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Abstract
This paper presents a general three-invariant model to evaluate the theoretical prediction of strain localization against

laboratory measurements performed during mechanical loading experiments, for a high-porosity Vosges sandstone (North-

Eastern France). The model is based on a mean stress and Lode angle-dependent yield surface, calibrated using extensive

experimental data from mechanical tests in triaxial, biaxial and true triaxial loading conditions. The general expression of a

three-invariant and non-associated constitutive relation is then developed for 10 true triaxial loading paths, performed at

constant mean stresses and prescribed Lode angles. The Rice’s criterion by bifurcation analysis enables the theoretical

prediction of deformation bands (onset, orientation and volumetric strain). The qualitative evolution of predicted band

kinematics, as well as quantitative values obtained for the 10 loading paths, proves to be in good agreement with

experimental observations from full-field characterization of localized zones. The relevance and predictiveness of the

presented three-invariant model are further evidence by comparisons with simplified, associated and two-invariant models

using the same initial dataset.

Keywords Bifurcation � Constitutive modeling � Deformation band � Experimental mechanics � Localization �
Sandstone � Shear band � Stress invariants � True triaxial � Yield surface

1 Introduction

Deformation processes in mechanically stressed geomate-

rials often lead to the development of planar kinematic

zones of highly localized strain at failure, known as

deformation or shear bands. The occurrence of this per-

vasive structural mode of deformation has been widely

observed both in the field [2, 15, 20] and in laboratory

settings [7, 10, 46, 52, 58].

In cohesive granular material such as porous sandstone,

well-developed mature deformation bands are often

indicative of a degenerative failure mode, resulting in a

non-reversible transition in the global mechanical response

near and beyond the peak stress. The emergence of these

localized structures is generally concurrent with the cul-

mination of a global weakening of the material through the

accumulation of inelastic deformations, leading to a tran-

sition into the softening and permanent regimes. A theo-

retical study of these modes of localized deformation, in

relation to rarely studied true triaxial stress states repre-

sentative of underground rock formations, is of clear

interest to better understand and predict mechanical con-

ditions leading to transition failure modes of confined

porous rocks.

The study of material bifurcation aims to evaluate the

existence of constitutive limit states in the material, for

which, in addition to further homogeneous deformation, a

non-uniform kinematic solution is admissible. In particular,

localized bifurcation modes, as opposed to diffuse bifur-

cation (e.g., bulging and buckling modes), are highly rel-

evant to the field of geomechanics, since they can be

related to the emergence of material instabilities and abrupt

transitions in deformation mechanisms. This type of anal-

ysis helps to further investigate geometrical aspects of

kinematic structures at failure and therefore provides

& Cyrille Couture

cyrille.couture@3sr-grenoble.fr

Pierre Bésuelle
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valuable predictions of dominant deformation modes con-

trolling the mechanical response during the post-peak

regime.

A particular case of localized bifurcation can be studied

within the Thomas–Hill–Mandel deformation band model

[25, 37, 55]. This formalism provides a set of theoretical

conditions for the emergence of deformation bands in the

material continuum. The deformation band is therefore

conceptualized as a material layer of infinite length in a

plane and of finite thickness, bounded by two parallel

surfaces, characterized by a weak discontinuity in the

incremental displacement gradient [25]. This form of an

idealized deformation band considers the compatibility of

one or multiple planar localized zone with an equilibrium

constitutive bifurcation state in the material and a set of

prescribed boundary conditions at the interface [5, 49, 57].

To the authors’ knowledge, few scientific works have

systematically examined and compared with experiments

the effect of true triaxial conditions on the prediction of

deformation localization (e.g., [11, 17, 23, 27, 43]). This is

probably due to the scarcity of such experimental data,

especially for porous rocks, where laboratory-scale exper-

imental tests are generally carried out on axisymmetric

loading paths, very often in compression (e.g., [47]),

sometimes in extension [6, 24], or more rarely in plane

stress [38] and plane strain compression [29, 32, 46]. In a

limited number of studies, experiments have also been

performed under true triaxial conditions, allowing the

effect of the intermediate principal stress or Lode angle to

be fully studied [1, 13, 19, 22, 26, 35, 40, 42, 51, 54].

The effect of the Lode angle on the theoretical local-

ization conditions is twofold. On the one hand, the aniso-

tropy of the stress tensor is sufficient to induce a

dependence with the Lode angle. On the other hand, the

constitutive law can itself include a dependence on the

Lode angle, which adds an effect on the localization con-

ditions. This dependence of the constitutive law can be

introduced by a non-circular shape of the yield or limit

surfaces, as well as the plastic potential, in the octahedral

(deviatoric) plane. Examples of such surfaces can be found

in the literature, such as the Mohr–Coulomb surface or

other smooth surfaces [8, 31, 39, 56, 59].

In the scope of the present study, the bifurcation analysis

follows on the seminal development for geomaterials pro-

posed in [50]. For this type of material, the constitutive

behavior is expressed using a non-associated, pressure-

dependent elasto-plastic relation. The specific model pre-

sented in this paper is extended to a three-invariant-de-

pendent high-porosity sandstone from the Vosges region in

France. The analysis considers the constitutive state of this

material at the peak stress, where the initiation conditions

for the emergence of fully developed deformation bands

are met in the brittle and brittle–ductile transition regimes

of the studied sandstone.

Using experimental data for the Vosges sandstone

reported in [13], the deformation bands kinematics, their

orientation and dilatancy angle, are theoretically predicted

for different loading paths. The model parameters, i.e., the

normal to the yield surface, the direction of plastic strain

and the elastic moduli, are first retrieved from the macro-

scopic response of the material. The deformation band

kinematics at the peak stress predicted from the bifurcation

analysis using this model are then compared to full-field

experimental measurements, as well as alternative and

simplified models using the same dataset.

Hereafter, the index summation convention is used and

dij is the Kronecker delta.

2 Constitutive model

This section describes a constitutive model, with isotropic

and no time dependence assumptions, which is used for the

later presented bifurcation analysis. The model is inspired

by several series of experimental test results on a Vosges

sandstone, including tests under true triaxial conditions.

For the present analysis, the constitutive model is based on

a classical development in elasto-plasticity with an additive

decomposition of the total strain rate, d�ij ¼ d�eij þ d�pij,

where d�e and d�p denote the elastic and plastic strain rates,

respectively. The constitutive tensor, defining the relation

between incremental stress and strain (drij ¼ Lijkl d�kl), is

established according to the development of an isotropic

work-hardening material. It can therefore be expressed as

Lijkl ¼ Eijkl �
1

h
EijuvPuvQmnEmnkl , ð1Þ

with h ¼ H þ QijEijklPkl where H is a plastic coefficient, E

is the elastic stiffness tensor, Q is the unit normal to the

yield surface F and P is the direction of plastic strain

increment, theoretically defined as the unit normal to a

plastic potential surface G. The classical development of

the constitutive relation is briefly presented in Appendix 1

for completeness. The yield surface F is described here-

after, based on experimental observations.

2.1 Yield surface description

In the current model, the three invariants of the stress

tensor are introduced in the formulation of the yield sur-

face. Compressive stresses are considered positive. The

octahedral-Lode invariants are selected as a reference

frame in a cylindrical coordinate system with the three

invariants as
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where I and J are, respectively, the principal invariants of

the second-order stress tensor and the deviatoric part of its

additive decomposition, and rI are the three principal

stresses (eigenvalues of the stress tensor). For consistency

with loading paths from experiments considered in the

calibration of the model, a single sextant of the octahedral

plane is considered, where r1 and r3 are defined as the

major (most compressive) and minor principal stresses,

respectively. In this sector of the octahedral plane, and for

the selected invariants in Eq. (2), hr ¼ 0o and hr ¼ 60o

correspond, respectively, to an axisymmetric compression

and axisymmetric extension stress state. An extrapolation

of the model to the other five sectors of the octahedral

plane is possible and requires the assumption that the

studied rock is mechanically isotropic.

A suitable function for the yield surface of the modeled

sandstone, with a dependency on the three invariants of the

stress tensor, is selected based on restrictions on the con-

vexity of the elastic domain and the continuity of its

derivatives in the compressive stress regime. To this effect,

a single continuous yield surface is deemed compatible

with the observations of a progressive evolution in the

deformation modes with both the mean stress and Lode

angle. From a microstructural point of view, it implies that

the change in deformation mechanisms from a brittle to a

ductile regime, known to occur around the stationary point

of the yield surface in the rm � soct plane, is characterized

by a smooth transition. Thus, the single yield surface for

the present model is developed from a combination of two

complementary functions, acting in both the rm � soct
(meridian) plane and the h� soct (octahedral) plane in the

compressive section of the stress space.

The first function is a mean stress-dependent linear–

exponential (Linex) function

FaðrmÞ ¼ A½ea1ðrm�a2Þ � a1ðrm � a2Þ � a3� , ð3Þ

where ai are fitting parameters influencing the shape (a1)

and the position (a2 and a3) of the function, and A is a

scaling parameter. The single shape parameter, a1, controls

the steepness and asymmetry of the curve around the sta-

tionary point, where soct reaches a maximum value. At

limit values of the mean stress, the Linex function is

dominated either by its linear term, at a1rm ! �1, or by

its exponential term, at a1rm ! þ1. Around the station-

ary point, the exponential and linear terms are of the same

order of magnitude, resulting in a smooth transition in the

curve. The choice of a Linex function is particularly well

suited due to the ease of its differentiation, its convexity

and the control it provides over the asymmetry of the

curve, providing a good fit for experimental data in both

the brittle and ductile regimes.

The second function is based on the van Eekelen [56]

surface which is a relatively flexible function that can be

adapted to various Lode angle-dependent forms and for

which the friction angles in axisymmetric stress states

(hr ¼ 0o and 60o) can be expressed independently. It is

written as

FbðhÞ ¼ Bð1 � n sin 3hÞn , ð4Þ

where n and n are both shape parameters, and B is a scaling

parameter. These parameters are bounded in a specific

range to ensure the convexity of the fitted function. [56]

has shown that a value for the exponent n ¼ �0:229 pro-

vides an optimal range for the parameterization of n, over

which the function remains convex. Selecting this value for

n, the convexity limit of the function is jnj � 0:793 (In [56]

b is used instead of n for the same parameter). A constant

value of n implies a constant shape of the surface in all

octahedral planes. Experimental observations on the dis-

tribution of peak stresses for mechanical experiments on

porous rocks, including the Vosges sandstone studied here,

have demonstrated a clear evolution of the shape with the

mean stress. Consequently, a function taking into account

this dependency should be evaluated according to the

modeled material. Accordingly, a second-order

polynomial,

nðrmÞ ¼ b1 þ b2r
2
m , ð5Þ

is selected to take into account this mean stress depen-

dency. The upward open-endedness of the function guar-

anties the convexity limit is respected over the range of

mean stresses. The suitability of the function to represent

the shape parameter evolution is contingent on the exper-

imental data and alternative functions for (5) can be

selected without any difficulty.

Combining Eqs. (3), (4) and (5), the three-invariant

yield surface in the Octahedral-Lode space can be formally

written as
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F ¼soct � C fea1ðrm�a2Þ � a1ðrm � a2Þ � a3g

f1 � ðb1 þ b2 r
2
mÞ sinð3hÞgn ,

ð6Þ

where C is a general scaling parameter. The outward nor-

mal to the yield surface, Q, is simply defined in terms of

the derivative of the yield surface with respect to the stress

invariants and the Cauchy stress tensor using the flow rule.

It can be written as

Qij ¼
oF

orij
¼ Fr

orm
orij

þ Fs
osoct
orij

þ Fh
oh
orij

, ð7Þ

where the subscript in F denotes the direction of the partial

derivative with respect to each of the three octahedral-Lode

invariants. The expansion of each derivative, while

straightforward, can be quite extensive and is therefore

provided in full in Appendix 2.

2.2 Yield surface calibration

The objective of this study is to determine the conditions

for the existence of a localized solution, in the spirit of a

bifurcation analysis similar to [50]. For this purpose, a

complete description of the model, including the strain

hardening law, is not necessary. Only the description of the

yield surface, the plastic strain rate directions and the

elastic moduli are required. The assumption will be made

that when the bifurcation criterion is about to be satisfied,

the yield surface shape approximates the experimentally

obtained failure envelope [4, 45], this envelope being

defined by the octahedral stress peaks of the different tests.

The set of parameters in Eq. (6) is defined using the

experimental measurements available for the Vosges

sandstone. The different datasets used for this purpose

consist of mechanical tests performed over a wide range of

loading paths in axisymmetric triaxial compression [6],

plane strain compression [32] and true triaxial compression

[13]. The sandstone samples used in these three experi-

mental campaigns were extracted from the same homoge-

neous block and therefore have similar initial mechanical

properties. Additionally, the samples were all tested at a

comparable laboratory scale, and under similar quasi-static

and monotonic loading conditions.

The suitability of the second-order polynomial function

in Eq. (5), taking into account the mean stress dependence

of the parameter n in the octahedral plane, is first evaluated

using the series of true triaxial experiments in [13]. For

these experiments, the stress peaks are constrained by the

selected loading paths to remain in specific octahedral

planes, corresponding to two constant mean stresses of 60

MPa and 90 MPa. In each plane, where experiments at five

different Lode angles are performed, the van Eekelen part

of the yield surface in Eq. (4) is fitted to a single value of n,

where a least square regression results in n ¼ �0:587 and

n ¼ �0:430, at 60 MPa and 90 MPa, respectively. This

increase in the value n reflects a clear evolution in the

shape of the van Eekelen surface with increasing mean

stress, as shown by the two data points represented in

Fig. 1. These values can be compared to the continuous

curve in Fig. 1, representing the evolution of n for the

selected second-order polynomial function with parameters

b1 and b2. The value of these two parameters is obtained by

regression of Eq. (6), concurrently to other parameters in

Table 1, and for the full dataset in triaxial, biaxial and true

triaxial loading. This comparison confirms that the choice

of the function for n, defining the shape evolution in the

octahedral plane, is compatible with the yield surface

optimization with the complete dataset of available peak

stress values for the studied Vosges sandstone. Note that in

Fig. 1, n tends toward the convexity limit as the mean

stress approaches zero. The choice of a second-order

polynomial ensures that the function remains above this

limit for positive mean stresses. However, another choice

of function could be made depending on the experimental

data and different shape evolution of the surface for other

rocks.

The six parameters defining the yield surface (Eq. 6) are

fitted to the peak stress from the three datasets using a least

square optimization scheme. The optimized parameters for

the represented surface are provided in Table 1. A graph-

ical representation of the yield surface for this set of

parameters, along with the peak stress values retrieved

from the different datasets, is shown in Fig. 2 for isovalues

Fig. 1 Evolution of n with rm for a second-order polynomial function.

The labeled points denote the value obtained from an independent

regression at 60 MPa and 90 MPa using Eq. (4). The parameters b1

and b2 for the continuous curve are obtained from the least square

regression on the combined formulation of the yield surface, in

Eq. (6)
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of h, in the meridian planes, and isovalues of rm, in the

octahedral planes. Note that both sets of isovalue curves

are convex, which is a necessary condition for the con-

vexity of the 3D surface.

In these cross-sectional plane representations, the com-

plementarity of the different datasets to generate a well-

defined yield surface in the 3D stress space is apparent. In

the meridian plane, the shape of the yield surface is mostly

influenced by experiments performed in triaxial axisym-

metric compression (h ¼ 0o) for a large range of mean

stresses up to the stationary point (i.e., at the change in the

sign of Fr). Additionally, the true triaxial dataset, spanning

the entire sextant of the octahedral plane at two mean stress

levels, captures effectively the influence of the Lode angle.

It is complemented by biaxial (plane strain) experiments,

with peak stresses situated where the shape of the yield

surface varies more significantly with respect to the Lode

angle, around h ¼ 15o.

In the range of available peak stress data where Fr [ 0,

the peak stress consistently decreases with increasing Lode

angle, as evidenced by the triangular shape of the yield

surface in the octahedral plane. The mean stresses depen-

dence of n influences the shape of the yield surface to

evolve from an upward triangular shape, at low mean

stress, toward a circular shape, at rm ¼ 123 MPa corre-

sponding to n ¼ 0. Above this threshold, which occurs in

the domain Fr\0, n becomes positive, showing a possi-

bility for the deviatoric stress peaks at a high Lode angle to

be higher than the peak at a low Lode angle. Evidently, this

failure regime falls outside of the available data points for

the studied set of experiments and the choices are rather

arbitrary and could have been different. Nonetheless, the

continuous evolution of the yield surface, for rm [ 123

MPa, into a downward triangular shape, shown in Fig. 2c,

has been observed in analog high-porosity sandstone and

carbonate rocks [16, 36].

2.3 Elastic moduli from experiments

The elastic stiffness tensor E is evaluated from the stress–

strain measurements during isotropic and deviatoric load-

ing of true triaxial mechanical tests reported in [13].

Therefore, in this section and onward, the specific method

is presented to determine the elastic moduli for the Vosges

sandstone, in the context of loading paths with prescribed

invariants of the stress tensor.

Under the assumption of isotropic linear elasticity, with

applicable symmetries in the constitutive tensor, the elastic

part of the stress–strain relation is

drij ¼ 3K
1

3
d�ekkdij

� �

þ 2S d�eij �
1

3
d�ekkdij

� �

, ð8Þ

with the elastic properties of the material determined by the

bulk modulus (K) and shear modulus (S). For an initially

Table 1 Yield surface parameters for the Vosges sandstone

Parameter Value Unit

n 1 -0.229 1

C -42.5 MPa

a1 0.0185 MPa�1

a2 108 MPa

a3 2.22 1

b1 -0.788 1

b2 5:18 � 10�5 MPa�2

1 The parameter n is prescribed and not optimized in the fitted

function

Fig. 2 Representation of the peak octahedral stresses for different stress paths from three experimental datasets on the studied Vosges sandstone.

The curves represent the yield surface from Eq. (6) with fitted parameters from Table 1. The shape evolution of the yield surface is clearly visible

for both isovalues of Lode angles in the meridian plane (a), and isovalues of mean stresses in the octahedral planes, for low rm in (b) and high rm
in (c)
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isotropic loading phase, the deviatoric part of the elastic

strain tensor theoretically vanishes, resulting in

drij ¼ Kd�ekkdij. Similarly, during the subsequent purely

deviatoric loading phase, at constant mean stress, the

elastic part of the volumetric strain vanishes, resulting in

drij ¼ 2Sd�eij. Consequently, the two elastic moduli can be

retrieved individually from the isotropic and deviatoric

loading phases as

K ¼ Drm
D�ev

, and S ¼ Dsoct
2Dceoct

, ð9Þ

in terms of the first and second invariants, respectively. The

constitutive fourth-order elastic tensor can be expressed

using the Lamé parameters, k ¼ K � 2
3
S, l ¼ S, as

Eijkl ¼ k dijdkl þ l dikdjl þ dildjk
� �

. ð10Þ

In the scope of this analysis, elastic moduli are defined

from the ten loading paths in the range of mean stresses

from 60 MPa to 90 MPa. Therefore, K and S, and the

related Lamé duals, are, respectively, estimated from (i) the

linear range of the isotropic and volumetric stress–strain

curve between 60 and 90 MPa, and (ii) the average initial

slope of the octahedral stress–strain curve. These estimated

values are reported in Table 2.

It should be noted that elastic parameters are known to

evolve according to the loading history [53], and an aver-

age scalar representation does not fully take into account

this evolution of the material behavior during loading. For

the studied Vosges sandstone, inelastic volumetric defor-

mation present from the beginning of the deviatoric loading

phase of the experiments suggests that the initial slope of

the stress–strain octahedral curve does not correspond to a

purely elastic behavior. Nonetheless, isotropic loading–

unloading tests on a similar porous sandstone, studied by

[41], have shown a decrease in the inelastic part of the

volumetric deformations with increasing mean stress,

accounting for less than 20% of the total volumetric strain

above rm ¼ 40 MPa. The importance of elasticity in the

model will be assessed through a sensitivity analysis of the

elastic moduli, in comparison with the influence of the

plastic parameters (the outward normal Q and plastic strain

increment P) evaluated at the stress peak.

2.4 Incremental plastic strain from experiments

In the following calculation of the incremental plastic

strain direction P, the octahedral-Lode invariants of the

plastic strain tensor �pij, are analog to the invariants

expressed for the stress tensor in Eq. (2). For a coaxial

model, the direction of plastic strain increment can be

represented in the stress space where it is normalized for a

unit increment of stress. For a non-associated model, P is

normally assumed as the derivative of a plastic potential G,

as

Pij ¼
oG

orij
¼ Gr

orm
orij

þ Gs
osoct
orij

þ Gh
ohr
orij

, ð11Þ

where the subscripts in G denote the derivatives in the

direction of each octahedral-Lode invariant. However, in

the present analysis the plastic strain increments are eval-

uated directly from experimental measurements close to

the peak octahedral stress. Therefore, its derivation from a

generating function is only theoretical and the plastic

potential does not need to be explicitly evaluated.

From the imposed constraints on rm and h during the

deviatoric loading phase, the elastic part of the strain

increment vanishes in the direction of those invariants (i.e.,

�evol ¼ 0 and he�). Therefore, the shear modulus is taken into

account only in the direction of deformation increments

following the octahedral direction (i.e., the radial direction

in the octahedral plane). The strain invariants �vol; coct and

h� are therefore obtained from the principal strain mea-

surements using a combination of strain gauges and aver-

aged displacement from digital image correlation for the

reported experiments in[13]. The incremental plastic strain

are

Gr ¼ Dð�vol � �evolÞ ¼ D�vol ,

Gs ¼ Dðcoct � ceoctÞ ¼ Dcoct �
Dsoct

2S
,

Gh ¼ Dðh� � he�Þ ¼ Dh� ,

ð12Þ

where S is the elastic shear modulus defined in Eq. (9). For

all measurements, D represents a fixed time interval of 60

measurement points (at 1 Hz acquisition rate) before the

peak octahedral stress. This time interval is selected in

order to minimize errors in the measurement noise,

acquisition synchronicity and stick-slip frictional behavior

in the loading piston.

The orientations of the normalized P in the meridian and

octahedral planes are represented in Fig. 3 for the ten true

triaxial experiments. The origin of the arrows coincides

with the yield surface, at the prescribed mean stress and

Lode angle for each loading path, and where the normal Q

is also represented. In the meridian plane representation,

the orientation of Q is seen to be systematically lower than

Table 2 Elastic moduli

Parameter Value (GPa )

K 10

S; l 6.0

k 6.0
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P, where a significant difference in their orientation is most

notable at lower Lode angles. This difference is less pro-

nounced at Lode angles above 30o, where fewer dissimi-

larities are observed between loading paths at both mean

stresses. The orientation of both P and Q in the meridian

planes tends to decrease as the Lode angle increases. The

difference in the orientation of P and Q denotes a strong

non-associativity for the Vosges sandstone in the meridian

plane, i.e., with respect to the effect of the mean stress.

This type of non-associativity of the Vosges sandstone is

consistent with reported observations from previous stud-

ies, which identified similar behavior in the meridian plane

for high-porosity rocks [4, 28, 45]. Conversely, in the

octahedral plane represented in Fig. 3f, P and Q are seen to

have comparable outward orientations, suggesting a devi-

atoric associativity of the material. This characteristic of

the model was also observed in non-cohesive geomaterials

[30, 48, 60] and is often postulated in theoretical studies for

the type of instabilities studied herein [34].

3 Bifurcation analysis

The following bifurcation analysis consists in seeking

admissible localized kinematic solutions for the inception

of strain localization. This bifurcation from initially

homogeneous deformation is characterized by a loss of

ellipticity in the material constitutive tensor, where multi-

ple solutions to further deformation become possible. The

material response is then contingent to the theoretical

constraints on the nature of the localization structure, in the

form of a planar deformation band of finite thickness.

Based on the bifurcation framework proposed by [49],

these constraints are imposed in the form of a kinematic

condition, relating the rate of deformation inside and out-

side the deformation band, and an equilibrium condition,

prescribing continuity in the traction rate at the band

interfaces. As such, the surface boundaries of the localized

region are defined by two parallel weak planar disconti-

nuities, which orientation is described by the normal to the

plane n, with a vanishing intermediate principal value [5].

The localization conditions appear to be strongly depen-

dent on both the constitutive model and the nature of the

loading.

Regarding the 3D planar orientation of the band, post-

mortem X-ray scans of the sandstone samples revealed that

the out-of-plane orientation of an average plane passing

through the deformation band was generally well aligned

with the intermediate principal stress direction [12]. Con-

sequently, the initial assumption of a vanishing interme-

diate principal value of the deformation band can be

confirmed and its orientation is represented only in the

major–minor plane.

3.1 Deformation band angle prediction

From the set of prescribed conditions, a general criterion

for continuous bifurcation is classically established as

det Lijklnjnl
	 


¼ 0 [50]. For the model presented above, the

constitutive tensor L is given by the elasto-plastic formu-

lation expressed in Eq. (1). Solving the equation in terms of

the plastic coefficient leads to

H ¼� ðQijEijklPklÞ þ ðQijEijklnlÞðnjnlEijklÞ�1

ðnjEijklPklÞ .
ð13Þ

From this expansion of the bifurcation criteria, with known

material plastic and elastic parameters (Q, P and E) at the

onset of strain localization, Eq. (13) relates the value of the

plastic coefficient H to a direction of the deformation band

unit normal n. The relation between H and b, the angle

between n and the maximum principal stress direction in

the localization plane, which satisfies the bifurcation cri-

teria is shown in Fig. 4 for the 10 true triaxial loading

paths. It is seen in this representation that a unique maxi-

mum for H can be identified for b in the range of 0� to 90�.

a b c d e

f

Fig. 3 Direction of the outward normal Q and plastic deformation direction, P, at the intersection of the yield surface and the respective loading

paths in the meridian plane (a–e) and octahedral plane (f). In each plane, the orientations for each true triaxial experiment are represented at the

two mean stresses of 60 MPa and 90 MPa, and the five Lode angles. In the meridian plane, non-associativity of the model is stronger at low Lode

angles and weaker at high Lode angle. In the octahedral plane, deviatoric associativity is observed for all loading paths
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The criteria for the angle of conjugated bands, at an angle

symmetrical to the maximum principal stress axis, are also

symmetrical. Conjugated band orientation duals are there-

fore associated with the same value of H and equally

probable.

For a hardening solid, the tangent modulus of the con-

stitutive relation continuously decreases during the accu-

mulation of plastic strain. Therefore, [50] have argued that

the critical orientation (nc) for localization to occur is at the

maximum, or critical, value of the plastic coefficient (Hc).

It follows that the orientation nc provides a prediction for

the most likely band orientation in the minor-major prin-

cipal plane. Figure 4 shows the maximum value of H/S to

occur near the transition between the hardening and soft-

ening regime (stress peak) for h[ 0� and well in the

softening regime for h ¼ 0�.
Figure 5 shows the critical angle (bc) predicted by the

model for the different loading paths. It is seen to sys-

tematically increase with an increase in the Lode angle and

a decrease in the mean stress. The change in angle is also

more pronounced at lower Lode angles. These results can

be compared to the deformation band angle measured

experimentally at the peak octahedral stress, as reported in

[13]. The model provides a good prediction of the general

trend in the evolution of the band orientation, with

increasing Lode angle. For most loading paths, the quan-

titative prediction of the deformation band angle is also in

good agreement with observations. A discrepancy is

noticeable for rm ¼ 90 MPa and h ¼ 0o and 15o, where the

deformation band angle is predicted at a lower angle than

experimentally measured. This discrepancy can be attrib-

uted to the pronounced change in the normal to the yield

surface in the meridian plane around rm ¼ 90 MPa (see

Fig. 2). With fewer data points available in this region of

the plane, there is a higher uncertainty in the calibration of

the yield surface.

3.2 Dilatancy angle prediction

The dilatancy angle (/) of the deformation band is defined,

according to [4], as the ratio of volumetric and shear

components of the deformation jump measured parallel to

the band,

tan/ ¼ DDvol

DDshear
. ð14Þ

For the unit normal associated with the critical band angle,

nc,

DDvol ¼ gsn
c
s ,

DDshear ¼ k 1

2
gkn

c
s þ gsn

c
k

� �

nck � Dvolncsk
ð15Þ

are the change in volumetric and shear deformation in the

normal and tangential directions of the deformation band.

The directional vector g is derived from the bifurcation

condition as

gk ¼ cðncj ncl EijklÞ�1ðncj EijmnPmnÞ , ð16Þ

where c is an arbitrary constant multiplier.

For the two investigated mean stresses, the predicted

dilatancy angle over the range of Lode angles is shown in

Fig. 6. Similarly to the deformation band angle, the dila-

tancy angle can be compared to an experimental value at

the peak stress. The experimental dilatancy angles were

determined from respective displacement fields obtained

by digital image correlation over strain increments where

Fig. 4 Evolution of the normalized plastic coefficient (H/S) with

respect to the deformation band angles satisfying the bifurcation

criteria, for loading paths at 60 MPa (a) and 90 MPa (b) mean stress

Fig. 5 Deformation band angle (b) with increasing Lode angle at the

two mean stresses of 60 MPa and 90 MPa. The three-invariant model

predictions are plotted against experimental observations

3428 Acta Geotechnica (2023) 18:3421–3434

123



the deformation band is seen to emerge on the surface of

the sample [13]. Since this value of the dilatancy angle is

assessed from an average measurement of the propagating

band, it is not constant over the length of the deformation

band and is thus sensitive to some variability in the band

inclination. Considering these uncertainties in the mea-

surement of / from the displacement field, the trend in the

evolution of observed and predicted dilatancy angle is

reasonably well matched. At the low mean stress of

60 MPa, where strain localization initially concentrates

into narrow and straight mature deformation bands,

experimental measurements of the band angles are also in

good quantitative agreement with the model prediction. At

the higher mean stress of 90 MPa, the predicted dilatancy

angle is more dilatant than for experimental observations.

Nonetheless, the evolution of the dilatancy angle with the

Lode angle is generally well represented in the model, with

the correct tendency for dilatancy or compaction associated

to the shearing through the deformation band.

3.3 Alternative models and elastic sensitivity

The development of the constitutive model introduced

above is made possible thanks to extensive experimental

data available for the studied Vosges sandstone. The

experimental methods to retrieve the model parameters

further rely on an advanced true triaxial loading apparatus

and sophisticated approaches to the acquisition of local

strain measurements. Alternatively, most analyses in

bifurcation reported in the literature are conducted using

simplified models, for which some important mechanical

behavior identified for porous rocks are not fully accounted

for. It is the case for models dependent on two invariants of

the stress tensor (Lode angle independent), and models

assuming associated plasticity (P ¼ Q). These model

simplifications can be highly valuable, and sometimes

necessary, when the shape of the yield surface in the

octahedral plane cannot be defined, or when the directions

of plastic strain at failure are not available or unreliable. In

the same spirit as in the previous analysis, the deformation

band kinematic can be predicted for these alternative

models. In this section, their comparison with the initially

presented model in terms of prediction accuracy enables us

to assess the merit of added complexities in a more general

approach.

The inclination of the deformation band and the band

dilatancy angle are first predicted for a two-invariant model

where the yield surface is optimized for the Linex function

in the meridian plane, with a constant circular shape in the

octahedral plane, i.e., imposing b1 ¼ b2 ¼ 0 in Eq. (6). It

results that the solution to the bifurcation criteria is not

influenced by Fh ¼ 1, but the effect of the Lode angle for

the different stress paths is still accounted for in oh
or

. For this

two-invariant model, the direction of plastic strain incre-

ment P remains unchanged compared to the initial three-

invariant model.

The comparison of band angle, in Fig. 7a, shows that a

two-invariant model leads to a systematic underestimation

of b compared to the three-invariant model. This effect is

most pronounced at higher Lode angles and lower mean

stresses, where the outward normal to the van Eekelen

surface in the initial model is most divergent from the

radial direction. Concurrently, the predicted band dilatancy

angle for this model, as seen in Fig. 7d, is higher than for

the initial model, providing a less accurate prediction

against experimental measurements.

A second predictive model comparison is made for an

associated model, where directions of plastic strain rate

would be a priori unknown and therefore assumed equal to

the outward normal to the yield surface (i.e., P ¼ Q ¼ oF
or

).

Since the initial model is close to deviatoric associativity,

the main effect of this simplified model lies in the imposed

associativity in the meridian plane. Therefore, imposing the

direction of P for an intrinsically non-associated sandstone

overestimates the dilatancy of the material and leads to an

increase in both the deformation band angle (Fig. 7b) and

band dilatancy angle (Fig. 7e) predicted by the bifurcation

analysis. This results in a poorer prediction at 60 MPa, as

well as for the high Lode angles at 90 MPa. At low Lode

Fig. 6 Dilatancy angle (/) across the deformation band with

increasing Lode angle, at the two mean stresses of 60 MPa and 90

MPa. The three-invariant model predictions are plotted against

experimental observations. A negative value of the angle denotes

compaction and a positive value denotes a dilation associated to the

shearing
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angle and a mean stress of 90 MPa, this model improves

the prediction of the band angle b. However, this is due to a

volume behavior that is considered to be dilating, whereas

it is measured as contracting (Fig. 7e).

The sensitivity of the initial model to variations in the

elastic parameters extracted from the stress–strain relations

is evaluated by prescribing, in two different cases, a 50%

increase and decrease in both the bulk and shear elastic

moduli. Figure 7c and f shows that, even for such large

variations in the elastic parameters, the predicted band

angle and dilatancy angle remain mostly unaffected. These

results demonstrate the marginal effect of possibly large

uncertainties in the values for the elastic parameters

selected in this analysis. The observation of such a small

effect is consistent with the loading of a rock material

since, under the present conditions, elastic strains remain

small compared to plastic strains at the onset of bifurcation.

In fact, higher moduli, or a stiffer elastic response, would

not change the prediction. However, for lower elastic

moduli of the material, in the order of the hardening

modulus, the elastic contribution would have a significant

influence on the deformation response and thus on the

resulting kinematic predictions.

4 Discussion

Some considerations in the bifurcation criteria and consti-

tutive relation considered previously are hereafter contex-

tualized and compared to recent experimental observations,

as well as known deformation mechanisms occurring in

porous rocks.

In the previous section, the kinematics predictions from

the bifurcation analysis were compared to laboratory

experimental data for a porous sandstone, obtained by full-

field measurements and digital image correlation [13]. The

authors of the experimental study described different

localized deformation modes and their evolution, from the

beginning of the deviatoric loading phase to a post-peak

state after substantial and well-developed strain

localization.

The authors introduced a distinction between early

deformation bands, appearing well before the stress peak,

Fig. 7 Comparison of the deformation band angle (a, b, c) and band dilatancy angle prediction (d, e, f) between experimental observations

(black), the initially presented three-invariant and non-associated model (red) and alternative models (blue, yellow): two-invariant model (a, d),

associated model (b, e) and elastic moduli sensitivity (c, f)
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and mature deformation bands, emerging near the stress

peak and initiating a softening response of the material. In

the presented bifurcation analysis, as well as in previous

studies where bifurcation theory is used to evaluate the

localization behavior of rocks, it is the kinematics of

mature deformation bands that are predicted by the theo-

retical results. Therefore, the presented analysis is based on

a model for the constitutive state of the material at their

inception, considering a diffuse deformation prior to the

development of mature strain localization. However, if the

onset of mature strain localization bands can be considered

as a matter of non-uniqueness of solution, as introduced by

bifurcation analysis, what about early localization bands?

In contrast to mature localization, the early localization

regions are characterized by numerous parallel and conju-

gate bands, where shear deformation is concentrated. These

bands also exhibit a dilatant behavior which induces a

relative dilatancy at the sample scale. Similarly, they are

concomitant with a loss of linearity in the octahedral stress

vs. strain response. As the loading progresses, the number

of active early bands decreases, and as the peak is

approached, a localization zone associated with a loss of

sample strength (initiation of softening) appears. The ori-

entation of the early and mature bands is close but differs

by a few degrees.

This mode of early localization has also been observed

in a clayey rock under specific loading conditions (for

sufficiently high mean stresses) [3]. One may also wonder

whether the secondary localization bands in a carbonate

rock observed postmortem by Mogi ([42], fig. 3.78) are not

evidence of an early localization? Furthermore, early

localization has also been observed in granular materials

[18, 33].

On the numerical modeling side, a few studies have

reported this pre-peak localization. In the context of

modeling in a continuous medium, it is generally observed

if a slight material heterogeneity has been introduced into

the medium [21, 44]. It is also observed in the context of

discrete medium modeling [14].

Thus, it appears that the localization process in sand-

stone occurs in two stages. A first early stage (before the

peak stress) is characterized by a large number of short

bands inducing a change in the tangential stiffness and

dilatancy of the sample, without inducing a softening of the

sample. It is followed by a second stage which sees the

appearance of mature bands, which may be dilating or

contracting depending on the level of mean stress and Lode

angle, and induces a softening of the sample. Microstruc-

tural observations of early and mature shear bands have

been done on the same Vosges sandstone loaded under

plane strain compression [32]. The early bands appear to be

marked by low damage (intragranular and intergranular

cracking), while the mature bands are characterized by

high damage (grain crushing).

This second phase of localization, inducing a strong

microstructural change of the material, and in the loading

conditions studied here, a softening of the material, is

consistent with the predictions of the bifurcation analysis.

Let us recall that the Rice’s bifurcation criterion can be

interpreted as a state linked to the existence of a direction n

and a kinetic g for which the mechanical response in the

band corresponds to the condition ðLijkl gk nlÞ nj ¼ _rij nj ¼
0 due to the predominance of the in-band kinetic compared

to the out-of-band kinetic (infinite ratio) [9]. In other

words, considering the incipient band as a layer undergoing

a homogeneous deformation over its thickness, described

by 1=2 ðgk nl þ gl nkÞ, the traction vector rate applied to

this layer is vanishing at the onset of localization. This kind

of material response needs a substantial microstructural

evolution that could be met only during the mature local-

ization process. Clearly, further work will be needed to

clarify the theoretical conditions for the early localization.

Another interesting aspect is the brittle–ductile transi-

tion in the mechanical behavior of porous rocks. This has

been discussed in [13], in terms of the different views one

can have on this transition, in terms of the pre-peak

response, the post-peak response, the orientations of the

localization bands, the volume strain within the bands and

finally the more or less complex pattern of localization. A

relevant prism to consider in this paper is the orientation of

the bands and the nature of the deformation. It is now well

understood that the orientation of the bands (angle between

the band and the most compressive stress direction)

increases during this transition and that also the volume

strain associated with the shear deformation (slip parallel to

the band) evolves from expansion to compaction, with the

extreme cases being dilation and compaction bands (no

slip). This transition is generally attributed to an increase in

the mean stress, and our study is a further confirmation of

this. While the effect of the Lode angle is less well docu-

mented, the experimental and theoretical results clearly

show here that, at a given mean stress, the response is more

brittle for high Lode angles and more ductile for low angles

(state close to the axisymmetric compression state), this in

quite noticeable proportions.

5 Conclusion

In the scope of this study, an original three-invariant con-

stitutive model was first presented for a well-studied

Vosges sandstone. In the context of bifurcation theory, this

general model was used to evaluate theoretical predictions

of strain localization for unconventional loading paths, in
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the form of deformation bands. These predictions have

been further evaluated in comparison with full-field

experimental observations and alternative models.

The proposed yield surface, with both mean stress and

Lode angle dependency, has been derived from a large

number of mechanical loading experiments, including tri-

axial, biaxial and true triaxial invariant controlled loading

paths. With the flexibility of a combined linear–exponen-

tial and van Eekelen function, the yield surface showed a

good fit with experimental peak stresses over the wide

range of axisymmetric and non-axisymmetric loading

paths, in both the brittle and brittle–ductile transition

regimes.

Using this model, a bifurcation analysis was conducted

for a series of 10 laboratory loading tests in true triaxial

conditions. For these experiments, local deformation

measurements revealed a marked variation in the normals

to the yield surface and direction of plastic strain at the

peak stress, in both the octahedral (deviatoric) and merid-

ian planes. This tendency results in a continuous evolution

of the band kinematic predictions, where the orientation

and dilatancy angles of the bands increase nonlinearly with

an increase in the Lode angle and a decrease in the mean

stress. This prediction is both consistent with the expected

decrease in the ductility of the material and with full-field

experimental measurements of the localized regions. It was

also evidenced that the proposed non-associated three-in-

variant model performs better than simplified alternative

models in predicting the band kinematics.

The findings presented herein demonstrate the validity

and potential for this general bifurcation framework to

corroborate observations in terms of the kinematics of so-

called mature deformation bands, i.e., instigating a soft-

ening response, in porous rocks. The complementary role

of early localization, i.e., emerging prior to the peak stress,

and its relation to a later bifurcation state still needs to be

investigated, perhaps from a different perspective.

Appendix 1: Elasto-plastic formulation

For an elasto-plastic material with additive incremental

strain decomposition, d�ij ¼ d�eij þ d�pij, the elastic and

plastic strains are, respectively, defined as

d�eij ¼ Cijkl drkl , d�pij ¼ dkPij , ð17Þ

where C is the elastic compliance tensor and P ¼ oG
or

is the

direction of plastic strain. The magnitude of plastic

deformation is determined by the plastic multiplier dk,

according to the flow rule. The incremental stress tensor,

drðd�Þ, is therefore written as

drij ¼ Eijklðd�kl � dkPklÞ , ð18Þ

where E is the elastic stiffness tensor, i.e., the inverse of C.

Considering isotropic hardening in the material, the con-

sistency condition, F ¼ 0 and dF ¼ 0, is expressed in the

form of

Qij drij � H dk ¼ 0 , ð19Þ

where Q ¼ oF
or

is the normal to the yield surface and H is a

plastic coefficient. Combining Eqs. (18) and (19), the

plastic multiplier can be written as

dk ¼ 1

h
Quv Euvrs d�rs , ð20Þ

with h ¼ H þ QijEijklPkl.

This equation for the plastic multiplier is inserted back

into the stress–strain relation in Eq. (18), resulting in

drij ¼ Eijklðd�kl �
1

h
Quv Euvrs d�rs PklÞ . ð21Þ

Alternatively,

drij ¼ Lijkl d�kl , ð22Þ

with the elasto-plastic constitutive tensor L as in Eq. (1).

Appendix 2: Invariants derivatives

The derivatives of the principal invariants (I1,J2,J3) are first

expressed as

oI1
orij

¼ dij ,

oJ2

orij
¼ sij ,

oJ3

orij
¼ dpi djq sqr srp �

1

3
dpq dki djk sqr srp ,

ð23Þ

where sij is the deviatoric part of the stress tensor resulting

from its additive decomposition, rij ¼ 1
3
rkkdij þ sij. Using

these results, the derivatives of the octahedral-Lode

invariants can therefore be written as

orm
orij

¼ 1

3
dij ,

osoct
orij

¼ sij
3 soct

,

ohr
orij

¼ �
ffiffiffi

2
p

3 sinð3hrÞs3
oct

sjr sri � dij s
2
oct �

ffiffiffi

2
p

cosð3hrÞ soct
2

sij

� �

.

ð24Þ
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44. Mourlas C, Pardoen B, Bésuelle P (2023) Large-scale failure

prediction of clay-rock from small scale damage mechanisms of

the rock medium using multiscale modelling. Int J Rock Mech

Min Sci (in press)

45. Olsson WA (1999) Theoretical and experimental investigation of

compaction bands in porous rock. J Geophys Res

104(B4):7219–7228. https://doi.org/10.1029/1998JB900120

46. Ord A, Vardoulakis I, Kajewski R (1991) Shear band formation

in Gosford sandstone. Int J Rock Mech Min Sci Geomech Abstr

28(5):397–409. https://doi.org/10.1016/0148-9062(91)90078-Z

47. Paterson MS, Wong TF (2005) Experimental rock deformation -

The Brittle Field. Springer, Berlin https://doi.org/10.1007/

b137431

48. Poorooshasb HB, Holubec I, Sherbourne AN (1966) Yielding and

flow of sand in triaxial compression: part i. Can Geotech J

3(4):179–190. https://doi.org/10.1139/t66-023

49. Rice JR (1976) The localization of plastic deformation. In: Koi-

ter, W.T. (ed.) Theoretical and applied mechanics, North-Holland

Pub. Comp., Delft. Proc. 14th Int. Cong. Theor. Appl. Mech,

pp. 207–220

50. Rudnicki JW, Rice J (1975) Conditions for the localization of

deformation in pressure-sensitive dilatant materials. J Mech Phys

Solid 23(6):371–394. https://doi.org/10.1016/0022-

5096(75)90001-0

51. Sriapai T, Walsri C, Fuenkajorn K (2013) True-triaxial com-

pressive strength of Maha Sarakham salt. Int J Rock Mech Min

Sci 61:256–265. https://doi.org/10.1016/j.ijrmms.2013.03.010

52. Sulem J, Ouffroukh H (2006) Shear banding in drained and

undrained triaxial tests on a saturated sandstone: porosity and

permeability evolution. Int J Rock Mech Min Sci 43(2):292–310.

https://doi.org/10.1016/j.ijrmms.2005.07.001

53. Sulem J, Vardoulakis I, Papamichos E, Oulahna A, Tronvoll J
(1999) Elasto-plastic modelling of Red Wildmoor sandstone.

Mech Cohes-Frict Mater 4(3):215–245. https://doi.org/10.1002/

(SICI)099-1484(199905)

54. Takahashi M, Koide H (1989) Effect of the intermediate principal

stress on strength and deformation behavior of sedimentary rocks

at the depth shallower than 2000 m. In: Maury V, Fourmaintraux

D (eds) Int Symp Rock Great Depth. Balkema, Pau, France,

pp 19–26

55. Thomas TY (1958) Plastic flow and fracture in solids. J Math

Mech 7(3):291–322

56. Van Eekelen HAM (1980) Isotropic yield surfaces in three

dimensions for use in soil mechanics. Int J Numer Anal Meth

Geomech 4(1):89–101. https://doi.org/10.1002/nag.1610040107

57. Vardoulakis IG, Sulem J (2004) Bifurcation analysis in geome-

chanics. CRC Press, London, https://doi.org/10.1201/

9781482269383

58. Wong T-F, Baud P (2012) The brittle-ductile transition in porous

rock: a review. J Struct Geol 44:25–53. https://doi.org/10.1016/j.

jsg.2012.07.010

59. Wu S, Zhang S, Guo C, Xiong L (2017) A generalized nonlinear

failure criterion for frictional materials. Acta Geotechnica

12:1353–1371. https://doi.org/10.1007/s11440-017-0532-6

60. Yong RN, McKyes E (1971) Yield and failure of a clay under

triaxial stresses. J Soil Mech Found Div 97(1):159–176

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

3434 Acta Geotechnica (2023) 18:3421–3434

123

https://doi.org/10.1007/s10035-013-0477-x
https://doi.org/10.1007/s10035-013-0477-x
https://doi.org/10.1016/0022-5096(92)90019-X
https://doi.org/10.1016/0022-5096(92)90019-X
https://doi.org/10.1002/2016JB012979
https://doi.org/10.1002/2016JB012979
https://doi.org/10.1002/2016JB013637
https://doi.org/10.1016/0148-9062(80)90262-4
https://doi.org/10.1016/0148-9062(80)90262-4
https://doi.org/10.2208/jscej1969.1974.232_59
https://doi.org/10.2208/jscej1969.1974.232_59
https://doi.org/10.1016/0749-6419(87)90022-2
https://doi.org/10.1016/0749-6419(87)90022-2
https://doi.org/10.1201/9780203964446
https://doi.org/10.1680/geot.1985.35.2.127
https://doi.org/10.1029/1998JB900120
https://doi.org/10.1016/0148-9062(91)90078-Z
https://doi.org/10.1007/b137431
https://doi.org/10.1007/b137431
https://doi.org/10.1139/t66-023
https://doi.org/10.1016/0022-5096(75)90001-0
https://doi.org/10.1016/0022-5096(75)90001-0
https://doi.org/10.1016/j.ijrmms.2013.03.010
https://doi.org/10.1016/j.ijrmms.2005.07.001
https://doi.org/10.1002/(SICI)099-1484(199905)
https://doi.org/10.1002/(SICI)099-1484(199905)
https://doi.org/10.1002/nag.1610040107
https://doi.org/10.1201/9781482269383
https://doi.org/10.1201/9781482269383
https://doi.org/10.1016/j.jsg.2012.07.010
https://doi.org/10.1016/j.jsg.2012.07.010
https://doi.org/10.1007/s11440-017-0532-6

	Three-invariant model and bifurcation analysis of deformation bands for a sandstone subjected to true triaxial loading paths
	Abstract
	Introduction
	Constitutive model
	Yield surface description
	Yield surface calibration
	Elastic moduli from experiments
	Incremental plastic strain from experiments

	Bifurcation analysis
	Deformation band angle prediction
	Dilatancy angle prediction
	Alternative models and elastic sensitivity

	Discussion
	Conclusion
	Appendix 1: Elasto-plastic formulation
	Appendix 2: Invariants derivatives
	Data availability
	References




