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Effect of strength anisotropy on strain localization in natural clay
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Abstract
Strain localization in soils causes the failure of slopes and foundations. Shear strength is an important factor that affects

strain localization in soils. It is well known that the shear strength of natural clay is highly anisotropic due to the internal

soil structure. An anisotropic failure criterion for natural clay is presented in which an anisotropic variable is used to

describe the relative orientation between the stress directions and soil fabric. The failure criterion is employed in a

Drucker–Prager model that considers the strain softening of natural clay. The effect of anisotropic strength on strain

localization in clay is analyzed by two examples, including an undrained slope stability analysis and a simulation of a

hollow cylinder test of Boom clay. It is found that the shear strength anisotropy affects both the strain localization pattern

and factor of safety for the undrained slope. Simulation of the tests on Boom clay shows that the model with the anisotropic

yield criterion yields an eye-shaped strain localization pattern that cannot be obtained by the model with the isotropic yield

criterion.

Keywords Anisotropic strength � Boom clay � Drucker–Prager (DP) model � Natural clay � Strain localization �
Slope stability

1 Introduction

Strain localization, such as shear band development, causes

the failure of slopes and foundations. Strain localization is

affected by many factors [40, 51, 62]. Among them, the

shear strength is one of the most important. Natural clays

always have an anisotropic internal structure or fabric (e.g.,

particle orientation and void space distribution) that is

caused by compaction or gravity [54, 61], which results in

inherent anisotropy. This makes the shear strength of nat-

ural clay dependent on the loading direction [39] and the

degree of saturation [30, 31]. Another kind of anisotropy is

caused by loading history, called stress-induced anisotropy

or induced anisotropy. The inherent anisotropy is addressed

in this paper. Existing research has shown that the location

of the slip surfaces and the factor of safety of a clay slope

are significantly affected by strength anisotropy [55]. A

significantly lower factor of safety will be obtained when

strength anisotropy is considered. Furthermore, strain

localization in Boom clay due to excavation is found to be

influenced by strength anisotropy [20].

An anisotropic model is thus crucial for constitutive

modeling in clays. The key feature of the anisotropic model

is to use an anisotropic yield criterion for the modeling of

inherent anisotropy and to incorporate a kinematic hard-

ening law for the modeling of induced anisotropy [66].

Another attractive alternative to the kinematic hardening

method is the micromechanics approach [66–68]. Rotated

yield surfaces have been widely used in modeling the

anisotropic behavior of clay [2, 12, 13, 35, 63, 64, 69]. This

approach is effective for modeling the anisotropy caused

by the previous loading history. The evolution of aniso-

tropy can be easily considered in the modeling framework.

However, when the initial effective stress state is isotropic,

the soil fabric is typically assumed to be isotropic as well,

which may not be reasonable for natural clay.

There have been several methods where inherent ani-

sotropy was incorporated into the constitutive description

[19, 53, 72]. One of the most important ways is to construct

anisotropic models based on the existing isotropic criteria,
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such as the von Mises criterion [29], the Mohr–Coulomb

criterion [48], the Cam-Clay model [45], and the modified

Cam-Clay model [11].

To model the inherent anisotropy of natural clays,

Casagrande and Carillo [8] presented an expression for the

anisotropic undrained shear strength of clay, in which the

direction of the major principal stress is needed. While this

expression has been validated by the test results of some

soils, such as Canadian Welland clay [43], it can only be

used when the bedding plane is horizontal. Furthermore,

Grimstad et al. [28] proposed an anisotropic Tresca model

for describing the undrained response of clays, i.e., NGI-

ADP. Krabbenhøft et al. [37] developed the AUS model

following the works of Grimstad et al. [28]. This model

includes three undrained shear strength parameters obtained

by three sets of tests, including triaxial extension, triaxial

compression, and simple shear. However, all these tests

must be performed on a soil sample with a horizontal

bedding plane. The model parameters will have to be

adjusted when the bedding plane orientation is not hori-

zontal in a real application. An anisotropic modified Cam-

Clay model was proposed to describe the anisotropy of

rock, which involves the microstructure tensor

[6, 53, 72, 73]. It is denoted by a second-order tensor, which

is the tensor product of the unit normal vector to the bedding

plane and itself. Methods using fabric tensors have also

been developed to model the strength anisotropy of soils. In

these methods, joint invariants of the stress tensor and fabric

tensor are needed in the formulations [14, 46, 49]. For

instance, Gao et al. [22] developed an anisotropic model for

soils based on the works of Yao et al. [65] and Dafalias et al.

[14]. In this model, an anisotropic variable that describes

the relative orientation between the loading direction and

the material fabric is introduced. This model has been used

for both soils and rocks.

Some of the models have been used in modeling strain

localization in clay. The NGI-ADPSoft model based on

NGI-ADP, which takes into account the strain-softening

behavior of clays, has been used to analyze a full-scale

railway embankment built on a soft clay deposit [15].

Based on the method of Pietruszczak and Mroz [49], Tang

et al. [59] proposed a failure criterion in the form of

Casagrande’s expression [8] to present an anisotropic DP

model and conducted a simulation of strain localization in

an undrained slope of clay. However, the failure criterion

in this study lacks variety and is not applicable. In Bel-

gium, Switzerland, and France, Boom clay, Opalinus clay,

and Callovo-Oxfordian clay are candidate host rocks for

the deep geological disposal of radioactive waste. Strain

localization in these clays has been studied [5, 20, 44, 47].

In the study of Mánica et al. [44], a four-parameter com-

plex anisotropic failure criterion proposed by Conesa et al.

[10] using a curve-fitting approach was used. However,

none of these studies attempts to construct a ‘‘complete’’

anisotropic constitutive model but dynamically updates the

anisotropic cohesion and calculates the direction of the

major principal stress in nonlinear incremental iterative

calculations. In other words, the gradient of the yield

function of the constitutive model does not include a

component of anisotropic cohesion. Excessive load incre-

ments can affect the accuracy of describing cohesion [16].

In this study, an elastoplastic DP model is proposed that

considers the anisotropic strength as well as strain-hard-

ening/softening characteristics of clay. In the yield func-

tion, an anisotropic function of stress is used to describe the

anisotropic strength of the clay. Since the shear strength is

the focus of this study, the soil response is assumed to be

purely elastic before failure. Under undrained conditions,

the anisotropic DP model reduces to the anisotropic von

Mises model. The model is implemented in the user sub-

routines of ABAQUS software [1]. The validation of the

proposed anisotropic DP model is demonstrated by two

typical examples, undrained slope stability analysis and

simulation of the Boom clay hollow cylinder test, repre-

senting limit equilibrium and progressive failure problems,

respectively. The effect of anisotropic strength on strain

localization in clay is analyzed with emphasis.

2 Anisotropic plastic constitutive model

2.1 Anisotropic failure criterion

The cross-anisotropy of clays can be characterized by the

symmetric second-order fabric tensor Fij [46].

Fij ¼
Fx 0 0

0 Fy 0

0 0 Fz

2
4

3
5 ¼ 1

3 þ D

1 þ D 0 0

0 1 � D 0

0 0 1 þ D

2
4

3
5

ð1Þ

where D is a scalar and 0\D\1. It is assumed that the

principal directions of the fabric tensor are consistent with

the local coordinate system (x, y, z) and that the x–z plane is

the isotropic plane, as shown in Fig. 1. The global coor-

dinate axes are the xi, yi, and zi axes. It is worth noting that

the isotropic plane is not necessarily horizontal.

The strength of clay depends on the soil structure in clay

and the loading direction. Gao and Zhao [23] proposed an

anisotropic function g Að Þ (Eq. 2) to describe the aniso-

tropic strength of geomaterials.

g Að Þ ¼ exp
Xn
i¼1

ei 1 þ Að Þi
" #

ð2Þ

where ei is a set of material parameters. For isotropic soil,

ei ¼ 0. A is the anisotropic state variable. Based on the
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deviatoric stress tensors sij and the deviatoric part of the

fabric tensor dij, the variable A can be expressed as

A ¼ sijdijffiffiffiffiffiffiffiffiffiffiffiffiffi
smnsmn

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmndmn

p ¼ sx � 2sy þ sz
2q

ð3Þ

where dij ¼ Fij � Fkkdij=3 and q is the equivalent von

Mises stress:

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3

2
sijsij

r
ð4Þ

where sij is the deviatoric stress tensor and sx, sy, and sz are

deviatoric stresses in the three-axis directions of the local

coordinate system. It is worth noting that the normalized

deviatoric fabric tensor, i.e., Eq. (5), is just a constant

diagonal matrix. Therefore, the microscopic parameter D is

not required in the numerical simulation.

dijffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmndmn

p ¼ 1ffiffiffi
6

p
1 0 0

0 �2 0

0 0 1

2
4

3
5 ð5Þ

In the proposed model, the anisotropic function g Að Þ is

used to define the anisotropic strength of clays and n ¼ 3.

To illustrate how to determine the parameters e1, e2, and

e3, the hollow cylinder torsional shear test under undrained

conditions on Gault clay in the UK [7] is taken as an

example. In Fig. 2, a is the angle between the major

principal stress and the axis of the isotropic plane. Su is the

peak undrained shear strength of Gault clay for various a
and Su ¼ gðAÞSu0, where Su0 is the undrained shear

strength at a ¼ 0�.

For the hollow cylinder torsional shear test, the formula

A að Þ has been given [23]. A að Þ is used to determine the

anisotropic parameters e1, e2, and e3, and then, Eq. (3) with

e1, e2, and e3 is adopted in the numerical simulation.

A að Þ ¼ �3 cos2 aþ bþ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � bþ 1

p ð6Þ

where b is the intermediate principal stress ratio expressed

as

b ¼ r2 � r3

r1 � r3

ð7Þ

r1, r2, and r3 are the major, intermediate, and minor

principal stresses, respectively. The test results for Gault

clay consist of five data points, of which the first (a ¼ 0�),
third (ap ¼ 39�), and fifth points (a ¼ 90�) are chosen to

determine e1, e2, and e3 by solving Eqs. (3) with b ¼ 0:5.

Note that b is a constant in all the tests.

e1 1 þ A 0ð Þ� �
þe2 1 þ A 0ð Þ� �2þe3 1 þ A 0ð Þ� �3¼ lnK 0ð Þ ¼0

e1 1 þ A 90�ð Þ� �
þ e2 1 þ A 90�ð Þ� �2þe3 1þA 90�ð Þ� �3¼ lnK 90�ð Þ

e1 1þ A apð Þ
� �

þe2 1þA apð Þ
� �2

þe3 1þA apð Þ
� �3

¼ lnK apð Þ

8>><
>>:

ð8Þ

where

K að Þ ¼ g A að Þ
� �

¼ Su
Su0

ð9Þ

The prediction of the anisotropic failure criterion is

shown in Fig. 2.

2.2 Anisotropic DP Yield Function and Potential
Function

In Fig. 3, the isotropic linear DP yield criterion for clays in

terms of effective stresses [17] is expressed as

Fig. 1 Schematic diagram of the local coordinate system and the

isotropic plane of the clay

Fig. 2 Comparison between the data of the torsional test on Gault

clay [7] and the proposed anisotropic failure criterion
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F p0; qð Þ ¼ q� m p0 þ c0

tanu0

� �
¼ 0 ð10Þ

where

m ¼ 6sinu0

3 � sinu0 ð11Þ

where u0 and c0 are the effective internal friction angle and

the effective cohesion, respectively. p0 is the mean effec-

tive stress.

There are two strength parameters in the DP yield cri-

terion, i.e., internal friction angle and cohesion. Duncan

and Seed [18] and Sergeyev et al. [54] concluded that the

internal friction angle of clay shows only moderate aniso-

tropy and is independent of the loading direction. However,

the undrained shear strength and cohesion are highly ani-

sotropic. Therefore, anisotropic DP yield criteria consid-

ering only cohesive anisotropy have been frequently used

[20, 59, 60]. To describe the anisotropic shear strength of

clays under drained conditions, the proposed anisotropic

DP yield function is written as

F p0; q;Að Þ ¼ q� m p0 þ g Að Þc0
0

tanu0

� �
¼ 0 ð12Þ

where c
0
0 is the effective cohesion measure in triaxial

compression with the direction of the major principal stress

parallel to the axis of the isotropic plane.

Under undrained conditions, u0 ¼ 0 and Su0 ¼ c
0
0 are

assumed, and the DP yield function reduces to the von

Mises yield function. Under plane strain conditions [1], the

DP yield function is expressed as

F q;Að Þ ¼ q�
ffiffiffi
3

p
Su0g Að Þ ¼ 0 ð13Þ

where Su0 is the undrained shear strength when the direc-

tion of the major principal stress is parallel to the axis of

the isotropic plane of the clay.

The plastic potential function G of the proposed model

is written as

G ¼ q� m0p0 ¼ 0 ð14Þ

where

m0 ¼ 6sinw
3 � sinw

ð15Þ

where w is the dilation angle. The gradient of the proposed

anisotropic yield function is introduced in Appendix 1.

Since the plastic potential function does not include the

fabric tensor Fij, the flow rule is noncoaxial [24, 71].

2.3 Hardening law and nonlocal strain softening

Strain localization is usually simulated by the plastic model

with strength parameters that decrease linearly or nonlin-

early with increasing equivalent plastic strain [32, 33, 36].

In the proposed model, the isotropic strain-harden-

ing/softening law of clay is a function of the equivalent

plastic strain edp.

edp ¼ r
t

0

ffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_e : _e

r
dt ð16Þ

where _e is the rate tensor of the deviatoric plastic strain and

t is the time of the simulation.

The simplest softening law is a linear relationship

between the shear strength and the equivalent plastic strain,

e.g., the one proposed by Potts et al. [50], as shown in

Fig. 4b. In the analysis in Sect. 4.2, a nonlinear harden-

ing/softening relationship is used. Based on the anisotropic

parameters of Gault clay, the method proposed by Gao and

Zhao [23] is utilized to plot the yield surfaces in the

deviatoric plane that change from a circle to an irregular

ellipse due to the anisotropic function g Að Þ. The yield

Fig. 3 Linear DP yield surface in (a) the meridional plane and (b) the deviatoric plane
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surface shape does not change but shrinks with increasing

plastic strain (Fig. 4a).

For simplicity, the anisotropy of undrained shear

strength and the softening characteristics of cohesion are

assumed to be independent. Therefore, in Fig. 5, the

undrained shear strength can be illustrated as a function of

the anisotropy parameters e1, e2, and e3 and softening

parameters kr and erdp.

In finite element analysis (FEA), strain softening of the

material results in mesh sensitivity. A partially nonlocal

softening regularization approach proposed by Galavi and

Schweiger [21] is employed to reduce the mesh sensitivity.

In the approach, only the deviatoric strain is considered a

Fig. 4 Isotropic strain-softening law and changes in (a) yield surface and (b) relation between undrained shear strength and the equivalent plastic

strain

Fig. 5 Undrained strength as a function of the equivalent plastic strain and major principal stress direction a

Acta Geotechnica (2023) 18:4615–4632 4619

123



nonlocal variable. A detailed introduction of the approach

has been given [56, 57]. Following the implementation of

the nonlocal approach proposed by Gao et al. [24], the

nonlocal equivalent plastic strain at an integration point is

expressed as

e�dp ¼
PN

i¼1 edp
� �

i
xiviPN

i¼1 xivi
ð17Þ

where N is the total number of integration points in the

FEA. edp
� �

i
, vi, and xi are the local equivalent plastic

strain, volume, and weight function at the ith integration

point, respectively. The weight function expressed below is

used.

xi ¼
ri
l2

exp � ri
l2

� �
ð18Þ

where l is the internal length parameter and ri is the dis-

tance between the current integration point and integration

point i. Their units should be consistent with the units of

the geometric dimensions of the model. To better describe

the strain localization characteristics, the rate of the non-

local equivalent plastic strain is given as

_e�dp ¼
PN

i¼1 _edp
� �

i
xiviPN

i¼1 xivi
ð19Þ

3 Implementation of the model

The proposed anisotropic DP model is implemented in

the user subroutines of ABAQUS software [1]. Figure 6

shows the flow chart of the user subroutines. The key

parts of the code are the anisotropic yield criterion for

clays and the nonlocal regularization approach. These

two parts are implemented by the user subroutines to

define a material’s mechanical behavior (UMAT) and to

redefine field variables at an integration point

(USDFLD). The stress integration algorithm for the

constitutive model is the implicit backward Euler algo-

rithm, which requires a Newton procedure to solve the

nonlinear equations [3].

4 Strain localization in anisotropic clay

To study the effect of anisotropic shear strength on the

strain localization in natural clays, undrained slope stability

analysis and simulation of the hollow cylinder test of Boom

clay are chosen to represent the limit equilibrium problem

and the progressive failure problem, respectively.

4.1 Stability analysis of undrained clay slope

There are two cases for stability analysis of undrained clay

slopes. Case 1 is a stability analysis of an undrained clay

slope with different anisotropic undrained shear strengths.

Case 2 is a stability analysis of an undrained clay slope

with different orientations of the bedding plane (i.e., iso-

tropic plane), which might exist in naturally deposited

clays owing to cross-bedding or post-depositional defor-

mations. To better compare with the results in other liter-

ature, it is assumed that the potential function is consistent

with the yield function in the proposed slope stability

analysis.

4.1.1 Case 1: Slope with anisotropic undrained shear
strengths

The cross-anisotropic shear strength relation for the

undrained strength of clay proposed by Casagrande and

Carillo [8] is expressed as

Su ¼ Su0 K þ 1 � Kð Þ cos2 a
	 


ð20Þ

where K is the ratio of the undrained shear strength at

a ¼ 90� to Su0. For isotropic clays, K ¼ 1:0. Lo (1965)

found that Casagrande’s expression is valid for the Wel-

land clay in Canada. According to the cross-anisotropic

strength relation, Chen et al. [9] proposed the upper bound

(UB) method of limit analysis to evaluate the stability of

anisotropic undrained slopes. Based on the proposed ani-

sotropic DP model assuming ideal plasticity, the stability

number Ns of the slope is calculated by the finite element

strength reduction method (FESRM) [27, 42, 58] and is

compared with the UB solution.

Ns ¼ Hc
c
Su0

� �
ð21Þ

where Hc is the critical height of the slope and c is the unit

weight of the clay.

Normally, the FESRM is used to solve the safety factor

for a slope with a given height rather than solving the

critical height and corresponding stability number of the

slope. There is a relation between the safety factor and the

stability number. In the FESRM, Su0 is used for the

reduction, and the factor of safety Fs is expressed as

Fs ¼
Su0

Sfu0

ð22Þ

where Sfu0 is the factored shear strength parameter.

Therefore,

Ns ¼ H
c

Sfu0

 !
¼ FsH

c
Su0

� �
ð23Þ
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Taking the slope angle bs ¼ 50� as an example, Fig. 7

presents the geometry, finite element mesh, boundary

conditions, and material parameters of the example,

assuming that the clay has isotropic elasticity. The initial

stress is caused by gravity. Figure 8 shows that there is

little difference between the proposed anisotropic criterion

and the Casagrande formula for K ¼ 1:5 and 0:5. Kim-

meridge clay [7] is a natural clay with K[ 1. Table 1 lists

the stability number of the undrained slope obtained by the

UB and the FESRM with various K. When K ¼ 1:0, the

finite element limit equilibrium method (FELEM) [41] is

used to validate the FESRM. The results obtained by the

two finite element methods are close with a percentage

difference of only 3%. For K\1:0, the stability number

obtained by the FESRM is smaller than that obtained by the

UB. This is because the UB result is an upper bound and

the slip surface of the UB is a fixed logarithmic spiral.

Moreover, the stability number obtained by the FESRM

decreases with decreasing K. The percentage differences of

the stability number obtained by the FESRM between K ¼
0:5 and K¼ 1:5 and K ¼ 0:5 and K ¼ 1:0 are 42% and

17%, respectively.

In addition to the safety factor of the slope, the shape

and location of the failure surface are also of great concern

to geotechnical engineers or researchers. The equivalent

plastic strain band (strain localization) across the slope is

Fig. 6 Flow chart of the user subroutines for implementation of the proposed anisotropic DP model

Fig. 7 The geometry, finite element mesh, boundary condition, and material parameters of the anisotropic undrained slope
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used as the criterion for the slope to reach the limit equi-

librium state. In Fig. 9, a comparison of the slip surfaces

obtained by the FELEM and FESRM with different K is

given. At K ¼ 1:0, both slip surfaces are close. When

K� 1:3, the slip surface is a deep curved band. In contrast,

when K[ 1:3, the slip surface is a shallow curve band,

which slides out from the toe of the slope.

Figure 10 can be used to explain this difference. Fig-

ure 10a and b shows the contours of the angle a in the cases

of K ¼ 0:5 and 1:5, and these two contours are similar. The

angle a varies from zero to 90� along the sliding direction

of the slip surface, i.e., the solid line in Fig. 10a. The value

of the undrained shear strength changes with a. At K ¼ 0:5,

the strength increases with increasing angle a, while at

K ¼ 1:5, the strength decreases, as shown in Fig. 10c and

d. When K ¼ 1:5, the clay on the right side of the foun-

dation provides higher resistance, so the slip surface is

shallow.

4.1.2 Case 2: slope with inclined bedding planes

Conesa et al. [10] proposed a complex cross-anisotropic

failure criterion for the undrained strength of clay and

analyzed undrained clay slopes with various bedding plane

orientations. An inclined bedding plane may exist in a soil

slope due to the loading history [25]. Taking Boston blue

clay in the USA [52] as an example, the ratio of undrained

shear strength is plotted in Fig. 11. The slope angle bs ¼
30� and other geometry, finite element mesh, boundary

condition, and material parameters of the slope are the

same as those in the last case. Figure 11 also shows that the

proposed anisotropic strength criterion and that of Conesa

et al. can both capture the test data.

The orientation of the bedding plane is defined as the

angle bb between the tangent of the isotropic plane and the

x-axis. Figure 12 gives the stability numbers obtained by

Fig. 8 Comparison between the criterion [8] and the proposed

criterion for different K

Table 1 Comparison of stability number with slope angle bs ¼ 50�

K Ns Percentage

difference from the

FESRM (%)

Chen et al. [9] (UB) FESRM FELEM UB FELEM

1.5 – 6.48 – – –

1.4 – 6.21 – – –

1.3 – 6.05 – – –

1.2 – 5.80 – – –

1.1 – 5.56 – – –

1.0 5.68 5.33 5.47 7 3

0.9 5.58 5.16 – 8 –

0.8 5.47 5.00 – 9 –

0.7 5.37 4.85 – 11 –

0.6 5.27 4.71 – 12 –

0.5 5.16 4.57 – 13 –

Fig. 9 Comparison of the slip surfaces obtained by the FESRM

(contour of equivalent plastic strain) and FELEM (solid line)
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the proposed method and the method of Conesa et al. with

different bb. It shows that both results are close to each

other. The angle bb related to the maximum and minimum

stability numbers should occur at approximately 135� and

45�, respectively. The difference between the maximum

Fig. 10 Contours of the angle between the major principal stress and the axis of the isotropic plane at (a) K ¼ 0:5 and (b) K ¼ 1:5 and the

comparison of the value of the anisotropic function g(A) at (c) K ¼ 0:5 and (d) K ¼ 1:5

Acta Geotechnica (2023) 18:4615–4632 4623
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stability number and the minimum stability number is

approximately 27%.

The slip surfaces obtained by the two methods are quite

different, as shown in Fig. 13, although the stability num-

bers are consistent. Figure 13a shows the region consisting

of all slip surfaces obtained by Conesa et al. with different

bb and angles corresponding to the entry and exit points of

the slip surfaces. This reveals that in the analysis of Conesa

et al., the shape and location of the slip surface are hardly

affected by the bedding plane orientations. However, our

analysis yields a different result in which there is an

obvious difference among the slip surfaces. The angle bb
corresponding to the slip surface with lower curvature is

45� (Fig. 13c), while the angle corresponding to the slip

surface with higher curvature is 135� (Fig. 13e). The slip

surfaces are similar when bs ¼ 0 and 90� (Fig. 13b and d).

The essential difference between our undrained slope sta-

bility analysis and those from Conesa et al. is whether the

gradient of the yield function involves the component of

the anisotropic undrained strength.

4.2 Simulation of the hollow cylinder test
of Boom clay

In Belgium, Boom clay was selected as a candidate host

formation for the disposal of high-level nuclear waste [4].

A set of Boom clay thick-walled hollow cylinder tests [38]

reproduced the tunnel excavation in the host formation,

approximated by reducing the internal confining pressure

of the hollow cylinder specimen. Before and after

unloading, the cross section of the specimen was scanned

by X-ray tomography, and the displacement of the tracking

points within the cross section was quantified. François

et al. [20] established a hydromechanical constitutive

model that can account for strain hardening/softening and

elastic and plastic anisotropy to simulate the displacement

of the tracking points in the hollow cylinder test. However,

Fig. 11 Comparison between the test data of Boston clay [52] and the

anisotropic strength criteria

Fig. 12 Comparison of stability numbers with different bb

Fig. 13 Comparison between (a) the results from Conesa et al. [10]

and (b)–(e) the slip surfaces obtained by the proposed method
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the major principal stress direction must be determined to

obtain the drained shear strength.

Linear cross-anisotropic elastic Hooke’s law with five

material parameters [26] is used to describe the elastic

behavior of boom clay, i.e., the relation of effective stress

r
0
ij and strain eij. E

0
, v

0
, and G in Eq. (19) are Young’s

modulus, Poisson’s ratio, and shear modulus. In the local

Cartesian coordinate system (Fig. 1), the x-z plane is

assumed to be an isotropic plane. If the clay is elastic

isotropic, the elastic stress–strain relation reduces to

Hooke’s law with two material parameters, i.e., E
0

and v
0
.

Figure 14 shows the geometry, mesh, and boundary

conditions of the hollow cylinder test. Under plane strain

conditions, the pore water pressure and total pressure at the

inner boundary gradually decrease and remain stable after

4200 s. Table 2 lists the geomechanical, hydraulic, and

physical parameters of Boom clay [20]. Compared with the

original parameters of Boom clay, the parameter values

have not changed, but the expression has changed. For

example, the anisotropy parameter K is used. The deter-

mination of e1, e2, and e3 requires the results of a hollow

cylinder torsional shear test, which increases the cost of

parameter identification. Optimization-based parameter

Fig. 14 Geometry, finite element mesh, and boundary conditions of the hollow cylinder test

ex
ey
ez
cxy
cxz
cyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

1
�
E

0
h

�v
0
vh
�
E

0
v

�v
0
hh
�
E

0
h

0 0 0

�v
0
vh
�
E

0
v

1
�
E

0
v

�v
0
vh
�
E

0
v

0 0 0

�v
0
hh
�
E

0

h

�v
0
vh
�
E

0

v

1
�
E

0

h
0 0 0

0 0 0 1=Gv
0 0

0 0 0 0 2 1 þ v
0

hh

� ��
E

0

h
0

0 0 0 0 0 1=Gv

2
6666666666664

3
7777777777775

r
0
x

r
0
y

r
0

z

sxy
sxz
syz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð24Þ

Acta Geotechnica (2023) 18:4615–4632 4625

123



identification [34, 70] makes it possible to identify these

parameters that come only from triaxial tests. For com-

parison with the same material parameters, e1, e2, and e3

are determined by the test results of the triaxial tests.

According to the original values of the anisotropic cohe-

sion and Eqs. (1) and (3), the predicted shear strength of

Boom clay is plotted in Fig. 15. The hardening behavior of

the internal friction angle and softening behavior of cohe-

sion are described by Eq. (25) [20] and plotted in Fig. 16.

c0 edp
� �

¼ c
0
0 þ

edp
BS þ edp

c
0

0 kr � 1ð Þ; Softening

u0 edp
� �

¼ u
0
0 þ

edp
BH þ edp

u
0

0 kp � 1
� �

; Hardening

8><
>:

ð25Þ

A group of finite element simulations is performed in

three types of meshes, i.e., 20 9 20, 40 9 40, and

60 9 60. With a 60 9 60 mesh, Fig. 17 shows the simu-

lated radial displacements, the test results [38], and the

simulated results [20] for horizontal, 45�, and vertical

paths. The displacements of the horizontal and 45� paths

obtained by the FEA are close to the other two results.

There is a certain deviation between the three displacement

curves of the vertical path; however, their trends are the

same. Overall, near the inner boundary, the proposed

results are closer to the test data compared with those

obtained by François et al. [20]. The deviation of the two

numerical results may be due to whether the gradient of the

yield function involves the component of anisotropic

cohesion.

Figure 18 shows the displacement curves for the three

path endpoints located at the inner boundary of the cross

section over the entire simulation time. The analysis pro-

cess is roughly divided into three stages: unloading,

Table 2 Set of Boom clay geomechanical, hydraulic, and physical parameters in the cross-anisotropic DP model [20]

Parameters Anisotropic Isotropic

Young’s elastic modulus (MPa) E
0

h
400 E0 300

E
0

v
200

Poisson’s ratio (-) v
0

hh
0.125 v0 0.125

v
0

vh
0.125

Shear modulus (MPa) Gv 178

Initial cohesion (kPa) c
0

0
255 c

0

0
255

Initial internal friction angle ( Æ ) u
0

0
5 u

0

0
5

Strength ratio of cohesion (-) kr 1/3 kr 1/3

Strength ratio of friction angle (-) kp 18/5 kp 18/5

Softening parameters of cohesion (-) BS 0.01 BS 0.01

Hardening parameters of friction angle (-) BH 0.01 BH 0.01

Dilatancy angle ( Æ ) w 0 w 0

Parameters K að Þ (-) K 90�ð Þ 240/255 K 90�ð Þ 1

K 45�ð Þ 330/255 K 45�ð Þ 1

Internal length (mm) l 1.5 l 1.5

Permeability (m/s) k 4 9 10–12 k 4 9 10–12

Initial porosity (-) n0 0.39 n0 0.39

Fig. 15 The proposed anisotropic strength criterion of the cohesion

for Boom clay
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consolidation, and stabilization. In the second half of the

unloading stage, i.e., the plastic stage, the three curves of

the displacement increase sharply. The displacements in

the consolidation stage continue to increase and stabilize in

the stabilization stage. Equivalent plastic strain rates of

approximately 6500 s obtained by FEA using various

meshes are plotted in Fig. 19. The contours of the equiv-

alent plastic strain rate illustrate that the shape of the shear

band is identical, although the mesh is coarse in Fig. 19a.

The widths of the shear bands in Fig. 19b and c are close.

Figure 19c is used to assemble the entire cross section of

the sample, as shown in Fig. 20. The shape and boundary

of the excavation damaged zone (EDZ) in the hollow

cylindrical specimen are determined by the simulated shear

band or displacement curve of the horizontal path.

Four cases of anisotropic and isotropic elasticity and

anisotropic and isotropic plasticity are analyzed. The

results reveal that only anisotropic plasticity can yield eye-

shaped strain localization (shear band), as shown in

Fig. 21a and b. Moreover, Fig. 21c shows symmetric strain

localization, while Fig. 21d shows axisymmetric strain

localization. This analysis can reveal the necessity of the

anisotropic strength of Boom clay in the simulation of

strain localization.

Figure 22 shows the contour of the angle a with aniso-

tropic elasticity and anisotropic plasticity. The angle a
varies from zero in the horizontal direction to 90� in the

vertical direction. The value of the shear strength changes

Fig. 16 Softening relation of the cohesion and hardening relation of the internal friction angle of Boom clay

Fig. 17 Comparison of radial displacement in the horizontal (0), 45�,

and vertical (90�) directions between the FEA results with a mesh of

60 9 60, the test data [38] and the results obtained by François et al.

[20]

Fig. 18 The displacement curves of the three nodes at the intersection

between the inner boundary and the three paths over the entire

simulation time
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with a. The clay in the vertical direction provides higher

resistance, so the EDZ in the horizontal path is larger.

5 Conclusions

The shear strength of natural clay is highly anisotropic due

to the internal structure. An anisotropic failure criterion is

proposed for natural clays. An anisotropic variable is used

to characterize the relative orientation between the soil

fabric and principal stress directions. The model assumes

that the cohesion of natural clay (or undrained shear

strength) is anisotropic, while the friction angle is inde-

pendent of the loading direction. A DP model with the

anisotropic yield criterion has been used to model strain

localization in natural clays.

The stability of an undrained clay slope has been ana-

lyzed. The results show that the anisotropic undrained

strength affects the shape and location of the failure surface

(strain localization) of the slope. In the first case, the per-

centage difference of the stability number obtained by the

FESRM is 42% between K ¼ 0:5 and K ¼ 1:5. When

K[ 1:3, the shape of the slip surface is shallow. In the

second case, with different bedding plane orientations, the

percentage difference between the maximum and minimum

stability numbers is approximately 27%. At bb ¼ 45�, the

range of the slip body is larger than that at other angles bb.
These results show that the influence of the strength ani-

sotropy and bedding plane orientation on the undrained

slope stability cannot be ignored. The influence on the

strain localization leads to different slope reinforcement

scheme designs.

The proposed model has been applied to simulate the

hollow cylinder test on Boom clay. The displacement

results are closer to the test data observed by the X-ray scan

[38] than the results obtained by François et al. [20]. The

nonlocal softening regularization method used reduces the

mesh sensitivity. Furthermore, the rate of the equivalent

plastic strain simulated by the nonlocal strain method can

be taken to represent the EDZ in the sample. The range of

Fig. 19 Rate of the equivalent plastic strain obtained by the finite

element analyses with various meshes

Fig. 20 Predicted EDZ by FEA with the proposed anisotropic DP

model
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the shear band (strain localization) in the test sample is

affected by the anisotropic strength of Boom clay. Only

anisotropic plasticity can yield eye-shaped strain

localization.

Appendix 1: Gradient of the yield function

The gradient of the proposed anisotropic yield function is

expressed as

oF

or0
ij

¼ oF

op0
op0

or0
ij

þ oF

oq

oq

or0
ij

þ oF

oA

oA

or0
ij

ð26Þ

where

oF

op0
¼ �m ð27Þ

oF

oq
¼ 1 ð28Þ

oF

oA
¼ �g Að Þ e1 þ 2e2 1 þ Að Þ þ 3e3 1 þ Að Þ2

h i mc
0
0

tanu0

ð29Þ
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or0
ij

¼ 1

3

1

1

1

0

0

0
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>>>>>>:
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Fig. 21 Rate of the equivalent plastic strain obtained by the finite element analyses with (a) anisotropic elasticity and anisotropic plasticity,

(b) isotropic elasticity and anisotropic plasticity, (c) anisotropic elasticity and isotropic plasticity, and (d) isotropic elasticity and isotropic

plasticity

Fig. 22 Contour of the angle between the major principal stress

direction and the axis of the isotropic plane
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formation. Géotechnique 57(2):229–237. https://doi.org/10.1680/

geot.2007.57.2.229

5. Bertrand F, Collin F (2017) Anisotropic modelling of opalinus

clay behaviour: from triaxial tests to gallery excavation applica-

tion. J Rock Mech Geotech Eng 9(3):435–448. https://doi.org/10.

1016/j.jrmge.2016.12.005

6. Borja RI, Yin Q, Zhao Y (2020) Cam-Clay plasticity. Part IX: On

the anisotropy, heterogeneity, and viscoplasticity of shale.

Comput Methods Appl Mech Eng 360:112695. https://doi.org/10.

1016/j.cma.2019.112695

7. Brosse AM, Jardine RJ, Nishimura S (2017) The undrained shear

strength anisotropy of four Jurassic to Eocene stiff clays.
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63. Wheeler SJ, Näätänen A, Karstunen M, Lojander M (2003) An

anisotropic elastoplastic model for soft clays. Can Geotech J

40(2):403–418. https://doi.org/10.1139/t02-119

64. Whittle AJ, Kavvadas MJ (1994) Formulation of MIT-E3 con-

stitutive model for overconsolidated clays. J Geotech Eng

120(1):173–198. https://doi.org/10.1061/(ASCE)0733-

9410(1994)120:1(173)

65. Yao Y, Lu D, Zhou A, Zou B (2004) Generalized non-linear

strength theory and transformed stress space. Sci China Ser E:

Technol Sci 47(6):691–709. https://doi.org/10.1360/04ye0199

66. Yin Z, Chang CS (2009) Non-uniqueness of critical state line in

compression and extension conditions. Int J Numer Anal Methods

Geomech 33(10):1315–1338. https://doi.org/10.1002/nag.770

67. Yin Z, Hattab M, Hicher P (2011) Multiscale modeling of a

sensitive marine clay. Int J Numer Anal Methods Geomech

35(15):1682–1702. https://doi.org/10.1002/nag.977

68. Yin Z, Chang CS, Hicher P, Karstunen M (2009) Microme-

chanical analysis of kinematic hardening in natural clay. Int J

Plast 25(8):1413–1435. https://doi.org/10.1016/j.ijplas.2008.11.

009

69. Yin Z, Chang CS, Karstunen M, Hicher P (2010) An anisotropic

elastic–viscoplastic model for soft clays. Int J Solids Struct

47(5):665–677. https://doi.org/10.1016/j.ijsolstr.2009.11.004

70. Yin Z, Jin Y, Shen JS, Hicher P (2018) Optimization techniques

for identifying soil parameters in geotechnical engineering:

comparative study and enhancement. Int J Numer Anal Methods

Geomech 42(1):70–94. https://doi.org/10.1002/nag.2714

71. Yuan R, Yu H, Hu N, He Y (2018) Non-coaxial soil model with

an anisotropic yield criterion and its application to the analysis of

strip footing problems. Comput Geotech 99:80–92. https://doi.

org/10.1016/j.compgeo.2018.02.022

Acta Geotechnica (2023) 18:4615–4632 4631

123

https://doi.org/10.1002/nag.3059
https://doi.org/10.1002/nag.3059
https://doi.org/10.1680/jgeot.19.P.386
https://doi.org/10.1680/jgeot.19.P.386
https://doi.org/10.1002/nag.2990
https://doi.org/10.1007/s00603-012-0332-0
https://doi.org/10.1007/s00603-012-0332-0
https://doi.org/10.1061/(ASCE)0733-9410(1991)117:4(540)
https://doi.org/10.1061/(ASCE)0733-9410(1991)117:4(540)
https://doi.org/10.1139/T07-078
https://doi.org/10.1139/T07-078
https://doi.org/10.1016/j.enggeo.2020.105673
https://doi.org/10.1016/j.enggeo.2020.105673
https://doi.org/10.1016/j.compgeo.2014.10.008
https://doi.org/10.1016/j.compgeo.2014.10.008
https://doi.org/10.1061/JSFEAQ.0000778
https://doi.org/10.1061/JSFEAQ.0000778
https://doi.org/10.1680/jgeot.20.P.246
https://doi.org/10.1061/(ASCE)0733-9399(1989)115:1(89)
https://doi.org/10.1061/(ASCE)0733-9399(1989)115:1(89)
https://doi.org/10.1016/j.ijsolstr.2015.07.012
https://doi.org/10.1016/j.ijsolstr.2015.07.012
https://doi.org/10.1016/S0266-352X(99)00034-8
https://doi.org/10.1680/geot.1990.40.1.79
https://doi.org/10.1680/geot.1990.40.1.79
https://doi.org/10.3208/sandf.47.67
https://doi.org/10.3208/sandf.47.67
https://doi.org/10.1002/nag.2536
https://doi.org/10.1111/j.1365-2818.1980.tb04146.x
https://doi.org/10.1111/j.1365-2818.1980.tb04146.x
https://doi.org/10.1680/geot.1999.49.2.215
https://doi.org/10.1680/geot.1999.49.2.215
https://doi.org/10.1016/j.compgeo.2016.10.016
https://doi.org/10.1016/j.compgeo.2016.10.016
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000852
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000852
https://doi.org/10.1680/jgeot.17.P.096
https://doi.org/10.1680/jgeot.17.P.096
https://doi.org/10.1016/j.compgeo.2019.103235
https://doi.org/10.1016/j.enggeo.2021.106304
https://doi.org/10.1016/j.enggeo.2021.106304
https://doi.org/10.1007/s11440-013-0208-9
https://doi.org/10.1007/s11440-013-0208-9
https://doi.org/10.1139/t02-119
https://doi.org/10.1061/(ASCE)0733-9410(1994)120:1(173)
https://doi.org/10.1061/(ASCE)0733-9410(1994)120:1(173)
https://doi.org/10.1360/04ye0199
https://doi.org/10.1002/nag.770
https://doi.org/10.1002/nag.977
https://doi.org/10.1016/j.ijplas.2008.11.009
https://doi.org/10.1016/j.ijplas.2008.11.009
https://doi.org/10.1016/j.ijsolstr.2009.11.004
https://doi.org/10.1002/nag.2714
https://doi.org/10.1016/j.compgeo.2018.02.022
https://doi.org/10.1016/j.compgeo.2018.02.022


72. Zhao Y, Semnani SJ, Yin Q, Borja RI (2018) On the strength of

transversely isotropic rocks. Int J Numer Anal Methods Geomech

42(16):1917–1934. https://doi.org/10.1002/nag.2809

73. Zhao Y, Borja RI (2022) A double-yield-surface plasticity theory

for transversely isotropic rocks. Acta Geotech 17(11):5201–5221.

https://doi.org/10.1007/s11440-022-01605-6

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

4632 Acta Geotechnica (2023) 18:4615–4632

123

https://doi.org/10.1002/nag.2809
https://doi.org/10.1007/s11440-022-01605-6

	Effect of strength anisotropy on strain localization in natural clay
	Abstract
	Introduction
	Anisotropic plastic constitutive model
	Anisotropic failure criterion
	Anisotropic DP Yield Function and Potential Function
	Hardening law and nonlocal strain softening

	Implementation of the model
	Strain localization in anisotropic clay
	Stability analysis of undrained clay slope
	Case 1: Slope with anisotropic undrained shear strengths
	Case 2: slope with inclined bedding planes

	Simulation of the hollow cylinder test of Boom clay

	Conclusions
	Appendix 1: Gradient of the yield function
	Data availability
	References




