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Abstract
We present a unified non-local damage model for modeling hydraulic fracture processes in porous media, in which damage

evolves as a function of fluid pressure. This setup allows for a non-local damage model that resembles gradient-type

models without the need for additional degrees of freedom. In other words, we propose a non-local damage formulation at

the same cost of a local damage approach. Nonlinear anisotropic permeability is employed to distinguish between the fluid

flow velocity in the damage zone and the intact porous media. The permeability evolves as a function of an equivalent

strain measure, where its anisotropic evolution behavior is controlled by the direction of principle strain. The length scale

of the proposed model is analytically derived as a function of material point variables and is shown to be dependent on the

pressure rate. A mixed finite element method is proposed to monolithically solve the coupled displacement–pressure

system. The nonlinear system is linearized and solved using Newton’s method with analytically derived consistent

Jacobian matrix and residual vector, and the evolution of the system in time is performed by a backward Euler scheme.

Numerical examples of 1D and 2D hydraulic fracture problems are presented and discussed. The numerical results show

that the proposed model is insensitive to the mesh size as well as the time step size and can well capture the features of

hydraulic fracture in porous media.
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1 Introduction

Hydraulic fracture can be described as the initiation and

propagation process of fracture, which is driven by a

pressurized fluid in order to disintegrate tight bedrock

formations with low permeability [23]. The hydraulic

fracture technique is broadly applied in petroleum

exploitation and shale gas production [81], to crack the

impervious rock through which gas or oil can flow out

more easily. This process has been investigated on a wide

range of materials in hydraulic engineering, e.g., clay core

wall [46, 120] and concrete [63, 132]. In order to optimize

hydraulic fracture processes, several modeling approaches

were proposed, such as the extended finite element method

(XFEM) [55], generalized finite element method (GFEM)

[37], discrete element method [110], peridynamics method

[113], continuum damage mechanics (CDM) method

[114], and phase-field method [74, 75, 128]. Further, the

CDM models used to model hydraulic fracture may be

classified into local [58, 104] and non-local damage

mechanics methods [17, 41, 48, 79].

In CDM model, material failure is represented by the

introduction of a state variable that degrades the material

capacity to carry loads. Damage evolution is usually

defined as a function of material point variables such as

equivalent stress and strain, and leads to gradual softening

of the solid skeleton stiffness [57]. The accumulation

process of damage at a material point represents the for-

mation and growth process of microcracks or micro-voids
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[49]. Therefore, the CDM model is well suited to represent

the nonlinear response of porous media, including the

evolution of poroelastic parameters during failure

[49, 57, 101], and it can readily capture crack initiation,

propagation, interaction, and possible branching [104].

The CDM model is naturally different from the linear

elastic fracture mechanics (LEFM) in considering the

hydraulic fracture of solids. While CDM models suppose

that a macro-fracture is formed by the accumulation of

microcracks, LEFM models assume one dominant fracture

at the macroscale and does not consider processes at

smaller scales. Although LEFM models can capture

macroscopic crack initiation and propagation [27], they are

challenging to account for the surrounding diffusive pro-

cesses of micro-crack formation which has been observed

via experiments on porous media [25, 131]. Additionally,

they are challenged by the difficulty of tracking compli-

cated fracture behavior such as curved cracks, crack coa-

lescence, branching, and crossing [38, 121].

The local CDM approach exhibits loss of ellipticity of

governing equations, which leads to the lack of uniqueness

of the solution and mesh dependence of numerical results

[87]. In order to overcome these drawbacks, non-local

definition of damage has been introduced in [9], in which

the damage growth at a material point is related to a

neighboring interaction zone [7] sometimes referred to as

the fracture process zone (FPZ). The FPZ represents the

region in which the material variables contribute to the

damage growth rate. The size of the FPZ is controlled by a

material characteristic length scale which is typically

considered to be an inherent property of the material and

used as a localization limiter [36, 76]. Estimation of the

characteristic length scale parameter remains an open

challenge that has been studied by many researchers, see

for example [3], but it is often related to particle size [10],

size of representative volume element [71], or other

micromechanics features of the solid [44].

The non-local CDM is often implemented in the form of

either integral non-local model [8, 11, 17] or gradient-type

model [86, 112]. The integral non-local model, while being

cheaper computationally (requiring less degrees of free-

dom), is challenged by the calculation of damage in the

vicinity of external edges and the difficulty of the deriva-

tion of fully consistent tangent matrices. The gradient

model is based on transformation of the spatial averaging

operator into a diffusion equation which results into a

system of equations that requires an additional degree of

freedom to represent the non-local internal variable field

[86]. The gradient non-local damage model has been pre-

viously employed to investigate hydraulic fracture in por-

ous media [17, 18, 41, 77, 79, 80]. The phase-field method,

which is closely related to the gradient damage model [26],

also requires additional degrees of freedom and a specific

length scale. The phase-field method has been used for the

description of hydraulic fracture in porous media for

example in [40, 74, 75, 128].

Previous efforts to model hydraulic fracturing using

diffuse damage approaches, including those by the authors,

are mostly based on either gradient damage model

[18, 41, 77, 80], or phase-field model [40, 74, 75, 128].

Both of these approaches are known to require the solution

of additional partial differential equations on the top of the

balance of momentum and mass balance equations which

represent the fundamental poroelastic response. In gradient

damage, the additional equation provides the non-local

strain; and in phase field, the additional equation describes

the growth of the effectively non-local damage parameter

[26]. The need for the additional PDEs leads to additional

FEM degrees of freedom, and consequently elevated

computational costs.

In this paper, we introduce a novel unified non-local

damage model that can retrieve the advantages of the

gradient damage model while eliminating the need and cost

of an additional regularization equation for a non-local

variable. Following the experimental and numerical

investigations of the relation between damage, porosity,

permeability, pore pressure, and damage

[2, 39, 51, 66, 84, 92, 125, 135, 136], we define a damage

variable that is driven by fluid pressure. We hypothesize

that the fluid mass balance equation is analogous to a

gradient non-local damage model, in which fluid pressure

can be used to regularize the governing equations and lead

to mesh insensitivity. Darcy’s law is used to describe the

fluid flow inside and outside the damage zone, while a

nonlinear anisotropic permeability is introduced to enhance

the fluid flow behavior in the fracture domain. The

founding damage mechanics and nonlinear permeability

approaches have been extensively developed and validated

by the authors in [18, 19, 77, 79, 80, 128] and others

[61, 65, 85, 90, 102]. Given the intrinsic non-locality in the

model setup, the size of the interaction zone is dictated by

the material point variables including the pressure rate.

Hence, the size of the characteristic length is derived

analytically using an analogy between the fluid mass bal-

ance equation and the non-local anisotropic gradient

equation. The proposed model is implemented within a

mixed finite element formulation for poroelasticity with

pressure-dependent damage, for which a Newton–Raphson

approach is used to linearize the nonlinear system of

equation by means of an analytically derived tangent

matrix. The proposed model is used for the analysis of

several benchmark problems. The model results are shown

to be mesh independent and provide physically sound

results, thus proving our hypothesis. The major advantage

of this model is the ability to demonstrate a non-local

damage behavior without the extra effort needed for non-
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local integral computations or the additional computational

cost of the non-local gradient model, hence leading to a

unified non-local damage model.

The paper is organized as follows: first, in Sect. 2, the

poroelastic damage theory is introduced briefly in terms of

equilibrium equation and fluid flow continuity equation as

well as some essential constitutive definitions. Section 3

discusses the non-local characteristic of fluid pressure due

to the governing continuity equation. In Sect. 4, we pro-

pose a unified damage model which involves fluid pres-

sure-dependent damage evolution and nonlinear

anisotropic permeability, and the non-local characteristics

of the proposed model are discussed. Then, in Sect. 5, a

monolithic mixed finite element setup is proposed to solve

the coupled displacement-pressure nonlinear system. In

Sect. 6, a poroelastic column is employed to illustrate that

fluid-driven failure behavior of porous media is insensitive

to the time step size in the range of investigated parame-

ters. In addition, the underlying characteristic length scale

of the proposed model is analyzed in details, and the mesh

independence characteristic of the proposed model is

confirmed. In Sect. 7, a 2D hydraulic fracture problem is

investigated to illustrate the capability of the proposed

model for capturing hydraulic fracture features. We draw

the summary and conclusions in Sect. 8.

2 Introduction to poroelastic damage
theory

2.1 Poroelastic equilibrium

In saturated porous media, the relationships between total

stress tensor rij, solid damaged stress tensor rsij, and fluid

pressure P are described by the following Biot’s mixture

theory definition [12].

rij ¼ rsij � aðDÞdijP ð1Þ

in which aðDÞ denotes the damaged Biot’s coefficient

[101]. D is a scalar damage variable which reflects the

damage status of the material. D ¼ 0 represents undam-

aged material, and D ¼ 1 represents a complete loss of

stiffness of the material at that point. dij is the Kronecker

delta.

According to continuum damage mechanics [57], the

solid damaged stress tensor rsij is given by

rsij ¼ CijklðDÞekl ð2Þ

where CijklðDÞ denotes the damaged drained stiffness ten-

sor that is described by CijklðDÞ ¼ ð1� DÞCe
ijkl. Here C

e
ijkl is

the elastic drained stiffness tensor that is given by

Ce
ijkl ¼ Kdijdkl þ Gðdikdjl þ dildjk � 2

3
dijdklÞ, where K is the

undamaged bulk modulus, and G is the undamaged shear

modulus. Under the assumption of small strain, the total

strain is given by eij ¼ 1
2
ðui;j þ uj;iÞ, with ui being the dis-

placement field.

The damaged Biot’s coefficient aðDÞ can be written as

[101]:

aðDÞ ¼ 1� KD

Ks
ð3Þ

where KD is the damaged bulk modulus of the mixture

described by KD ¼ ð1� DÞK. Ks is the solid grain bulk

modulus. The undamaged Biot’s coefficient is

aðDÞjD¼0 ¼ a0 ¼ 1� K=Ks. Biot’s coefficient approaches

a value of aðDÞ ¼ 1 as the damage reaches D ¼ 1, which

means that the fluid has completely dominated the total

stress tensor. Biot’s coefficient aðDÞ increases with damage

D [6, 93, 101].

In the absence of inertia terms, the balance of momen-

tum equation can be expressed as:

rij;j þ bi ¼ 0 ð4Þ

where bi is a body force. Substituting Eqs. (1) and (2) into

Eq. (4) yields:

CijklðDÞekl � aðDÞdijP
� �

;j
þbi ¼ 0 ð5Þ

2.2 Fluid mass balance

The fluid mass balance equation in saturated porous media

can be expressed by:

of
ot

þ vi;i ¼ 0 ð6Þ

where f denotes the fluid content change at a material

point, t is time, and vi is the fluid velocity vector. The

relationship between fluid pressure P and fluid content

change f is given by [28, 101]:

f ¼ P

MðDÞ þ aðDÞeii ð7aÞ

with

MðDÞ ¼ Ku � KD

aðDÞ2
ð7bÞ

where M(D) is the damaged Biot’s modulus which is

related to the storage coefficient of the poroelastic medium

[101]. The storage coefficient is defined as the decrease in

the fluid amount in a unit volume of porous medium due to

a unit decrease in fluid pressure under constant volumetric

strain. Biot’s modulus M(D) increases with damage D

[79, 101]. In the case of complete damage (D ¼ 1),

MjD¼1 ¼ Ku, and MjD¼0 ¼ M0 when the material is intact

(D ¼ 0), where M0 is the Biot’s modulus of intact porous
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media. eii is solid volumetric strain given by

eii ¼ exx þ eyy þ ezz. Ku is the undrained bulk modulus

defined as Ku ¼ 2
3
Gð1þ muÞ=ð1� 2muÞ, where mu is the

undrained Poisson’s ratio.

Darcy’s law is often adopted to describe the relationship

between fluid velocity vi and fluid pressure gradient P;i.

The reason is that Darcy’s law describes the flow as a

laminar flow between grains [33, 42] which is the charac-

teristic of many geomechanics applications. Darcy’s law

featuring anisotropic permeability can be expressed as:

vi ¼ �kijP;j ð8Þ

where kij, a variable tensor during the damage process of

porous media, denotes anisotropic permeability tensor

which can be described by Eq. (9) in 2D framework [60]

under the assumption that permeability off-diagonal com-

ponents are equal to zero.

kij ¼
kxx 0

0 kyy

� �
ð9Þ

where kxx and kyy are the x and y components of the per-

meability tensor. In this anisotropic permeability definition,

the changes in permeability (kxx; kyy) are sought to be

represented by the strain dependent permeability definition

detailed later in Sect. 4.2. In this tensorial representation

with zero off-diagonals, the anisotropy is retrieved through

the resultant of the flow in these two directions. This is a

similar approach to the previous numerical and experi-

mental investigations in [1, 77, 80, 90]. It is worth men-

tioning that the permeability has been attempted to be

represented as a function of damage [68, 127], equivalent

stress [80, 108], or equivalent strain [79, 100] during the

damage process of porous media. By substituting Eqs. (8)

and (7a) into Eq. (6), the fluid flow continuity equation, for

a damaged saturated porous media, can be described as:

o

ot

P

MðDÞ þ aðDÞeii
� �

� kijP;j

� �
;i
¼ 0 ð10Þ

3 Non-local characteristic of fluid pressure

This section focuses on the implicit gradient feature of the

fluid flow continuity equation which is used to illustrate the

non-local characteristic of fluid pressure. We first introduce

a variation of a previously published anisotropic gradient

non-local model as a reference point, and then we construct

an analogy with the continuity equation Eq. (10). We show

that the fluid pressure can essentially be treated as a non-

local variable in poroelastic damage theory, hence leading

to a unified non-local damage model without the need for

extra degrees of freedom.

3.1 Non-local gradient model

Isotropic implicit gradient non-local model can be

expressed as [35]:

XNL � gbcXNL
;ii ¼ XL ð11Þ

where XNL and XL denote the non-local and local variables,

respectively. Herein, gb is denoted as variable gradient

activity function, which is a dimensionless scalar quantity.

c is a scalar gradient parameter that is determined by the

size of the averaging domain, which has the square of

length dimension, i.e., L2. In 2D framework, the non-local

averaging in the averaging domain is performed over an

isotropic, circular area. Equation 11 is also called as tran-

sient-gradient damage model since the gradient activity

evolves with a variable [35]. Note that in the case of a

constant gbc, Eq. (11) reduces to the classical gradient

model published in [86].

Anisotropic implicit gradient-enhanced formula in ten-

sor form can be expressed as follows [115]:

XNL � gaijX
NL
;j

� �

;i
¼ XL ð12Þ

where gaij is an anisotropic tensor, which controls the size

and shape of non-local interaction zone. The non-local

averaging is performed over an ellipse in [115], which

illustrated the influence of gaij components on non-local

variable in details. The dimensions of the components of gaij

have the dimension of square of length dimension (L2) and

should not be less than zero. However, in the special case

that gaij is isotropic, except that gaij is a constant, Eq. (12)

does not reduce to Eq. (11) due to the presence of gaij;iX
NL
;j

in the expansion of gaijX
NL
;j

� �

;i
. Thus, we propose the fol-

lowing implicit gradient-enhanced formula to unify the

mathematical forms of anisotropic and isotropic implicit

gradient models.

XNL � gb gaijX
NL
;j

� �

;i
¼ XL ð13Þ

where gb is dimensionless. With this modification, Eq. (13)

reduces to the transient-gradient isotropic model in Eq. (11)

when gaij is isotropic and space independent. Additionally,

the constant gb will retrieve the original implicit gradient

formula in [86, 88]. Moreover, when gb is not a function of

space, Eq. (13) will reduce to the anisotropic implicit

gradient-enhanced formula in Eq. (12).

The non-local averaging effects can be reflected by the

coefficient of the second derivative of non-local variable

[13], so the gbgaij is used to represent the size, shape, and

orientation of the non-local interaction zone in this paper,

which is referred to as gradient activity tensor. We note
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that the components in gbgaij have square of length

dimension (L2), and all the components should not be less

than zero.

Following [98], Eq. (13) can be rewritten as

1
gb
XNL � gaijX

NL
;j

� �

;i
¼ 1

gb
XL, and implemented in a FEM

code following similar approach as in [115]. The effect of

gbgaij on the non-local variable XNL in Fig. 1 is presented

based on an annulus with an inner radius r2 ¼ 0:1 m and

outer radius r1 ¼ 1:0 m. The value of local variable XL is

set as 1
r1�r2

x2 þ y2ð Þ0:5r1 � r2

h i
which results in XL ¼ 1:0

at the outer edge and XL ¼ 0:0 at the inner edge of the

annulus as shown in Fig. 1b. The maximum element size of

the annulus is 0.02 m. The contours of non-local variable

XNL in Fig. 1c–f correspond to case 1 (ga11 ¼ ga22 ¼ 0:1XL,

ga12 ¼ ga21 ¼ 0:0, gb ¼ 1:0); case 2 (ga11 ¼ 0:4XL,

ga22 ¼ 0:1XL, ga12 ¼ ga21 ¼ 0:0, gb ¼ 1:0); case 3

(ga11 ¼ 0:4XL, ga22 ¼ 0:1XL, ga12 ¼ ga21 ¼ 0:0, gb ¼ XL); and

case 4 (ga11 ¼ 0:4XL, ga22 ¼ 0:1XL, ga12 ¼ ga21 ¼ 0:1XL,

gb ¼ XL), respectively. The non-local variable XNL contour

of case 1 in Fig. 1c is isotropic since the gradient activity

gbgaij is isotropic. The anisotropic g
a
ij changes the shape and

value of the non-local variable (see Fig. 1c–f), and the gb

only changes its value (see Fig. 1d, e).

3.2 Analogy between mass balance and non-
local gradient equations

The fluid flow continuity Eq. (10) can be expanded as:

o½1=MðDÞ�
ot

Pþ oP

ot

1

MðDÞ � kijP;j

� �
;i

¼ � oaðDÞ
ot

eii �
oeii
ot

aðDÞ
ð14Þ

Equation (14) explicitly involves fluid pressure P and its

second derivative in space, which is analogous to the non-

local gradient models reviewed in Sect. 3.1. In addition,

Fig. 1 Representation of the effect of gradient activity term gbgaij on the non-local variable XNL. a The geometry of an annulus with that inner

radius r2 and outer radius r1 are 0.1 and 1.0 m, respectively. b The value of local variable XL ¼ 1
r1�r2

x2 þ y2ð Þ0:5r1 � r2

h i
. c The value of XNL

when ga11 ¼ ga22 ¼ 0:1XL, ga12 ¼ ga21 ¼ 0:0, and gb ¼ 1:0. d The value of XNL when ga11 ¼ 0:4XL, ga22 ¼ 0:1XL, ga12 ¼ ga21 ¼ 0:0, and gb ¼ 1:0. e

The value of XNL when ga11 ¼ 0:4XL, ga22 ¼ 0:1XL, ga12 ¼ ga21 ¼ 0:0, and gb ¼ XL. f The value of XNL when ga11 ¼ 0:4XL, ga22 ¼ 0:1XL,

ga12 ¼ ga21 ¼ 0:1XL, and gb ¼ XL
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the expression in Eq. (14) includes a term that constitutes

the pressure derivative in time oP
ot which is not included in

the aforementioned section. In order to proceed with the

derivation, we introduce the discretization of variables in

time using a backward Euler operator as follows: oH
ot ¼

1
Dt Hn � Hn�1ð Þ for any function H(t) that is a continuous

variable with time, where Dt is the time step size. Hn and

Hn�1 are the values of variable H at the current and pre-

vious time step, respectively.

Following the derivation process in Appendix A, the

discrete form of Eq. (14) can be expressed as follows:

2

MðDÞ �
1

½MðDÞ�n�1

" #

P� Pn�1

MðDÞ � kijP;j

� �
;i
Dt

¼ eii½ �n�1aðDÞ � 2aðDÞ � ½aðDÞ�n�1
h i

eii

ð15Þ

Note that the superscript n, which denotes the current

time step, was removed for notational convenience. Re-

arranging Eq. (15) in order to keep the pressure and its

derivatives on the left hand side leads to:

P� 2M0

MðDÞ �
M0

½MðDÞ�n�1

" #�1

M0kijDtP;j

� �
;i
¼ PL ð16aÞ

with

PL ¼ 2

MðDÞ �
1

½MðDÞ�n�1

" #�1

Pn�1

MðDÞ � 2aðDÞ � ½aðDÞ�n�1
h i

eii þ eii½ �n�1aðDÞ
� �

ð16bÞ

Note that the second term in Eq. (16a) is transformed

using the undamaged Biot’s modulus M0 so that the

M0kijDt term has the square of length dimension (L2) and

2M0

MðDÞ �
M0

½MðDÞ�n�1

h i�1

is dimensionless. The dimension of

variable PL is ML�1T�2, and the M and T have dimensions

of mass and time, respectively. It follows that the variable

PL has the same dimension as fluid pressure P, i.e., pres-

sure dimension.

By comparing the implicit gradient formula Eq. (13) and

Eq. (16a), the analogy between the continuity equation and

the non-local anisotropic gradient formula can be con-

structed where P is analogous to XNL and PL is analogous

to XL. Therefore, Eq. (16) can be regarded as a variant of

the gradient equation in which the non-local variable is

fluid pressure P. The PL will be referred to in this paper as

‘‘driving pressure load’’which drives the evolution of the

fluid pressure P. The driving pressure load PL is a function

of current damage D, volumetric strain eii, and history

variables (e.g., previous fluid pressure Pn�1, damage Dn�1,

volumetric strain eii½ �n�1
); therefore, it implicitly involves

the time step size Dt.
By further exploring the analogy between Eq. (16) and

Eq. (13), gradient activity tensor in Eq. (16) can bewritten as:

gij ¼
gxx 0

0 gyy

" #

¼ 2

MðDÞ �
1

½MðDÞ�n�1

" #�1

kijDt

¼ 2

MðDÞ �
1

½MðDÞ�n�1

" #�1
kxx 0

0 kyy

" #

Dt

ð17Þ

where gij denotes the gradient activity tensor in fluid flow

continuity equation. Equation (17) indicates that gradient

activity, which depends on the permeability kij tensor, is a

symmetric second-order tensor as long as the permeability

is symmetric.

Remark 1 The presented setup leads to the impression that

the non-local gradient activity tensor formula involves time

step size. However, the actual dependency of the model can

be better understood dividing Eq. (16a) and rearranging its

terms:

P

Dt
� 2M0

MðDÞ �
M0

½MðDÞ�n�1

" #�1

M0kijP;j

� �
;i
¼ PL

Dt
ð18Þ

In this relationship, and by drawing analogy to Eq. (13),

the non-local variable is P
Dt and the local variable is PL

Dt. By

looking at the mathematical expressions in this equation,

we conclude that the non-local relationship is actually

based on the pressure rate being the non-local variable. In

this case, the time step Dt does not appear in the second

term, and the resulting length scale is time step free.

The problem with the direct implementation of this

equation is that it leads to complications when being used

within the FEM model derivation. Therefore, we opt for

multiplying both sides by Dt, which leads to Eq. (16) and

the resulting length scale equivalent expressions in

Eqs. (17) and (27) and the length scale expression Eq. (28).

Therefore, we can conclude that the contribution of the

time step in the length scale equivalent expressions in

Eqs. (17) and (27) and the length scale expression Eq. (28)

is only an artifact of the non-local behavior being truly

function of the pressure rate rather than the pressure. The

fact that a material model is a function of strain rate or

pressure rate is widely acceptable and is often observed in

the damage modeling of geomaterials and metals

[64, 72, 73, 107, 111, 130].

As mentioned earlier, all the components of gradient

activity tensor should not be less than zero [13, 115].

Introducing this condition to Eq. (17) leads to a positivity

condition that is defined as: 2
MðDÞ � 1

½MðDÞ�n�1

h i
[ 0, provided
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that the components of the anisotropic permeability kij and

the time step Dt are always positive. The latter is a con-

dition for the well-posedness of the continuity equation

[24]. As for most porous geomaterials, the difference

between 2
MðDÞ and

1

½MðDÞ�n�1 is greater than zero, as proved in

Appendix B.

In order to understand the impact of gradient activity gij
on fluid pressure, we present the fluid pressure contour of a

circular domain with isotropic and anisotropic permeabil-

ities in Fig. 2. One can observe that the anisotropy of the

gradient activity is a function of permeability tensor

according to Eq. (17). The circular domain is subjected to a

fluid pressure Pmax at the center point and a fluid pressure

Pmin at the edge of the circle, and the displacement of the

circle domain is zero. It can be observed that the fluid

pressure appears a circle under the condition of gxx ¼ gyy
(achieved by kxx ¼ kyy) while the fluid pressure shape is an

ellipse for gxx ¼ 5gyy (achieved by kxx ¼ 5kyy). This indi-

cates that the anisotropic gradient activity term leads to an

anisotropic localization behavior of the fluid pressure. The

anisotropic localization phenomenon, with the influence of

gradient activity components, is similar to the anisotropic

gradient formula described in [115] for the non-local

variable.

Moreover, when D ¼ 0, MðDÞ ¼ M0, and aðDÞ ¼ a0,
Eq. (16) can be written as:

P� ½M0kijDt|fflfflfflffl{zfflfflfflffl}
gij

P;j�;i ¼ Pn�1 �M0a0 eii � eii½ �n�1
h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
PL

ð19Þ

Equation (19) illustrates that the gradient activity and

driving pressure load in an undamaged porous media is not

zero, which means that the fluid pressure is also a non-local

variable even in the absence of solid damage. Once damage

D reaches its maximum value Dmax, MðDÞ ¼ ½MðDÞ�n�1 ¼

MðDmaxÞ and aðDÞ ¼ ½aðDÞ�n�1 ¼ aðDmaxÞ, and aðDmaxÞ
and MðDmaxÞ remain constant, at which point, Eq. (16)

reduces to:

P� ½MðDmaxÞkijDt|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
gij

P;j�;i

¼ Pn�1 �MðDmaxÞaðDmaxÞ eii � eii½ �n�1
h izfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{

Deii

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
PL

ð20Þ

where Deii denotes the variation in volumetric strain.

Equation (20) shows that the gradient activity and driving

pressure load will not vanish when the damage arrives to its

maximum value, which suggests that the fluid non-local

diffusive behavior will continue even if the fracture is

completely developed. In the case of fluid-driven fracture,

the volumetric strain and permeability of porous media

monotonically increase in the fracture zone during damage

evolution. Therefore, in this model, the driving pressure

load PL will continue varying in response to variation in

volumetric strain Deii and fluid pressure Pn�1, and the

averaging zone controlled by gij will increase in the dam-

aged zone which is consistent with [88]. We emphasize

that the proposed model is different from the localizing

gradient damage model [91, 94] or the phase-field method

[26, 69], in which the gradient activity will decrease to a

number close to zero or the driving term will vanish when

fracture is completely formed, so that the non-local

behavior is terminated.

Therefore, based on the derivations in this section, it is

confirmed that the fluid pressure described in the continuity

equation is in fact a non-local variable, and interestingly.

The gradient activity tensor of fluid pressure depends on

material point variables.

Fig. 2 Representation of the effect of gradient activity on fluid pressure in a circular domain. a The circular domain is subjected to a high fluid

pressure Pmax at the circle center while a fluid pressure Pmin at circle edge is zero. b gxx ¼ gyy. c gxx ¼ 5gyy
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4 Unified non-local damage model

The majority of damage mechanics models describing

material failure assume that the damage variable is a

function of strain or stress type invariants. In hydraulic

fracture, the process of material failure is the result of a

high fluid pressure that leads to a localized fracture front

[54, 95, 133]. Thus, for modeling hydraulic fracture,

another way that defines the damage evolution is through

fluid pressure at a material point.

However, once the onset of damage is reached, the

characterization of the damage dependence on fluid pres-

sure becomes a non-trivial task. The relationship between

damage and fluid pressure can be established via an

intermediate variable. For example, hydraulic fracture

experiments can be monitored by computerized tomogra-

phy (CT) scanning technique [47, 52, 53], or acoustic

emission (AE) method [21, 31, 59]. Thus, the fluid pressure

can be related to some CT or AE quantity for which rela-

tionships with damage have been previously established

[34, 82, 122]. Hence, the damage evolution law can be

indirectly defined based on hydraulic fracture experiments.

Alternatively, the relationship between damage and fluid

pressure can be defined on the basis of the relationship

between damage and permeability [68, 89, 127] and the

relationship between permeability and fluid pressure

[22, 118].

Moreover, thanks to the analogy between non-local

damage and the fluid pressure as established in Sect. 3,

fluid pressure-dependent damage evolution allows us to

reach a non-local damage behavior without additional

computational effort. That is, the pressure-dependent

damage is readily regularized leading to efficient mesh-

independent hydraulic fracture model.

In this section, we propose a novel damage evolution

law that is a function of the fluid pressure, for which a

nonlinear anisotropic permeability is employed to describe

the permeability evolution. Finally, we discuss the gradient

activity and characteristic length scale in the proposed

model.

4.1 Fluid pressure-dependent damage

Fracture in porous media occurs when sufficient mechan-

ical stress is applied to the solid skeleton to begin local

dislocations which leads to micro-void nucleation and

expansion into macroscale damage. In CDM phenomeno-

logical idealizations [57], evolving damage is represented

as growing porosity. Applying any diffuse fracture (CDM

or phase-field) to porous media requires underlying

assumptions to distinguish between the intrinsic porosity of

the porous media, and the gained porosity vs. damage

evolution as mechanical loading is applied. Some studies

have attempted to establish distinguished porosity and

damage evolution functions based on thermodynamic

derivations, micromechanical assumptions, and experi-

mental data [39, 125]. In cases where fluid flow in porous

media is of primary interest, such as the subject case of

modeling fluid-driven fracture, the interplay between per-

meability, porosity, damage, and pressure becomes even a

more complex task for phenomenological modeling. This

has been an active subject of research, and several studies

have investigated: a)pore pressure-fracture dependency

[2, 92], b) permeability dependency on pressure, stress,

porosity, and damage [51, 84], c) and other aspects of the

dependencies of these four variables [66, 135, 136]. Based

on these studies, it is possible to establish a range of pore

pressure in which the material can transform from a fully

intact state to a fully damaged state.

In this study, a logistic function is used to describe the

damage evolution law, in which the relationship between

damage D and fluid pressure P is given by:

DðPÞ ¼ Dmax

1

1þ e�a1ðP�a2Þ
ð21Þ

where Dmax ¼ 1� g with g is a small value that allows for

a smoother convergence. a1 and a2 are constants. The

characterization, verification, and validation of this rela-

tionship require additional research efforts which should be

ideally focused on specific material responses. Figure 3

shows the role of the two parameters in Eq. (21) on the

damage evolution. The variable a1 controls the increase

rate of damage. The variable a2 controls the onset of

damage, and DðPÞ ¼ 0:5Dmax in case of fluid pressure

P ¼ a2. Thus, the a1 and a2 parameters can be referred to

as damage growth rate parameter and onset of damage

parameter, respectively, and they can be calibrated from

experimental data. Since fluid pressure P can increase or

decrease during the hydraulic fracture, the Karush–Kuhn–

Tucker condition [83, 103] D ¼ max Dn;Dn�1
	 


is applied

to implement an irreversible damage growth. When fluid

pressure decreases, the irreversible condition will lead to a

monotonic increase in damage as presented by a 1D col-

umn model in Sect. 6.1.

4.2 Nonlinear anisotropic permeability

In this paper, we employ Darcy’s law to describe the

behavior of fluid flow in the entire poroelastic domain. In

order to distinguish between fluid flow in the fracture and

the intact poroelastic region surrounding the fracture, [80]

proposed an anisotropic stress-dependent permeability

function which evolves with the direction of the principal

stress in a non-local transport-damage model. [128] pro-

posed an anisotropic permeability evolution law which
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depends on an equivalent strain and direction of principal

strain in phase-field method. Similarly, in this study, a

nonlinear anisotropic permeability is employed to describe

permeability evolution in the bulk. This definition can

present the different permeability evolution mechanisms

following the directions of damage propagation. The kxx
and kyy in Eq. (9) are considered to evolve as a function of

an equivalent strain measure, and the anisotropic evolution

behavior is controlled by the direction of the principal

strain in tension. Hence, kxx and kyy are defined as:

kxx ¼ k0 þ kðeeqÞ � k0ð Þ cosu

kyy ¼ k0 þ kðeeqÞ � k0ð Þ sinu
ð22Þ

where eeq is the equivalent strain measure described by

Eq. (24). kðeeqÞ is a scalar material permeability, which

evolves nonlinearly with equivalent strain measure eeq. u is

the angle corresponding to the direction of the principal

strain, which is given by u ¼ 1

2
arctan

exy
exx � eyy

� �
in a 2D

framework used herein. k0 is the initial permeability

defined as k0 ¼ k
0
=c, where k

0
and c are solid hydraulic

conductivity and dynamic viscosity of fluid, respectively.

In this paper, a polynomial function is employed to

describe the nonlinear relationship between permeability

and equivalent strain measure [67, 100], given by:

kðeeqÞ ¼ 1þ b1ðeeqÞb2
h i

k0 ð23Þ

where b1 and b2 are material constants. b1 [ 0 and b2 [ 0,

which ensures that the permeability will increase with the

increase in the equivalent strain. This relationship has been

used in [19, 77, 79, 80] that be focused on damage

mechanics modeling of hydraulic fracturing. b1 and b2 can

be calibrated from experimental data.

In addition, we follow the work in [128] to employ

tensile principal strain as the equivalent strain measure, as

follows:

eeq ¼ eð1Þ if eð1Þ [ 0

0 otherwise

(

ð24Þ

where eð1Þ is the first principal strain given by:

eð1Þ ¼ exx þ eyy
2

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exx � eyy
� �2 þ 4e2xy

q
ð25Þ

Substituting Eqs. (23) and (22) into Eq. (9) yields the

nonlinear anisotropic permeability expressed as:

kij ¼
kxx 0

0 kyy

� �

¼ k0
1þ b1ðeeqÞb2 cosu 0

0 1þ b1ðeeqÞb2 sinu

" # ð26Þ

The tensorial definition of the anisotropic permeability

defined in Eq.(26) follows the definitions used in several

experimental and numerical studies [1, 77, 80, 90]. The

anisotropic permeability evolves from an initial isotropic

value of k0. This relationship suggests that the permeability

is isotropic in the initial state, and evolves to be anisotropic

once strain growth initiates. Similar to damage growth, we

introduce kxx ¼ max ½kxx�n; ½kxx�n�1
n o

and kyy ¼

Fig. 3 Plots of damage evolution with fluid pressure. a a2 ¼ 50 and Dmax ¼ 0:99. b a1 ¼ 0:5 and Dmax ¼ 0:99
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max ½kyy�n; ½kyy�n�1
n o

in order to avoid permeability oscil-

lations and ease numerical convergence.

4.3 Discussion on the physical length scale

Due to the non-local characteristic of fluid pressure, the

proposed damage model is naturally regularized as dis-

cussed in Sect. 3. Substituting Eq. (26) into Eq. (17) yields

the gradient activity term as follows:

gij ¼ M0k0Dt|fflfflfflffl{zfflfflfflffl}
c0

2M0

MðDÞ �
M0

½MðDÞ�n�1

" #�1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
s

�
1þ b1ðeeqÞb2 cosu 0

0 1þ b1ðeeqÞb2 sinu

" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mij

ð27Þ

where c0 is initial gradient parameter. s is called a scaling

factor, which is a dimensionless coefficient with minimum

value of 1.0. Furthermore, s increases with damage D

(elaborated in Appendix C) and expands the initial gradient

parameter. It is dependent on initial, current, and previous

Biot’s modulus. mij is an anisotropic matrix which decides

the anisotropy of gradient activity, and the diagonal com-

ponents of mij do not decrease due to the introduction of

irreversible permeability condition in Sect. 4.2. Also, mij

evolves with equivalent strain measure and the direction of

the first principle strain. The gradient activity gij is

expressed as c0smij in this paper, which is consistent with

the expression of anisotropic gradient activity in [115].

This expression clarifies the constituents and evolution of

anisotropic gradient activity in the proposed damage

model.

Figure 4 presents the averaging zone generated by the

gradient activity gij. The initial gradient parameter c0
defines the inner circle (solid line in magenta) which is

similar to the isotropic non-local model. The inner circle is

enlarged by the scaling factor s to be the circle with red

dotted line. Increasing the anisotropic component mij leads

to the elliptical shape (dashed blue line). Clearly, the

averaging zone determined by c0 is the smallest.

The characteristic length scale is often used to present

the size of the averaging zone. Following Eq. (27), we

present a length scale tensor as follows:

lij ¼
ffiffiffiffiffiffiffi
2gij

p
¼

lxx 0

0 lyy

" #

¼
ffiffiffiffiffiffiffiffi
2Dt

p 2

MðDÞ �
1

½MðDÞ�n�1

" #�0:5
kxxð Þ0:5 0

0 kyy
� �0:5

2

4

3

5

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M0k0Dt

p

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
lct

2M0

MðDÞ �
M0

½MðDÞ�n�1

" #�0:5

�
1þ b1ðeeqÞb2 cosu
� �0:5

0

0 1þ b1ðeeqÞb2 sinu
� �0:5

2

664

3

775

ð28Þ

Equation (28) suggests that the length scale tensor lij is

described by an expression that is a function of Biot’s

modulus, initial permeability, equivalent strain measure,

and direction of principle strain. Additionally, the length

scale also depends on pressure rate according to the anal-

ysis in Remark 1. Thus, the length scale tensor can be

interpreted as a physical length scale tensor that is

dependent on physical parameters including the pressure

rate. The dependency of a material model on strain rate or

pressure rate is a common aspect of many physics-based

material models, e.g., [64, 72, 73, 107, 111, 130]. As

opposed to models in which the length scale tensor is

somehow assumed based on mesostructure properties

[3, 10] or strongly imposed as in phase-field method

[74, 128], herein, the physical length scale tensor lij can be

directly calculated from experimental data and numerical

parameters. It is interesting to note that the concept of a

physical length scale was discussed in other multi-physics

problems. For examples, [72] presented a physical length

scale based on thermal diffusivity for shear bands prob-

lems, and [16] presented a physical length scale in the

context of dispersive wave propagation in composite

materials. In this paper, the physical length scale is an

anisotropic tensor, where we obtain its explicit expression

based on analytical arguments. Moreover, the diagonal

components of the physical length scale tensor lxx and lyy

Fig. 4 Graphical representation of the averaging zone due to the

gradient activity gij term. The inner circle (solid line in magenta)

represents an isotropic interaction kernel determined by c0. The

scaling factor s expands the inner circle to a new averaging zone (red

dotted line). The anisotropy matrix mij leads to the ellipse interaction

zone (blue dashed line)
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increase with the increase in damage D (see Appendix (C))

and equivalent strain measure eeq.
According to Eq. (28), an initial physical length scale is

defined as lct ¼
ffiffiffiffiffiffiffi
2c0

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M0k0Dt

p
which is a scalar and

easily obtained from the initial Biot’s modulus, initial

permeability, and time step size. The anisotropic physical

length scale tensor lij evolves from an initial physical

length scale lct, and increases. Further, the initial time step

size is no smaller than time step size in subsequent iteration

step in this paper via setting the appropriate numerical

parameters (see Sect. 5.3). These indicate that the initial

physical length scale lct controls the size of the smallest

averaging zone.

Generally, in order to obtain mesh-independent results,

the characteristic length scale should be larger than the

element size, xhe, in which he is a typical element size and

x is a constant often taken between 2 and 3 in non-local

damage model [9, 79]. Similarly, provided the finite ele-

ment mesh size he\ lct
x in the proposed model, the damage

regularization can be achieved automatically to obtain

mesh-independent results because the averaging zone

controlled by lct is the smallest. It indicates the damage

regularization in the proposed model eliminates the need

for additional equations and degrees of freedom as in

gradient damage and phase-field methods. Therefore, the

proposed model is computationally more efficient than the

other aforementioned methods.

Once the damage D reaches its preset maximum value

Dmax, the current Biot’s modulus M Dmaxð Þ equals to Biot’s

modulus from the previous time step which results in that

length scale tensor in Eq. (28) reduces to:

lmij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k0DtM Dmaxð Þ

p

�
1þ b1ðeeqÞb2 cosu
� �0:5

0

0 1þ b1ðeeqÞb2 sinu
� �0:5

2

64

3

75

ð29Þ

It is observed that the components of length scale tensor lmij
continue to increase even if the porous solid is fully

damaged due to the increase in equivalent strain measure

eeq. This property of lmij is remarkably consistent with the

increasing length scale in [88] for isotropic non-local

damage model.

In Sect. 6.2, we analyze the evolution of the physical

length scale tensor based on the numerical results of 1D

fluid-driven failure model. Moreover, the reader is also

referred to Sect. 6.3 where the effect of time stepping Dt on
the results of the proposed model is investigated and

Sect. 6.4 in which we estimate if this approach leads to

mesh insensitivity.

5 Computational implementation

5.1 Boundary value problem

The governing equations of the proposed unified damage-

poroelasticity model can be written as:

CijklðDÞekl � aðDÞdijP
� �

;j
þbi ¼ 0 ð30aÞ

o½1=MðDÞ�
ot

Pþ oP

ot

1

MðDÞ

þ oaðDÞ
ot

eii þ
oeii
ot

aðDÞ � kijP;j

� �
;i
¼ 0

ð30bÞ

where the damaged Biot’s Modulus M(D) and coefficient

aðDÞ are obtained according to Eqs. (7b) and (3), respec-

tively. Note that these parameters are implicit functions of

fluid pressure P since damage in Eq. (21) evolves with fluid

pressure. The anisotropic nonlinear permeability kij is

defined as a function of the equivalent strain measure in

Eq. (24) according to Eq. (26). We emphasize that the fluid

pressure-dependent damage ensures that the damage reg-

ularization can be readily achieved so that no additional

equations are needed to regularize the damage. Thus, there

are only two governing partial differential equations

(PDE), Eqs. (30a) and (30b), in the proposed model. The

former describes the momentum balance and the latter fluid

mass balance.

The above nonlinear PDE system is derived in a con-

tinuous domain space X. The following boundary condi-

tions are required to complete the boundary value problem:

ui ¼ �ui on Cu
u; rijnj ¼ ti on Ct

u

P ¼ �P on CP
P; vini ¼ q on Cq

P

ð31Þ

where �ui, �P, ti, and q denote the displacements, pressure,

tractions, and normal flow flux boundary conditions,

Fig. 5 Schematic illustration of the proposed unified damage-

poroelastic boundary value problem. The contours represent damage

value in damage zone
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respectively. The boundary conditions �ui, �P, ti, and q cor-

respond to the boundary segments Cu
u, C

P
P, C

t
u, and Cq

P,

respectively, as shown in Fig. 5.

In addition, the following set of initial conditions is

given to supplement the mathematical model.

uijt¼0 ¼ 0; Pjt¼0 ¼ 0; Djt¼0 ¼ 0 in X ð32Þ

The coupled nonlinear PDE, Eqs. (30a) and (30b), along

with the boundary conditions, Eq. (31), and initial condi-

tions, Eq. (32), yield the initial boundary value problem for

the primary variables of interest ui and P coupled with

damage D.

5.2 Mixed finite element formulation

A monolithic mixed finite element formulation is proposed

to solve Eqs. (30)–(32) with the primary unknowns dis-

placement u and fluid pressure P. Herein, we define the two

trial solution function spaces Su for displacement and SP
for the fluid pressure as:

Su ¼ u x; tð Þju 2 H1;u ¼ �u on Cu
u

	 


SP ¼ P x; tð ÞjP 2 H1;P ¼ �P on CP
P

	 
 ð33Þ

where H1 represents the Sobolev space of functions with

degree one. Similarly, the corresponding test function

spaces, Vu and VP, are expressed as:

Vu ¼ wu xð Þjwu 2 H1;wu ¼ 0 on Cu
u

	 


VP ¼ wP xð ÞjwP 2 H1;wP ¼ 0 on CP
P

	 
 ð34Þ

where wu and wP are the test functions for displacement

and fluid pressure fields, respectively. The residual func-

tions corresponding to Eq. (30) can be obtained in their

weak forms as shown in Eq. (35).

Ruðu;PÞ ¼
Z

X
wu r � ð1� DÞCee� aðDÞIvP½ � þ b½ �dX

RPðu;PÞ ¼
Z

X
wP o½1=MðDÞ�

ot
Pþ oP

ot

1

MðDÞ

�

þ oaðDÞ
ot

ev þ
oev
ot

aðDÞ � r � krP½ ��dX

ð35Þ

where Ce denotes the matrix form of the stiffness tensor

Ce
ijkl. Matrix Iv is defined as 1; 1; 0f gT . e, b, and k are the

matrix notations of eij, bi, and kij, respectively. r � ð�Þ,
rð�Þ, and ev denote the divergence of ð�Þ, gradient of ð�Þ,
and volumetric strain, respectively. The weak forms are

approximated by Galerkin’s method for the u and P field

variables, defined by:

u ¼ Nuu
h; e ¼ Buu

h; wu ¼ Nuw
h
u; rwu ¼ Buw

h
u

P ¼ NPP
h; rP ¼ BPP

h; wP ¼ NPw
h
P; rwp ¼ BPw

h
P

ð36Þ

where superscript h denotes discretization, i.e., the nodal

values of the corresponding variables. Nu and NP are the

shape functions for each field. Bu and BP are the shape

function derivatives of Nu and NP consistent with the

definitions in Eq. (36), respectively.

If the trial functions for displacement and pressure in

poroelasticity are of the same order, then the numerical

results may be unstable and spurious pressure oscillations

are likely to be observed [116, 129]. Thus, it is necessary to

select suitable shape functions for the fluid pressure and

displacement fields to satisfy the Babuška-Brezzi condition

[4, 5, 14].

In this paper, we adopt a mixed element interpolation

function (as shown in Fig. 6) in which the displacement

shape functions correspond to a quadratic eight-node

quadrilateral serendipity element and fluid pressure func-

tions correspond to a continuous bilinear four-node

quadrilateral element. A 3� 3 Gauss quadrature rule is

employed to integrate element quantities. This selection of

shape functions for damaged poroelasticity was also

adopted by [17, 79, 80, 99] for which good convergence

behavior and stable numerical results were demonstrated.

The solution vector x and the residual vector R are

defined as:

x ¼
u

P

� �
; R ¼

Ru

RP

� �
ð37Þ

In this paper, a Newton–Raphson method is adopted to

solve the resulting system of nonlinear equations at every

time step, for which the linearized system is given by:

Jndxn ¼ �Rn ð38Þ

where dxn is the incremental solution vector at each

Newton iteration, and Jn is the Jacobian (tangent stiffness)

matrix. A backward Euler scheme is used to evolve the

Fig. 6 The degrees of freedom and Gauss integration points in the

u� P mixed finite element scheme
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system in time, consequently, the Jacobian matrix Jn can be

written as:

Jn ¼ oRn

oxn
¼ 1

Dt
CþK

� �
¼

Juu JuP

JPu JPP

� �
ð39Þ

where C and K are square matrices that represent the

damping and stiffness matrices, respectively. Analytical

derivation of the blocks leads to the following consistent

Jacobian matrix Jn.

Juu ¼
oRu

ou
¼
Z

X
BT
u ð1� DÞCeBudX

JuP ¼ oRu

oP
¼ �

Z

X
BT
u

oD

oP
CeeNPdX

�
Z

X
BT
u

oa Dð Þ
oD

oD

oP
IvPNPdX �

Z

X
BT
ua Dð ÞIvNPdX

JPu ¼
oRP

ou
¼ 1

Dt

Z

X
NT

Pa Dð ÞBu;voldX

þ
Z

X
NT

P

oa Dð Þ
ot

Bu;voldXþ
Z

X
BT
P

ok

ou
BPP

hdX

JPP ¼ oRP
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where the superscript T indicates matrix transpose. Bu;vol is

the shape function derivative of Nu, which is used to

Fig. 7 a 1D poroelastic column and its boundaries. b Fluid flux q and qþ q
2
sinð p

10000
tÞ. c Fluid pressure contour of the column with fluid flux of

qþ q
2
sinð p

10000
tÞ at 0.9978�106 s. d Fluid pressure contour of the column with fluid flux of qþ q

2
sinð p

10000
tÞ at 1.0077�106 s

Table 1 Material parameters for Sect. 6

Parameter name Parameter Value

Young’s modulus E 1:0� 104 Pa

Poisson’s ration m 0.0

Undrained Poisson’s ratio mu 0.49999

Solid grain bulk modulus Ks 1:0� 1030 Pa

Initial permeability k0 1:0� 10�7 m2/Pa s

Constant in Eq. (26) b1 1:0� 108

Constant in Eq. (26) b2 2

Maximum damage Dmax 0.75

Constant in Eq. (21) a1 120

Constant in Eq. (21) a2 0.5

Column height H 10.0 m

Fluid flux q 1:0� 10�8 m3s�1
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calculate volumetric strain as ev ¼ Bu;volu
h. The expres-

sions of the partial derivatives in Eq. (40) are provided in

details in Appendix D.

5.3 Solution algorithm

The proposed model is implemented in the FEAP program

[109] as a user-defined element to solve the nonlinear PDE

system in Eqs. (30), (31), and (32). A psuedo-code out-

lining the solution algorithm is summarized in Algorithm 1.

Material point variables are calculated between steps 4 and

16, and the solution of the equations is obtained in step 14.

Once the convergence requirement is met in step 3, the

time step for the next time increment is obtained by the

FEAP built-in fixed time stepping or adaptive time step-

ping technique, which is defined by:

Dt ¼ min ðDtmax; 10
log ðDtn�1Þþ0:2½ �Þ if In�1\Imin

max ðDtmin; 10
log ðDtn�1Þ�0:2½ �Þ if In�1 [ Imax

(

ð41Þ

where the operators min and max are used to limit time step

size Dt to a user-defined target range Dtmin;Dtmax½ �. Dtn�1

represents the ðn� 1Þth time step size. In�1 denotes the

Fig. 8 The temporal evolution of results at the bottom of the column with the ND model applied a sinusoidal fluid flux. a Fluid pressure.

b Damage. c Permeability. The plots illustrate that the irreversible condition for damage growth and permeability is effective in ND model
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number of Newton–Raphson iterations at the ðn� 1Þth time

step. Imin and Imax are the user-defined target minimum and

maximum number of iterations for each time step size,

respectively.

6 Fluid-driven failure of a poroelastic
column

A 1D fluid-driven failure model of a poroelastic column is

presented in this section, which follows the example that

was previously analyzed by [79]. The column is shown in

Fig. 7a, and the bottom of the column is fixed (uyjy¼0 ¼ 0).

A sinusoidal fluid flux qþ q
2
sinð p

10000
tÞ in Fig. 7b is

injected at the bottom of the column in Sect. 6.1 to verify

the implementation of irreversible damage and

permeability evolution. The applied fluid flux in

Sects. 6.2–6.4 is q ¼ kyy
oP
oy jy¼0. At the top of the column,

the fluid pressure is set to zero (Pjy¼H ¼ 0). The behavior

of the column is considered for the following cases:

• LM: damage-free poroelastic model with variable

permeability,

• LD: local damage and variable permeability model that

evolves as a function of an equivalent strain variable.

The model is defined in Appendix E [79],

• ND: the proposed model, variable permeability, and

non-local damage model based on fluid pressure.

The LM and LD models are employed herein as refer-

ence models to illustrate the advantage of the ND model

Algorithm 1 Solution Algorithm
1: Initialize nodal and material variables
2: while t < T do � Time-stepping loop
3: while ‖ R ‖< tol ‖ R0 ‖ do � Non-linear solution loop
4: for each finite element do
5: for each material point do
6: Interpolate fluid prsseure P value at material point from Ph

7: Calculate damage D(P ) � Eq. (21)
8: Interpolate strain tensor εij from uh

9: Calculate equivalent strain εeq � Eq. (24)
10: Calculate permeability kij � Eq. (26)
11: Calculate Jacobian matrix J and residual vector R � Eqs.

(40) and (35)
12: end for
13: Assemble Jacobian matrix J and residual vector R for all

elements
14: Solve for δx � Eq. (38)
15: xn −→ xn + δx � Update solution vector
16: end for
17: D = max

{
Dn, Dn−1

}
� For irreversible damage growth

18: if D > 0 then � For irreversible permeability
19: kxx = max

{
[kxx]n, [kxx]n−1

}
, kyy = max

{
[kyy]n, [kyy]n−1

}

20: end if
21: if adaptive time step is adopted then � For adaptive time step
22: Calculate adaptive time step Δt
23: else � For fixed time step
24: Fixed time step Δt
25: end if
26: end while
27: t −→ t + Δt � Update solution time
28: end while
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proposed in this paper for fluid-driven fracture. The multi-

dimensional stress equilibrium in Eq. (5) is modified into

Eq. (42) to model the 1D problem with the absence of body

forces. The fluid pressure term is multiplied by dyy so that

the fluid pressure is only added to the stress in y-direction.

That is

CijklðDÞekl � aðDÞdijPdyy
� �

;j
¼ 0 ð42Þ

In this example, the value of Poisson’s ratio is set to zero in

order to neglect transverse effects. Additionally, the max-

imum allowable damage Dmax is limited to 0.75. The

complete set of model parameters is listed in Table 1. A

fixed time step is taken in this simulation, and the values of

time steps considered will be detailed in the following

subsections. The allowable maximum number of nonlinear

iterations is 20.

6.1 Irreversible damage evolution

In order to illustrate the irreversibility condition of damage

growth and the effectiveness of permeability in the ND

model, the sinusoidal fluid flux qþ q
2
sinð p

10000
tÞ in Fig. 7b

is applied to investigate the evolution of damage and per-

meability. Figures 7c, d shows the fluid pressure contour of

the 1D column at 0.9978�106 s and 1.0077�106 s, and the

temporal evolution of fluid pressure, damage, and perme-

ability are presented in Fig. 8. Clearly, the fluid pressure is

oscillatory and both the damage and permeability have a

staircase rise. These observations confirm the irreversible

condition for damage growth and permeability prescribed

in the solution algorithm.

Fig. 9 The evolution of strain ey physical length scale over column at

different time instances of the ND model with different permeability.

Initial permeability k0 ¼ 1:0� 10�7 m2/Pa s. The closer to column

bottom and the larger value of physical length scale

Fig. 10 The evolution of strain ey physical length scale over column

at different time instances of the ND model with different

permeability. Initial permeability k0 ¼ 5:0� 10�8 m2/Pa s. The

closer to column bottom and the larger value of physical length scale
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6.2 Physical length scale lyy for 1D porous media

Based on the 1D poroelastic column idealization in Fig. 7a,

the physical length scale lyy is given by Eq. (43) as a special

1D simplification of Eq. (28).

lyy ¼
2

MðDÞ �
1

½MðDÞ�n�1

" #�0:5 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Dtk0 1þ b1ðeyÞb2
h ir

ð43Þ

Following Eq. (28), one can observe that lyy increases with

the increase in damage and strain ey. In order to better

understand the physical length scale evolution, the column

is modeled with the element size of 1.00 m and time step

size of 1.0 s. The initial permeability k0 ¼ 1:0� 10�7,

5:0� 10�8, and 1:0� 10�8 m2/Pa s, and the corresponding

initial physical length scale lct of the ND model is 7.07,

5.00, and 2.24 m, respectively. The physical length scale

lyy evolution over the column at different time instances is

plotted in Figs. 9, 10, and 11. The results show that the

physical length scale is varying in space with increasing

values closer to the bottom of the column. This is likely

related to the larger strain ey. Also, the physical length

scale lyy tends to converge to a fixed value at steady state,

which is caused by the convergence of Biot’s Modulus

M(D) and the strain ey to a constant value at steady state, as

shown in Figs. 9a, 10a, and 11a.

The physical length scale arises from the diffusive fluid

behavior in the proposed model, and it is not enforced by a

special gradient/phase-field approach. It can go to a larger

value due to the increase in equivalent strain and damage,

and tends to converge to a fixed value according to Figs. 9,

10, and 11. The larger value of physical length scale does

not have an adverse effect in the proposed model as shown

later in Sect. 6.4 for mesh independence.

6.3 Effect of time step size Dt in the ND model

In the proposed model, the physical length scale lij formula

involves the size of the time step as given in Eq. (17). In

this example, we investigate the effect of time step size Dt
on the ND model response in the idealized 1D scenario.

The different time step sizes considered are 0.01, 0.1, 1.0,

10.0, and 100.0 s. An element size of 1.00 m is chosen, and

the initial permeability is taken to be k0 ¼ 1:0� 10�7 m2/

Pa s.

The temporal and spatial evolution of fluid pressure P,

damage D, strain in y direction ey, and permeability kyy are

presented in Figs. 12 and 13, respectively. Figures 12 and

13 show that all the results are the same even if time step

sizes are different. Therefore, in the range of Dt and the set

of material parameters presented in Table 1, the proposed

model is insensitive to the time step size Dt. This is

attributed to the large resulting values of the physical

length scale in this range of Dt, which guarantees the non-

local response of damage evolution and hence leading to

time step independent results.

Next, since the lower initial permeability leads to a

smaller physical length scale, we need to investigate the

effect of the time step size under the lower initial perme-

ability. To this end, the initial permeability is considered to

be 5:0� 10�8 and 1:0� 10�8 m2/Pa s in the following set

of results. The temporal and spatial evolution of fluid

pressure P and strain ey are plotted in Figs. 14 and 15,

respectively. Similar to the previous results, herein one can

also observe the insensitive feature to time step size. In

conclusion, the proposed model is insensitive to time step

size under the range of investigated parameters in this

section.

Fig. 11 The evolution of strain ey physical length scale over column

at different time instances of the ND model with different

permeability. Initial permeability k0 ¼ 1:0� 10�8 m2/Pa s. The

closer to column bottom and the larger value of physical length scale
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6.4 Mesh independence

Four different element sizes (he =3.3, 2.0, 1.0, and 0.5 m)

are considered to investigate mesh independence. The

column is modeled using the LM, LD, and ND models with

fixed time step size of 1.0 s. The initial permeability is

chosen to be k0 is 1:0� 10�7 m2/Pa s, which results in an

initial physical length scale lct of 7.07 m.

The spatial distributions of fluid pressure P, damage D,

strain in y direction ey, and permeability kyy at steady state

are presented in Figs. 16, 17, and 18, respectively. The

fluid pressure P of the LD model in Fig. 16b is regarded as

mesh dependent, while the values of fluid pressure of the

ND model with different element sizes in Fig. 16c are

mesh independent. Figure 17 shows that the evolution of

the strain tensor ey in the ND model are smooth while there

is a discontinuity in the slope of the strain ey of the LD

model in the transition between the no-damage to damage

zones. The same observations are reported for the spatial

distributions of the permeability field in Fig. 18. These

observations show that the proposed ND model exhibits the

non-local behavior characteristics of damage and leads to a

diffusive and gradual transition between the intact and

highly damaged regions of the domain. This is a property

Fig. 12 The temporal evolution of results at the bottom of the column with the ND model with different time step sizes. a Fluid pressure.

b Damage. c Strain. d Permeability. The plots show that the ND model is insensitive to time step size within the range of parameters that we use

in the example
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of non-local damage model that has been documented in

earlier studies [17, 79]. In other words, the strain ey and

permeability kyy of the LD model tend toward a narrower

and stronger jump in the middle of the column if the

smaller meshed size is applied. Thus, it is considered that

the LD model is mesh-dependent at steady state for all

element sizes in this section. As for the ND model, it is

observed that the localization zone tends to converge as the

element size decreases leading to mesh-independent

results.

In order to have a better understanding of mesh inde-

pendence characteristic of the proposed model, the tem-

poral evolution of key variables is further examined. The

evolution of fluid pressure, damage, strain, and perme-

ability at point y ¼ 0 are presented in Figs. 19, 20, 21, and

22. The fluid pressure in Fig. 19b, strain in Fig. 21b, and

permeability in Fig. 22b of the LD model experience

spurious oscillations, and the irreversible damage growth

condition is introduced into the LD model, so the damage

experiences staircase rise in Fig. 20a. The mesh depen-

dence of the LD model is observed clearly during the

Fig. 13 Fluid pressure P, damage D, strain ey, and permeability kyy over the 1D column at steady state of ND model with different time step sizes

when initial permeability k0 ¼ 1:0� 10�7 m2/Pa s. a Fluid pressure. b Damage. c Strain. d Permeability. The plots show that time step size Dt
has no effect on the spatial distributions of results
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growth of fluid pressure and at the steady state. These

suggest that the LD model results suffer from significant

mesh dependence which is also confirmed in [79]. On the

other hand, the temporal evolution profiles of fluid pressure

in ND model are in good agreement with the numerical

[97, 127] and experimental [56, 134] results for fluid-dri-

ven fracture problems. The results of the ND model evolve

smoothly and converge to similar steady state values. The

error of the ND model results continues to reduce with the

decrease in element mesh size, which illustrates the mesh

independence of the proposed model.

The results in Figs. 16, 17, 18, 19, 20, 21, and 22 sug-

gest that the proposed model can be regarded as mesh

independent under the investigated element sizes in which

the maximum element size is 3.3 m, and the initial physical

length scale lct is 7.07 m. This confirms that for an element

size that is sufficiently smaller than the length scale, mesh

independence will be achieved as postulated in Sect. 4.

In summary, according to the results of 1D fluid-driven

failure example, it is confirmed that the proposed unified

model is not sensitive to time step size Dt in the range of

investigated parameters, and the initial physical length

scale lct can be used to advise element size for mesh-in-

dependent results.

Fig. 14 Fluid pressure P and strain ey evolution with time of ND model with different time step sizes when initial permeability is 5:0� 10�8 and

1:0� 10�8 m2/Pa s, respectively. The plots show that time step size Dt has no effect on the temporal evolution of results
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7 Hydraulic fracture in porous media

In this section, the proposed model is used to analyze

hydraulic fracture in a poroelastic domain with dimensions

2L� 2L as shown in Fig. 23a. The center of the domain is

injected with fluid to drive the fracture. Considering the

symmetry in Fig. 23a, the right half part of the domain is

represented in the simulation with symmetric boundary

conditions as shown in Fig. 23b. A zero-flux condition

(oP
on ¼ 0) and a horizontal translation constraint (ux ¼ 0) are

applied to the left edge. The external boundaries (right, top

and bottom edges) of the domain are constrained, which

leads to ux ¼ uy ¼ 0 and P ¼ 0. The middle of the left edge

is subjected to an injection fluid with flux of q ¼ 1:0�
10�3 m3s�1. The width L of the poroelastic domain is

considered to be 100 m.

In this simulation, the initial time step size Dt is 0.1 s,

and the minimum and maximum number of iterations for

each time step are Imin ¼ 20 and Imax ¼ 50, respectively.

The parameters chosen for this problem are listed in

Table 2. The set of material and numerical parameters

results in the initial physical length scale lct is 3.1 m

Fig. 15 Fluid pressure P and strain ey over the 1D column at steady state of ND model with different time step sizes when initial permeability is

5:0� 10�8 m2/Pa s and 1:0� 10�8 m2/Pa s, respectively. The plots show that there is no effect of time step size Dt on the spacial distributions of
results
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according to the analysis in Sect. 4.3. The finite element

mesh size is 1.0 m which is smaller than one-third of the

initial physical length scale, and it is expected to lead to

mesh-independent results according to the analysis in

section 6.4.

In order to investigate the effect of time step size on

results in this model, the target minimum time step size is

Dtmin ¼0.1 s, and the target maximum time step size Dtmax

is considered as 5.0 and 10.0 s, respectively. The variations

in time step size Dt, inlet pressure, and damage evolution at

the injection point over the period of the simulation are

plotted in Fig. 24. Although the time step sizes for Dtmax ¼

5.0 and 10.0 s are different, the inlet pressure and damage

evolution with time are the same. It suggests that the

hydraulic fracture behavior is insensitive to time step size

in the range of investigated parameters. In addition, the

inlet pressure increases up to approximately 1.22 MPa

which can be referred to as the breakdown pressure [43],

and it coincides with the onset of damage. Then, the inlet

pressure decreases to a slightly lower value and approxi-

mately remains the value in an open crack (D ¼ 0:99). This

behavior of inlet pressure is consistent with the previous

study on fluid-driven fracture [127].

Fig. 16 Fluid pressure P over column at steady state of damage-free poroelastic model (LM), local damage model (LD), and the proposed model

(ND)
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In order to have a closer look at the behavior of

hydraulic fracture, the evolution of damage D, permeability

kxx, and fluid pressure P in the poroelastic domain contours

are demonstrated by the contours in Fig. 25. The lengths of

high damage band, permeability kxx zone, and high fluid

pressure zone continue to grow with injection time. The

damage contours show that the damage propagates along

the expected horizontal direction. The damage evolution

provides a major direction for strain evolution which drives

the anisotropic growth of the permeability component kxx.

This leads to the result that fluid preferentially flows along

the direction of damage evolution. The fluid pressure

contours show that the high pressure is confined inside and

around the fracture which is presented by high damage

band, and the phenomenon is also reported in previous

literature [77, 80, 124].

Fig. 17 Stain ey over column at steady state of damage-free poroelastic model (LM), local damage model (LD), and the proposed model (ND)

Acta Geotechnica (2023) 18:5083–5121 5105

123



There exists a difference between the widths of high

pressure band and high damage band, which is attributed to

the kyy permeability component. The presence and evolu-

tion of kyy lead to fluid leakage from the sides of fracture

which is observed in the fluid pressure results. The leakage

may cause additional damage around the fracture [32]

which is observed in the damage contours. This leakage is

commonly referred to as leak-off [29], and it has been

observed in many field cases and experiments

[106, 119, 126]. Other formulations introduce an artificial

flux to the hydraulic fracture boundary in order to account

for the leak-off phenomena, e.g., phase-field [75], LEFM

[117], cohesive element method [15, 62], and XFEM [45].

The numerical implementation of these models encounters

inherent difficulties in capturing the fluid leakage caused

by the material properties evolution of the fracture process

zone. This is attributed to the fact that the tangential flow

within the crack is calculated based on a Poiseuille flow

equation which assumes an impermeable channel flow, this

requires the artificial addition of an empirical leak-off

effect that does not represent the nonlinear evolution of

damage and permeability in the fracture process zone. In

Fig. 18 Permeability kyy over column at steady state of damage-free poroelastic model (LM), local damage model (LD), and the proposed model

(ND)
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addition, the artificial leak-off in these models does not

contribute to damage growth because the damage or frac-

ture grows only in the defined zone while the external

domain remains elastic or poroelastic. The leakage phe-

nomenon and the corresponding damage are readily cap-

tured in the proposed model due to the continuous

definition of the fluid constitutive law inside and outside

the fracture, which is achieved by the nonlinear anisotropic

permeability relationship.

In order to better understand the fluid flow, the profiles

of damage D, permeability component kxx, and fluid

velocity in x-direction vx are plotted along a line that is

10 m away from the flux input point. Snapshots of these

plots at different time steps (192, 609, 998, and 1771s) are

shown in Fig. 26. The plots show that damage, perme-

ability, and velocity increase with injection time, which

illustrates the growth of the fluid-driven fracture. The

location of high permeability component kxx and high fluid

velocity vx correspond to the location of high damage,

which demonstrates that the fracture is hydraulically dri-

ven. The high velocity fluid flow inside the fluid-driven

fracture is a key feature for the simulation of hydraulic

fracture process [123]. This key feature can be captured

using the proposed model, and it is demonstrated by that

Fig. 19 Fluid pressure P evolution of damage-free poroelastic model (LM), local damage model (LD), and the proposed model (ND). Results are

presented at the point y ¼ 0
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Fig. 20 Damage D evolution of local damage model (LD) and the proposed model (ND). Results are presented at the point y ¼ 0

Fig. 21 Stain ez evolution of damage-free poroelastic model (LM), local damage model (LD), and the proposed model (ND). Results are

presented at the point y ¼ 0
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the fluid velocity inside the fracture is several orders of

magnitudes higher than the fluid velocity in the intact

porous media.

Moreover, the effect of initial permeability on the evo-

lution of hydraulic fracture is investigated. We plot the

profiles of damage D, permeability component kxx, and

fluid velocity in x-direction vx along a line 10 m away from

the left edge of the domain in Fig. 23 at 789 s when the

values of initial permeability are 0.5k0, k0, and 1:5k0,

respectively. The plots suggest that using higher values of

initial permeability leads to wider hydraulic fracture, and

elevates permeability and fluid velocity in the fracture

driven by fluid.

In order to analyze fracture propagation in damage

theory, the fracture length LF and average fracture width

WF were introduced in [77, 78]. LF is defined as the

Fig. 22 Permeability kyy evolution of damage-free poroelastic model (LM), local damage model (LD), and the proposed model (ND). Results are

presented at the point y ¼ 0
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distance from the injection point to the farthest point

experiencing damage (D ¼ 0) along the fracture center

line. WF is approximated as the value of the damage zone

volume divided by the fracture length, i.e., WF ¼
R
V
DdV
LF

.

The temporal evolution of the fracture length and average

fracture width are presented in Fig. 28. During the initial

injection stage, there is no damage in the poroelastic

media, and the fracture has not formed. During the sub-

sequent stage, the fracture propagates quickly once it is

initiated, and then fracture propagation is relatively slow.

The evolution of fracture average width leads to the for-

mation of the wide fluid pool observed in Fig. 25. The

propagation behavior of fluid-driven fracture in the pro-

posed model agrees qualitatively with results found in

previous studies [15, 30, 45, 48, 50, 70, 77, 96, 105].

Therefore, the results in Figs. 25, 26, 27, and 28 confirm

that the proposed model has an excellent ability to natu-

rally capture the features of hydraulic fracture.

8 Summary and conclusions

In this paper, we prove that the fluid flow continuity

equation in poroelastic damage theory is analogous to the

implicit gradient formula, in which the fluid pressure is a

non-local variable. Hence, a unified non-local damage

model based on fluid pressure damage dependence for

hydraulic fracture in poroelastic media is proposed. In the

proposed model, the damage variable is driven by the

inherently non-local fluid pressure, and the damage evo-

lution law is described by a logistic growth curve. The

permeability of the porous media evolves as a function of

Fig. 23 Schematic diagram of the hydraulic fracture domain. a The domain is 2L� 2L and the center of the domain is injected with fluid. b The

symmetric model for modeling hydraulic fracture. The left side of the domain is regarded as symmetry boundary (ux ¼ 0 and oP
on ¼ 0) and other

boundaries are mechanically restrained (ux ¼ uy ¼ 0) and permeable (P ¼ 0). The middle of the left edge is subjected to the injection fluid with

the flux of q

Table 2 Material parameters for Sect. 7

Parameter name Parameter Value

Young’s modulus E 2:5� 108 Pa

Poisson’s ration m 0.3

Undrained Poisson’s ratio mu 0.49999

Solid grain bulk modulus Ks 1:0� 1012 Pa

Initial permeability k0 1:0� 10�11

m2Pa�1s�1

Constant in permeability model b1 6:0� 108

Constant in permeability model b2 2

Maximum damage Dmax 0.99

Constant in damage model a1 2:3� 10�4

Constant in damage model a2 1:2� 106

Width of poroelastic domain L 100.0 m

Fluid flux q 1:0� 10�3 m3s�1
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equivalent strain measure, and an anisotropic evolution is

induced by decomposition into principal strains.

In the proposed model, the damage regularization can be

achieved automatically without the need for an additional

regularization equation or a spatial integral non-local

operator. The physical length scale is analytically derived

as a function of material point variable, and it can be

estimated directly from model parameters. The physical

length scale is transient which evolves with damage and an

equivalent strain measure.

A monolithic, mixed finite element method is proposed

to solve the coupled deformation and fluid flow system

with a displacement-pressure (u� p) element. Newton’s

method is used to solve the nonlinear system at every time

Fig. 24 The evolution of time step size Dt, inlet pressure, and damage at the injection point. a time step size Dt with total time. b inlet pressure

evolution. c damage evolution at the injection point. The plots suggest that the hydraulic fracture behavior is insensitive to time step size in the

range of investigated parameters
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step, in which a consistent Jacobian matrix and residual

vector are derived analytically. A backward Euler

scheme is employed to advance the system in time.

The proposed model is used to analyze the fluid-driven

failure of a poroelastic column. The results are shown to be

insensitive to the time step size in the range of the physical

parameters used. While the damage, strain, and perme-

ability are dependent on mesh size in the local damage

model, all results are mesh independent and respond

smoothly in the proposed unified model. In addition,

hydraulic fracture in a 2D poroelastic domain is investi-

gated using the proposed model, which confirmed that the

Fig. 25 Damage D, permeability kxx (m
2Pa�1s�1), and fluid pressure P (MPa) contours of 2D hydraulic fracture model
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proposed model has an excellent capacity to capture the

features of hydraulic fracture in porous media.

In conclusion, the proposed model is found to be robust,

mesh insensitive, and elegant, and in particular, computa-

tionally more efficient than implicit gradient damage or

phase-field methods, which require additional degrees of

freedom to model the damage.

Derivation for discrete form of fluid flow
continuity equation

The terms including time derivative in Eq. (14) are inter-

polated with values of current time step n and previous

time step n� 1, which are shown as Eq. (A.1).

Fig. 26 The profiles of damage D, permeability component kxx, and fluid velocity vx along a line 10 m away from the left edge of the domain in

Fig. 23
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o½1=MðDÞ�
ot

¼
1

½MðDÞ�n �
1

½MðDÞ�n�1

Dt

oaðDÞ
ot

¼ ½aðDÞ�n � ½aðDÞ�n�1

Dt

oeii
ot

¼ eii½ �n� eii½ �n�1

Dt

oP

ot
¼ Pn � Pn�1

Dt

ðA:1Þ

The subscripts n are removed from all functions in

Eq. (A.1) for convenience, then substituting Eq. (A.1) into

Eq. (14) and multiplying Dt yield Eq. (A.2).

1

MðDÞ �
1

½MðDÞ�n�1

 !

Pþ P� Pn�1
� � 1

MðDÞ � Dt kijP;j

� �
;i

¼ ½aðDÞ�n�1 � aðDÞ
� �

eii � eii � eii½ �n�1
� �

aðDÞ

ðA:2Þ

Equation (A.2) can be arranged into Eq. (15).

Fig. 27 The profiles of damage D, permeability component kxx, and fluid velocity vx along a line 10 m away from the left edge of the domain in

Fig. 23 of the model with different permeability at 609 s
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Proof of 2
M(DÞ >

1
½M(DÞ�n-1

The partial derivative of damage Biot’s modulus M(D)

with respect to damage D is written by:

oMðDÞ
oD

¼
KaðDÞ � 2

oaðDÞ
oD Ku � KDð Þ

aðDÞ3

¼ KaðDÞKs þ 2K Ku � KDð Þ
KsaðDÞ3

ðB:1Þ

Obviously,
oMðDÞ
oD is more than zero. It suggests that the

damage Biot’s modulus M(D) increases with the increase

in damage D. Thus, MðDÞ > MðDÞjD¼0 ¼ Ku�K
Ks�Kð Þ2 Ks

2 [ 0.

Given that the solid grain bulk modulus Ks is much

larger than the drained bulk modulus K, Ks � K, for most

geomaterials, and the undrained bulk modulus Ku can be

defined as Eq. (B.2) [20, 28].

Ku ¼ K 1þ Kf

/K

� �
ðB:2Þ

where / is material porosity which is less than 1. Kf is the

bulk modulus of fluid. Kf is larger than /K for general

materials filled fully by water or other difficultly com-

pressible fluid, so Ku [ 2K.

On the other hand, the damaged Biot’s modulus M(D)

increases with damage. MðDÞ ¼ Ku when D ¼ 1, and

MðDÞ ¼ Ku�K
Ks�Kð Þ2 Ks

2 when D ¼ 0. Thus, we can obtain the

upper and lower limit value of M(D) which are presented

by:

MðDÞ 6 MðDÞjD¼1 ¼ Ku ðB:3aÞ
Ku � K

Ks � Kð Þ2
Ks

2 ¼ MðDÞjD¼0 6 ½MðDÞ�n�1
6 MðDÞ

ðB:3bÞ

Because 0\Ku � K\ Ku�K
Ks�Kð Þ2 Ks

2, Eq. (B.4) is obtained.

0\Ku � K\½MðDÞ�n�1
6 MðDÞ ðB:4Þ

According to Eqs. (B.3a) and (B.4), we can get

2½MðDÞ�n�1 [ 2ðKu � KÞ and Ku
> MðDÞ. Given that

2ðKu � KÞ[Ku, 2½MðDÞ�n�1 [MðDÞ. Therefore,

inequality formula 2
MðDÞ [

1

½MðDÞ�n�1 is obtained.

s and lij increase with damage

The partial derivative of s with respect to damage D is

expressed as:

os

oD
¼ 2

MðDÞ �
1

½MðDÞ�n�1

" #�2
2

½MðDÞ�2
oMðDÞ
oD

> 0

ðC:1Þ

Equation (C.1) indicates that s increases as damage

D increases.

The partial derivative of physical length scale lij with

respect to damage D is written by:

Fig. 28 The temporal evolution of the fracture length and average fracture width. a The temporal evolution of fracture length. b The temporal

evolution of average fracture width
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olij
oD

¼ 2

MðDÞ �
1

½MðDÞ�n�1

� ��
3

2
ffiffiffiffiffiffiffiffiffiffiffiffi
2k0Dt

p

½MðDÞ�2
oMðDÞ
oD

�
1þ b1ðeeqÞb2 cosu
� �1

2

0

0 1þ b1ðeeqÞb2 sinu
� �1

2

2

664

3

775

ðC:2Þ

Equation (C.2) suggests that diagonal components of the

partial derivative of characteristic length scale with respect

to damage are more than zero. Thus, the diagonal com-

ponents of characteristic length scale lij increase with the

increase in damage.

Derivatives used in the Jacobian matrix
derivation

Details of partial derivatives in the Jacobian matrix for 2D

plane strain framework:

okij
ou

¼

okxx
oe

oe
ou

0

0
okyy
oe

oe
ou

2

664

3

775 ðD:1Þ

oa Dð Þ
oD

¼ � K

Ks

ðD:2Þ

o 1=MðDÞ½ �
oD

¼ 2a Dð Þ oa Dð Þ
oD

Ku � KðDÞ½ ��1�a Dð Þ2K Ku � KðDÞ½ ��2

ðD:3Þ
oa Dð Þ
ot

¼ oa Dð Þ
oD

oD

oP

oP

ot
ðD:4Þ

o 1=MðDÞ½ �
ot

¼ o 1=MðDÞ½ �
oD

oD

oP

oP

ot
ðD:5Þ

oD

oP
¼ Dmaxa1e

�a1 P�a2ð Þ 1þ e�a1 P�a2ð Þ
h i�2

ðD:6Þ

o2D

oP2
¼ Dmax 2 a1e

�a1 P�a2ð Þ
h i2�

�a21e
�a1 P�a2ð Þ 1þ e�a1 P�a2ð Þ

h i
� 1þ e�a1 P�a2ð Þ
h i�3

ðD:7Þ

o
o aðDÞ½ �

ot

oP
¼ o2aðDÞ

oDoP|fflfflffl{zfflfflffl}
0

oD

oP

oP

ot
þ oaðDÞ

oD

o2D

oP2

oP

ot
þ 1

Dt
oaðDÞ
oD

oD

oP
NP

¼ oaðDÞ
oD

o2D

oP2

oP

ot
þ 1

Dt
oaðDÞ
oD

oD

oP
NP

ðD:8Þ

o
o 1=MðDÞ½ �

ot

oP
¼ o2 1=MðDÞ½ �

oDoP

oD

oP

oP

ot

þ o 1=MðDÞ½ �
oD

o2D

oP2

oP

ot
þ 1

Dt
o 1=MðDÞ½ �Þ

oD

oD

oP
NP

ðD:9Þ

o2 1=MðDÞ½ �
oDoP

¼

þ 2a Dð Þ2K2 Ku � KðDÞ½ ��3

ðD:10Þ

The derivative matrix of shape functions of mixed finite

element method for 2D framework:

Bu ¼ Bu
1 ; :::; Bu

i ; :::; Bu
8

� �
; Bu

i ¼

oNu
i

ox
0

0
oNu

i

oy

oNu
i

oy

oNu
i

ox

2

66666664

3

77777775

ðD:11Þ

Bu;vol ¼ Bu;vol
1 ; :::; Bu;vol

i ; :::; Bu;vol
8

h i
;

Bu;vol
i ¼ oNu

i

ox
;
oNu

i

oy

� � ðD:12Þ

BP ¼

oNP
1

ox

oNP
2

ox

oNP
3

ox

oNP
4

ox

oNP
1

oy

oNP
2

oy

oNP
3

oy

oNP
4

oy

2

664

3

775 ðD:13Þ

Local damage model based on equivalent
strain

In local damage model based on equivalent strain, the

permeability evolution law and equivalent strain measure

are, respectively, described as Eqs. (26) and (24), which are

the same to non-local damage model based on the fluid

pressure. The bilinear damage law is taken to describe

damage evolution, which is written by:

D eeqð Þ ¼

0 if eeq 6 eeqi
eeqf eeq � eeqið Þ

eeq eeqf � eeqi
� � if eeqi 6 eeq 6 eeqj

Dmax if eeqj 6 eeq

8
>>>>><

>>>>>:

ðE:1Þ

where eeqi and eeqf denote the damage initiation and failure

strains, respectively. They can be obtained from
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experiment. eeqj is a value of equivalent strain which can be

given by:

eeqj ¼ �
eeqf e

eq
i

eeqf � eeqi
Dmax �

eeqf
eeqf � eeqi

 !�1

ðE:2Þ

Acknowledgements This work was supported by the Postgraduate

Research & Practice Innovation Program of Jiangsu Province [grant

number KYCX17_0429]; the Fundamental Research Funds for the

Central Universities [grant numbers 2017B620X14]; the National

Natural Science Foundation of China / Yalong River Joint Fund

[Grant Numbers U1765205]; and the program of China Sponsorship

Council [Grant Numbers 201806710155]. It was conducted at

Columbia University during a two-year visit of the first author.

References

1. Aghighi MA, Rahman SS (2010) Horizontal permeability ani-

sotropy: effect upon the evaluation and design of primary and

secondary hydraulic fracture treatments in tight gas reservoirs.

J Petrol Sci Eng 74(1–2):4–13. https://doi.org/10.1016/j.petrol.

2010.03.029

2. AlTammar MJ, Sharma MM, Manchanda R (2018) The effect of

pore pressure on hydraulic fracture growth: an experimental

study. Rock Mech Rock Eng 51(9):2709–2732. https://doi.org/

10.1007/s00603-018-1500-7

3. Askes H, Aifantis EC (2011) Gradient elasticity in statics and

dynamics: an overview of formulations, length scale identifica-

tion procedures, finite element implementations and new results.

Int J Solids Struct 48(13):1962–1990. https://doi.org/10.1016/j.

ijsolstr.2011.03.006
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75. Mikelić A, Wheeler MF, Wick T (2015) A phase-field method

for propagating fluid-filled fractures coupled to a surrounding

porous medium. Multiscale Model Simul 13(1):367–398. https://

doi.org/10.1137/140967118

76. Mindlin RD (1964) Micro-structure in linear elasticity. Arch

Ration Mech Anal 16(1):51–78. https://doi.org/10.1007/

bf00248490

77. Mobasher ME, Waisman H (2021) Dual length scale non-local

model to represent damage and transport in porous media.

Comput Methods Appl Mech Eng 387(114):154. https://doi.org/

10.1016/j.cma.2021.114154

78. Mobasher ME, Waisman H (2022) Energy dissipation mecha-

nisms in fluid driven fracturing of porous media. Geomech

Geophys Geo-Energy Geo-Resour. https://doi.org/10.1007/

s40948-022-00460-9

79. Mobasher ME, Berger-Vergiat L, Waisman H (2017) Non-local

formulation for transport and damage in porous media. Comput

Methods Appl Mech Eng 324:654–688. https://doi.org/10.1016/

j.cma.2017.06.016

80. Mobasher ME, Waisman H, Berger-Vergiat L (2018) Thermo-

dynamic framework for non-local transport-damage modeling of

fluid driven fracture in porous media. Int J Rock Mech Min Sci

111:64–83. https://doi.org/10.1016/j.ijrmms.2018.08.006

81. Montgomery CT, Smith MB (2010) Hydraulic fracturing: his-

tory of an enduring technology. J Petrol Technol 62(12):26–40.

https://doi.org/10.2118/1210-0026-jpt

82. Moradian Z, Ballivy G, Rivard P et al (2010) Evaluating damage

during shear tests of rock joints using acoustic emissions. Int J

Rock Mech Min Sci 47(4):590–598. https://doi.org/10.1016/j.

ijrmms.2010.01.004

83. Neyman J (ed) (1951) Nonlinear programming, Berkeley Sym-

posium on Mathematical Statistics and Probability, vol 2,

University of California Press, Berkeley, https://link.springer.

com/content/pdf/10.1007/978-3-0348-0439-4_11.pdf

84. Nishiyama N, Yokoyama T (2017) Permeability of porous

media: role of the critical pore size. J Geophys Res Solid Earth

122(9):6955–6971. https://doi.org/10.1002/2016JB013793

85. Pakzad R, Wang SY, Sloan SW (2017) Numerical simulation of

hydraulic fracturing in low-/high-permeability, quasi-brittle and

heterogeneous rocks. Rock Mech Rock Eng 51(4):1153–1171.

https://doi.org/10.1007/s00603-017-1386-9

86. Peerlings RH, de Borst R, Brekelmans WM et al (1996) Gra-

dient enhanced damage for quasi-brittle materials. Int J Numer

Meth Eng 39(19):3391–3403. https://doi.org/10.1002/
(SICI)1097-0207(19961015)39:19\3391::AID-NME7[3.0.

CO;2-D
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