inclination angles
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the analytical solutions, which verifies the correctness of

the hydro-mechanical coupling model.

4.4.2 Pore seepage-stress coupling

Assume that the soil layer is saturated and only the upper

boundary is permeable. The height of the soil layer is

H = 10 m. All model boundaries are fixed in the normal

direction except the upper boundary. Under undrained

conditions, the upper boundary of the soil layer is subject

to a constant surface load Pz = 1 9 105 Pa. The fluid flow

in the soil matrix confirms the isotropic Darcy’s law. Ini-

tially, the top load is carried by the pore water in the soil

layer. As the pore water is gradually discharged from the

top surface of the soil layer, the top surface load is grad-

ually carried by the soil layer. The analytical solution for

one-dimensional consolidation of pore pressure and dis-

placement is as follows [10]:

P ¼ 2P0

X1
m¼0

sin am z
^	 


am
e�a2m t

^

ð30Þ

uz ¼
HPz

a1
2a

P0

Pz

X1
m¼0

cos am z
^	 


a2m
e�a2m t

^

2
64

3
75þ z

^�1

0
B@

1
CA ð31Þ

(a) hσ =10 MPa, vσ =8 MPa

(b) hσ =10 MPa, vσ =5 MPa

(c) hσ =10 MPa, vσ =4 MPa

Fig. 25 The influence of in situ stress on the interaction of two kinds

of fractures

(d) hσ =10 MPa, vσ =3 MPa

(e) hσ =10 MPa, vσ =2 MPa

Fig. 25 continued
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where P0 ¼ a
a1

1
S Pz, am ¼ p

2
ð2mþ 1Þ, Z

^
¼ H�z

H , t
^
¼ ct

H2,

c ¼ k=lS,S ¼ 1
M þ a2

a1
is the storage water coefficient, a is the

Biot coefficient, M is the Biot modulus.

The calculation parameters are as follows: shear mod-

ulus G = 2 9 108 Pa, the drainage bulk modulus

K = 5 9 108 Pa, Biot modulus M = 4 9 109 Pa, Biot

coefficient a = 1, intrinsic permeability k = 8 9 10–12 m2,

fluid density q = 1000 kg/m3, fluid viscosity coefficient

l = 0.001 Pa. Figures 22 and 23 show the distribution of

pore pressure and displacement along with the height at

different times. The numerical solution is in good agree-

ment with the analytical solution, which verifies the cor-

rectness of the hydro-mechanical coupling model to deal

with the pore seepage-stress coupling problem.

4.5 Application examples of hydraulic fracturing

In this section, we investigate the interaction between

discrete fracture and hydraulic fractures. The effect of the

angle of approach and in situ stress on fracture propagation

is analyzed. The size of the model is 0.8 m 9 0.6 m, and

the inclination angles of the two parallel fractures are 30�,
60�, and 90�. The horizontal and vertical in situ stresses are

set to rh = 8 MPa and rv = 3 MPa, respectively. The vis-

cosity of fracturing fluid is 1.0 9 10-3 Pa, and the injec-

tion flow rate is 8.5 9 10-4 m3/s. We compared the

simulated interaction mode of hydraulic and discrete

fracture with Zhou et al. [79]. Three basic interaction

models of hydraulic and discrete fracture, namely, Dilated,

Arrested, and Crossed, are reproduced.

Hydraulic fractures initiate and extend along the direc-

tion of vertical minimum in situ stress when the natural

fracture angle is 30� as shown in Fig. 24a. As two types of

fractures meet, hydraulic fracture enters the natural frac-

ture. The natural fracture away from the injection hole

starts to initiate and continues to extend in the vertical

minimum in situ stress direction. Hydraulic fractures ini-

tiate and extend along the direction of vertical minimum

in situ stress when the natural fracture angle is 60� as

shown in Fig. 24b. After the two types of fractures inter-

sect, it enters the natural fracture. Then, it re-opens from a

point with a certain distance from the intersection point and

continues to extend in the direction of the maximum in situ

stress. As shown in Fig. 24c, when the natural fracture

angle is 90�, the hydraulic fracture starts and extends along

the direction of vertical minimum in situ stress. When

encountering discrete fracture, it continues to extend

directly through the discrete fracture.

Next, we discuss the influence of in situ stress on the

interaction between hydraulic fractures and discrete frac-

ture. In the simulation, we choose a model with a natural

fissure angle of 60� for the analysis. The horizontal in situ

stress is constant at 10 MPa, and the vertical in situ stress

varies between 2 and 8 MPa. Other parameters remain

unchanged. The simulation results are shown in Fig. 25.

The simulation results show that the hydraulic fractures all

propagate in the direction of maximum in situ stress before

intersecting with discrete fracture. After the hydraulic

fracture intersects with the natural fracture, the hydraulic

fracture enters the natural fracture. The hydraulic fractures

reopen and extend in the direction of maximum in situ

stress after some deviation from the intersection. As the

difference in in situ stress increases, the offset distance of

hydraulic fractures gradually decreases, which is more

conducive for hydraulic fractures to pass directly through

the discrete fracture. This simulation phenomenon is con-

sistent with Zhou et al. [79].

5 Discussion

The advantage of the 2D continuous-discrete mixed seep-

age model is that a pore-fracture seepage boundary

describes the fluid exchange between the fluid in the

fracture and the rock matrix. Unlike in the literature

[52, 59], the discontinuity of pore pressure across fractures

is well solved in this model. Moreover, the fluid exchange

in the 2D continuous-discrete mixed seepage model is

determined only based on the difference between fracture

and pore pressure, without artificially assuming that the

fracture pressure is equal to the pore pressure on both sides

of the fracture.

The continuous-discrete seepage model considers the

influence of fracture generation and extension on the pore

seepage. Once the fracture is generated and extended, the

node sharing relationship of adjacent triangular elements

on both sides of the fracture is dynamically updated for

pore seepage calculation. The adjacent triangular elements

on both sides of the fracture will no longer share the pore

pressure node, so the pore pressures on both sides may not

be equal. Therefore, the effect of the fracture initiation and

propagation of the fracture on the pore seepage can be well

considered. However, in the literature model [52, 59], the

media on both sides still share pore pressure nodes even

after cracks are generated.

6 Conclusion

A 2D continuous-discrete mixed seepage model that con-

siders the fluid exchange and the pore pressure disconti-

nuity at the fracture is presented. In this model, the joint

element and its large exchange coefficients do not need to

introduce for the pore seepage calculation. Therefore, the

computational efficiency is greatly improved compared to
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the model in the literature [62]. Subsequently, the contin-

uous-discrete mixed seepage model is combined with

FDEM to build a 2D hydro-mechanical coupling model to

simulate the initiation, extension, intersection, and inter-

action of fractures driven by fluid, as well as the evolution

of fluid pressure in fractures and rock matrix.
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