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Abstract
Seismic stability analyses of soil slopes in the presence of weak interlayers are rather challenging within the framework of

plasticity theory, due to the construction of kinematically admissible velocity fields and statically allowable stress fields at

limit state. Finite-element limit-analysis procedures including finite-element upper-bound (FEUB) and finite-element

lower-bound (FELB) approach are introduced in this study, retaining the merits of FEM and limit analysis theory to tackle

above issues. Incorporating modified pseudo-dynamic approach, seismic slope stability analyses are transformed to linear

programming models, in terms of lower- and upper-bound formulations. Pseudo-static and modified pseudo-dynamic

solutions of the factor of safety (FoS) are sought through optimization with an interior-point algorithm. An appealing merit

of the proposed procedure is that both lower and upper bounds are searched, aiding to better estimate the true solution of

FoS. Limit equilibrium and Abaqus are applied to validate FEUB and FELB results. Effects of dual weak interlayers’

position and dimension on seismic slope stability are investigated. Critical failure surface and velocity field are plotted by

post-processing, demonstrating a rotational-translational failure mechanism. Based on less than 5% difference between

lower- and upper-bound solutions, the proposed procedure is capable of providing a reliable guidance for slope design and

assessment.
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1 Introduction

Layering soils widely exist in site, due to complex geological

conditions and formation processes. There are some cases

where soil strength parameters of certain layers are much

smaller than neighboring soils, behaving as weak interlayers.

Performing a slope stability analysis in the presence of weak

interlayers is a rather tough issue in geotechnical engineering.

Therefore, such issue has not been comprehensively investi-

gated till now, although it is not uncommon in engineering

practice. Numerical simulation, physical modelling and limit

equilibrium are commonly used approaches for slope stability

analysis. Comparatively, adoption of numerical techniques,

such as FLAC [8], MPM [1], and FEM [9], is relatively

straightforward to account for complex weak interlayers. The

efficacy of numerical modeling is satisfactory, but the relia-

bility of numerical results is suggested to be further verified,

for example by experiments. The response of slopes under

rainfall and earthquake conditions can be truly estimated by

experiments [20, 25, 29]. Undoubtedly, physical modelling

aids to reveal the deformation and failuremechanisms of slope

models in the presence ofweak interlayers.However, relevant

research has been rarely conducted because it is rather chal-

lenging to perform such test and even costly and time-con-

suming. Widespread use of limit equilibrium for the

calculation of FoS is due to its simplicity and accumulated

experience [27, 29]. It is found that the use of limit equilibrium

raises a concern on the reliability of calculated results which
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are neither upper nor lower bounds. Comparatively, limit

analysis is capable of providing a reliable manner for the

assessment of slope stability. Note that, in the literature

mentioned above, a long weak interlayer layer was discussed

only, and multiple weak interlayers and effects of weak

interlayer dimension and position on slope stability were not

comprehensively investigated.

Limit analysis provides a sound avenue to evaluate

geotechnical stability problems including slope stability. It

has two bifurcations: upper- and lower-bound theorem, based

on which the true solution of slope stability can be well esti-

mated. Prior to specific limit analysis, construction of a

kinematically admissible velocity field (KAVF) and a stati-

cally allowable stress field (SASF) is a prerequisite. Since

KAVF is easier to be constructed than SASF, the upper-bound

theorem is more commonly used in stability analyses

[4, 12, 14, 18, 28, 31].Note that the above analyses considered

a pre-defined failure mechanism, which is merely appropriate

for simple problems such as homogeneous and/or isotropic

slopes.However, for complex issues such as in the presence of

weak interlayers, a demanding work is necessitated or it is

nearly impossible to construct velocity or stress fields. For

example, a pioneering work was carried out by Huang et al.

[10, 11], assuming a rotational-translational failure mecha-

nism to discuss the effects of a weak interlayer on slope sta-

bility. In a similar manner, Zhou et al. [32] performed a

pseudo-static stability analysis of a pile-reinforced slope with

a weak layer beneath slope toe elevation. On the one hand,

relevant research was seldom found with a pre-defined

mechanism. On the other hand, the above analyses only esti-

mated the slope stability from the upper-bound theorem,with/

without considering earthquake forces (pseudo-static only).

This is attributed to the complexity of weak interlayers in the

construction of velocity and stress fields and in latter stress

equilibrium and work rates calculations. In an effort to over-

come these issues, Sloan combined the limit analysis theory

with finite element method, forming FELB [21] and FEUB

[22] methods. Slope stability analysis under complex condi-

tions can be readily performed by FEUB and FELB mod-

elling. For example, the stability of a soil slope in the presence

of a weak interlayer was analyzed by FEUB [23] or FELB [3].

However, no relevant studies have been further performed to

better estimate weak interlayers’ effects on seismic slope

stability, which is the motivation of this study.

It is widely acknowledged that earthquakes are one of

major triggering factors for the occurrence of slope failure. In

seismic analysis of slope stability, selecting a proper manner

to characterize earthquake inputs is vital to not only facilitate

the analysis but also produce reliable solutions. The use of

actual seismic signal, e.g., acceleration time-history, tends to

yield most reliable results, but is principally suited to

numerical simulations such as DEM [26], FEM and MPM

[2]. The simplest way is to adopt pseudo-static approach

[13], which provides a quick but maybe not reliable estimate

for seismic slope stability analyses. In order to balance the

extremely complex earthquake time-history and overly

simplified pseudo-static approach, the pseudo-dynamic

approach was proposed by Steedman and Zeng [24] and

applied to seismic slope stability analysis [6, 16, 30].

Notwithstanding, it has some intrinsic drawbacks which

were overcome by the modified pseudo-dynamic approach.

An attempt was made to seismic slope stability analysis with

discretization-based kinematic analysis [17]. Owing to its

complexity, no relevant research has been performed to

investigate the effects of both modified pseudo-dynamic

earthquake and weak interlayers on seismic slope stability.

In this study, a powerful procedure including FEUB and

FELBwill be introduced to evaluate the seismic stability of a

soil slope containing weak interlayers within soil strata,

aiming to better understand weak interlayers’ effects on

seismic slope stability. Meanwhile, pseudo-static and mod-

ified pseudo-dynamic approach are used to represent earth-

quake inputs. In the presence of weak interlayers, the

scientific challenge is to construct KAVF and SASF, in

upper- and lower-bound analyses. Resorting to finite element

method, such challenge is ultimately tackled by satisfying

corresponding conditions within each element and bound-

ary. Pseudo-static and modified pseudo-dynamic solutions

of FoS are sought by optimization. After having performed

such analysis, the crux is to estimate the true solution of

seismic slope stability under the effects of weak interlayers,

by lower and upper bounds, which can be applied to slope

design and assessment in engineering practice.

2 Methodologies

In an effort to estimate seismic slope stability at limit state,

two main methodologies include: (1) methods for repre-

senting earthquake inputs and (2) finite-element limit-

analysis approach. Selecting an appropriate manner to

characterize seismic inputs is imperative under earthquake

effects, aiding to derive a closed-form or semi-analytical

solution to seismic slope stability. Modified pseudo-dy-

namic approach is mainly considered herein. The latter

methodology is inclusive of finite-element upper-bound

and finite-element lower-bound analyses, aiming to eval-

uate the true failure load from upper and lower bounds.

2.1 Earthquake inputs

In seismic slope stability analyses, there exist three commonly

used approaches for representation of earthquake inputs.

Pseudo-static approach was initially introduced to represent

seismic accelerations, due to the lack of in-depth understanding

of dynamic earthquakes and sophisticatedmethods available. It
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is straightforward to use constant horizontal and vertical

accelerations to describe seismic forces, being capable of pro-

viding a quick estimate to seismic slope stability. Although

pseudo-static approach has been widely adopted in existing

literature, its essential drawback lies in the extreme simplicity

of dynamic earthquakes without considering time- and space-

dependent effects. In contrast, acceleration time-history pro-

vides a detailed information of a specific earthquake, including

amplitude, frequency and duration. This in turn demonstrates

that such acceleration profile is rather complicated and hence

mainly suited to advanced numerical simulations. As a com-

promise, pseudo-dynamic approach was developed, with

specific expressions to represent time- and space-dependent

seismic accelerations. Although acceleration time-history can

also be accounted forwith the proposed procedure, focus of this

study is placed onto the use of pseudo-static and modified

pseudo-dynamic approach.Abrief introduction of themodified

pseudo-dynamic approach is introduced as below.

For the case of a plane wave propagating vertically in a

Kelvin–Voigt soil medium, the equations of motion can be

expressed by horizontal and vertical displacement, respec-

tively. A closed-form solution of horizontal and vertical

displacement is then derived after the satisfaction of zero

stress boundary and prescribed displacement boundary

conditions. Thereafter, the shear and primary wave-induced

seismic acceleration can be obtained by double differential

calculation [15, 17, 19]. In this study, the place of action of

the base seismic acceleration (or displacement) is located at

slope toe elevation. Accordingly, the seismic horizontal

acceleration induced by shear wave gives

ahðyi; tÞ ¼
khg

C2
S þ S2S

CSCSZ þ SSSSZð Þ cos -tð Þ
þ SSCSZ � CSSSZð Þ sin -tð Þ

" #
ð1Þ

where kh is horizontal seismic coefficient at slope toe, g is

gravitational acceleration, - denotes angular velocity of

harmonious shaking (with period T ¼ 2p=-), t is time, and

intermediate variables ys1; ys2; CS; SS; CSZ ; SSZ present

the following form:

ys1 ¼
-H
Vs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4n2

p
þ 1

2 1þ 4n2
� �

" #1=2

;

ys2 ¼ �-H
Vs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4n2

p
� 1

2 1þ 4n2
� �

" #1=2

CS ¼ cos ys1ð Þ cosh ys2ð Þ; SS ¼ � sin ys1ð Þ sinh ys2ð Þ

CSZ ¼ cos
ys1 H � yið Þ

H

� �
cosh

ys2 H � yið Þ
H

� �
;

SSZ ¼ � sin
ys1 H � yið Þ

H

� �
sinh

ys2 H � yið Þ
H

� �
ð2Þ

with H being slope height, Vs shear wave velocity, n soil

damping ratio, and yi the ordinate of a point in the domain

of interest. The use of coordinates is for the ease of rep-

resenting accelerations at different locations, when using

the finite-element limit-analysis method as introduced

later.

As for seismic motion induced by primary wave, the

corresponding vertical acceleration can be expressed as

avðyi; tÞ ¼
kvg

C2
P þ S2P

CPCPZ þ SPSPZð Þ cos -tð Þ
þ SPCPZ � CPSPZð Þ sin -tð Þ

" #
ð3Þ

where kv denotes vertical seismic coefficient at slope toe,

and variables yp1; yp2; CP; SP; CPZ ; SPZ have the fol-

lowing form:

yp1 ¼
-H
Vp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4n2

p
þ 1

2 1þ 4n2
� �

" #1=2

;

yp2 ¼ �-H
Vp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4n2

p
� 1

2 1þ 4n2
� �

" #1=2

CP ¼ cos yp1
� �

cosh yp2
� �

; SP ¼ � sin yp1
� �

sinh yp2
� �

CPZ ¼ cos
yp1 H � yið Þ

H

� �
cosh

yp2 H � yið Þ
H

� �
;

SPZ ¼ � sin
yp1 H � yið Þ

H

� �
sinh

yp2 H � yið Þ
H

� �
ð4Þ

with Vp being primary wave velocity.

It is worthwhile highlighting that stiffness parameters

are assumed to be constant in the above derivation. This

assumption is also made in the later analysis where single

and dual weak interlayers are discussed. Moreover, weak

interlayers’ effects on reflection and transmission of seis-

mic waves are not considered in this study, for the ease of

simplification.

2.2 Finite-element upper-bound analysis

In an upper-bound analysis, it involves three main issues:

generation of a kinematically admissible velocity field,

calculations of external and internal rates of work,

derivation and optimization of upper-bound solutions. A

kinematically admissible velocity field is a prerequisite and

constructed following an associated flow rule. Based on

this, the rates of work done by external forces and internal

energy dissipation are computed. If external rates of work

are no less than internal energy dissipation (e.g., in slopes),

slope instability is imminent or occurs. At limit state,

upper-bound formulations are derived, in the form of limit

bearing capacity on slope crest, factor of safety, etc. An

effective algorithm is then necessitated to seek optimal
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upper-bound solutions. Broadly speaking, the upper-bound

analysis is achieved based on the virtual work principle

with a general equation expressed as below,Z
V

rij _e
U
ij dV �

Z
V

rUij _e
U
ij dV ¼

Z
S

TU
i v

U
i dSþ

Z
V

XU
i v

U
i dV

ð5Þ

where rij is stress field corresponding to true failure load,

_eUij is strain rate field, rUij is stress field pertaining to applied

external forces, TU
i represents surface loading on surface S,

XU
i is body force within potential failure block volume V,

vUi denotes velocity field and is kinematically compatible

with _eUij . It is noted that the true failure load is equal to or

less than the load calculated from the work rate balance

equation in a kinematically admissible velocity field.

Two commonly used approaches to construct a kine-

matically admissible velocity field are based on: (1) an

assumed failure mechanism, and (2) numerical techniques

such as finite element method. There are some well-defined

failure mechanisms for slope stability under simplified

scenarios. For instance, a log-spiral mechanism is suited to

a homogeneous and isotropic c-u soil slope, a circular one

for a purely cohesion clayey slope and a translational

mechanism for a cohesionless sand slope. As for some

cases such as under complex geological structure and non-

homogeneity of soil properties, the use of an assumed

failure mechanism is deemed unreliable and inaccurate. In

such case, an alternative and effective way is resorting to

numerical treatments, such as finite element method.

Combining the finite element with the upper-bound theo-

rem forms the FEUB method, which is to be adopted in this

study for the analysis of seismic slope stability.

2.2.1 Generation of a kinematically admissible velocity
field

In FEUB analyses, a potential velocity field is generated

after discretizing the soil mass into finite elements. The

core principle for the generation of such field is to satisfy

the flow rule, velocity discontinuities and velocity bound-

ary conditions. Mathematically, the associated flow rule

within each element is expressed as

F ¼ rx � ry
� �2þ 2sxy

� �2� 2c cosu� rx þ ry
� �

sinu
� �2

_ex ¼
ou

ox
¼ _k

oF

orx
; _ey ¼

ov

oy
¼ _k

oF

ory
; _cxy ¼

ou

oy
þ ov

ox
¼ _k

oF

osxy

ð6Þ

in which F denotes generalized Mohr–Coulomb (MC)

failure criterion in a plane strain analysis, rx; ry; sxy are

planar stress components, c and u represent MC strength

parameters (soil cohesion and internal angle of soil friction,

respectively), _ex; _ey; _cxy correspond to plastic strain rates, u

and v are horizontal and vertical nodal velocities, _k is

plastic multiplier rate which is assumed to be constant and

non-negative. When a plane strain problem is discretized to

linear three-nodded constant-strain triangular finite ele-

ments, u and v in each element can be expressed with a

linear function of nodal velocities by shape functions.

On the velocity discontinuities, the following conditions

are supposed to be satisfied,

f ¼ ssj j þ rn tanu� c

Dus ¼ _n
of

oss
; Dvn ¼ _n

of

orn

ð7Þ

where f is MC failure criterion expressed by shear stress

(ss) and normal stress (rn) on a discontinuous edge,

Dus; Dvn represent velocity jumps parallel and normal to

the edge shared by two adjacent elements, separately, and

non-negative _n is plastic discontinuity multiplier.

In addition, velocity boundary conditions are

us ¼ us; vn ¼ vn ð8Þ

in which us; vn denote prescribed velocities which are

parallel and normal to a specific boundary, respectively.

Based on the above elementary analysis (Fig. 1), it is

found that four variables including u and v, _k and _n, are
required to satisfy the above kinematically compatible

conditions. After explicitly expressing u and v with nodal

velocities and assembling all elements together, a potential

kinematically admissible velocity field should satisfy the

following constraints:

A11X1 � A12X2 ¼ 0

A23X3 � A24X4 ¼ 0

A3X5 ¼ B3

ð9Þ

where A11; A12; A23; A24; A3; B3 are matrices of con-

straint coefficients which are assembled from

Ae
11; A

e
12; A

d
23; A

d
24; A

b
3; B

b
3, in elementary analysis, with

specific expressions shown in Appendix A. X1 ¼
u1 v1 u2 v2 � � � unp vnp
� �T

is the vector of nodal

velocities for np nodes and assembled from

Xe
1 ¼ ue1 ve1 ue2 ve2 ue3 ve3

� �T
. X2 ¼ _k11 _k12 � � � _k1p

h
_k21 _k22 � � � _k2p � � � _kne1 _kne2 � � � _knep �T is the

vector of plastic multiplier rates for ne elements, with MC

criterion linearized with a p-polygon, and assembled by

non-negative Xe
2 ¼ _ke1 _ke2 � � � _kek � � � _kep

h iT
. X3 ¼

u11 v11 u12 v12 u13 v13 u14 v14 � � �½
und1 vnd1 und2 vnd2 und3 vnd3 und4 vnd4�T is the vector

of nodal velocities for a total of nd discontinuity edges and

assembled from Xd
3 ¼ ud1 vd1 ud2 vd2

�
ud3 vd3 ud4 vd4�

T
. X4 ¼
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_n11 _n12 _n13 _n14 _n21 _n22 _n23 _n24 � � �
h

_nnd1 _nnd2 _nnd3
_nnd4�T is the vector of plastic discontinuity multipliers for

nd discontinuity edges and assembled from

Xd
4 ¼ _nd1 _nd2 _nd3 _nd4

h iT
. X5 ¼ u11 v11 u12 v12 u21 v21½

u22 v22 � � � unb1 vnb1 unb2 vnb2�T is the vector of nodal

velocities for nb velocity boundaries and assembled from

Xb
5 ¼ ub1 vb1 ub2 vb2

� �T
. Specific expressions can be found in

Appendix A.

After having introduced the finite element method, it

plays a key role in two major aspects: (1) aiding to generate

a kinematically admissible velocity field satisfying Eq. (9),

and (2) facilitating the considerations of complex soil

properties and external loadings in the following work rate

calculations. Consequently, the upper-bound analysis

combining with the finite element method is capable of

accounting for complicated cases in slope stability, such as

weak interlayers and modified pseudo-dynamic forces as

discussed in this study.

2.2.2 Calculations of external and internal rates of work

Prior to work rate calculations, understanding the driving

forces that could potentially affect slope stability is

essential. In the presence of earthquakes, the applied forces

acting on a slope include soil weight, surface tractions, and

seismic forces. Accordingly, the total rates of work pro-

duced by soil weight ( _We1), by surface tractions ( _We2), and

by earthquake forces ( _We3), are expressed through the

integral of elementary rates of work, as below:

_We1 ¼
Z
A

cvð ÞdA

_We2 ¼
Z
s

qvð Þds

_We3 ¼
Z
A

khðt; yÞ � cu½ �dAþ
Z
A

kvðt; yÞ � cv½ �dA

ð10Þ

where c denotes soil unit weight, A is cross-sectional area

of a failure block, q is vertical surface loading acting on

boundary s, khðt; yÞ and kvðt; yÞ represent time- and posi-

tion-dependent seismic coefficients, horizontally and ver-

tically. Herein, the positive directions are defined as

(a)

(c) (d)

(b)

Fig. 1 A schematic view of elementary analysis and linearized MC criterion for the generation of a kinematically admissible velocity field
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horizontal acceleration towards outside of sloping surface

and vertical acceleration downwards.

In a kinematically admissible velocity field, internal

energy would dissipate along velocity discontinuities and

within the failure block. The source of internal energy

dissipation comes from plastic deformation. Based on

elementary analysis and after integral calculations, the total

internal rates of work dissipated within all elements (Wi1)

and along velocity discontinuities (Wi2) yield

Wi1 ¼
Z
A

_exrx þ _eyry þ _cxsxy
� �

dA

Wi2 ¼
Z l

0

cð _na þ _nbÞdl
ð11Þ

in which l denotes total length of velocity discontinuities.

2.2.3 Derivation and optimization of upper-bound
solutions

After having obtained external rates of work and internal

energy dissipation rates in a velocity field, the next step is to

derive upper-bound formulations. Note that there exist

numerous velocity fields; therefore, infinite upper-bound

solutions can be obtained, which satisfy Eq. (5). Thereof, a

group of upper-bound solutions is derived when the equality

condition in Eq. (5) is satisfied, i.e., work rate balance

equation at limit state. Taking the limit surcharge load (qlimit)

as the objective function and defining qlimit ¼ kUq qn, where

kUq represents the overload coefficient from an upper-bound

analysis, and qn is the prescribed loading acting on boundary

s, the upper-bound formulation gives

kUq ¼ qlimit

qn
¼ Wi1 þWi2 �We1 �We3R

s qnvds
ð12Þ

Optimization of Eq. (12) could yield an optimal upper-

bound solution. Notice that, however, a non-linear pro-

gramming technique is required for the direct optimization,

which is somewhat challenging and demanding. In an

effort to make Eq. (12) easier to be optimized, it is alter-

natively transformed to

kUq ¼ Wi1 þWi2 �We1 �We3 ð13Þ

by adding an additional constraint, i.e.,
R
s qnvds ¼ 1.

It is more straightforward and efficient to seek the

optimal upper-bound solution of limit surcharge load (ex-

pressed by kUq ), with a linear programming technique. In

combination with the constraint conditions required for the

generation of a kinematically admissible failure mecha-

nism, the slope stability analysis can be explicitly expres-

sed as:

min kUq ¼ Ci1X2 þ Ci2X4 � Ce1X1 � Ce3X1

	 


s:t:

A11X1 � A12X2 ¼ 0

A23X3 � A24X4 ¼ 0

A3X5 ¼ B3

Ce2X6 ¼ 1:0

X2 � 0

X4 � 0

8>>>>>>>>>>><
>>>>>>>>>>>:

ð14Þ

where Ci1, Ci2, Ce1, Ce2 and Ce3 are the vectors of coeffi-

cients pertaining to components of the objective function,

which are assembled from Ce
i1, Cd

i2, Ce
e1, Cq

e2 and Ce
e3,

respectively. X6 ¼ u11 v11 u12 v12 u21 v21½ u22 v22 � � �
unq1 vnq1 unq2 vnq2�T is the vector of nodal velocities for

nq boundaries to which surface tractions are applied and is

assembled from Xq
6 ¼ uq1 vq1 uq2 vq2

� �T
. It is worth pointing

out that the components of X3, X5 and X6 can also be found

in X1. Specific expressions are listed in Appendix A for

completeness.

It is worthwhile highlighting that Eq. (14) is suited to a

pseudo-static analyses of seismic slope stability or pseudo-

dynamic analyses at a specific time instant t. This is demon-

strated by the time-dependent coefficient Ce3. If dynamic

accelerations are accounted for, there exist a series of kUq ðtÞ
values calculated at various time instants. The best upper-

bound solution is sought by minimizing kUq ðtÞ values. In other
words, the linear programming model, Eq. (14), can be recti-

fied as:

min
t; t2 tstart ;tend½ �

min
X1;X2;X3;X4;X5;X6

kUq ðtÞ ¼ Ci1X2 þ Ci2X4 � Ce1X1 � Ce3X1

	 


s:t:

A11X1 � A12X2 ¼ 0

A23X3 � A24X4 ¼ 0

A3X5 ¼ B3

Ce2X6 ¼ 1:0

X2 � 0

X4 � 0

8>>>>>>>>>>><
>>>>>>>>>>>:

ð15Þ

Based on the above mathematical programming model,

the optimal pseudo-dynamic solution to seismic slope sta-

bility is to be searched with an optimization technique. The

interior-point algorithm is implemented into MATLAB to

achieve this specific purpose.
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2.3 Finite-element lower-bound analysis

In a lower-bound analysis, it mainly contains two steps:

generation of a statically allowable stress field, derivation

and optimization of lower-bound solutions. Unlike upper-

bound analyses that are carried out from the perspective of

work (work rates), lower-bound analyses are based on

stresses (forces). Accordingly, a statically allowable stress

field is necessitated, aiming to derive the lower-bound

failure load from stress equilibrium analysis. Its core

principle lies in the lower-bound theorem, stating that the

true failure load is equal to or greater than the applied load

computed from the virtual work principle in a statically

allowable stress field. Thereof, the virtual work principle is

expressed as:Z
V

rij _eijdV �
Z
V

rLij _eijdV ¼
Z
S

TL
i vidSþ

Z
V

XL
i vidV ð16Þ

in which rij is stress field corresponding to true failure

load, stress field rLij is to be determined and theoretically

equivalent to external forces, including traction force TL
i

acting on surface S and body force XL
i within volume V, _eij

and vi are strain rate field and velocity field, respectively,

both belonging to the compatible set. Since stress equi-

librium and no violation of yield criterion are both satis-

fied, a geotechnical structure (e.g., slopes) is capable of

adapting itself to sustain the applied external loading cal-

culated from a lower-bound analysis.

Generating a statically allowable stress field is more

challenging than a kinematically admissible velocity field,

thereby demonstrating the popularity and widespread use

of upper-bound analyses in geotechnical stability problems.

A few stress fields were constructed for extremely sim-

plified cases, particularly for not considering soil self-

weight. Note that, however, soil stresses at various depths

vary significantly in site, which is directly attributed to the

effects of soil weight. Therefore, soil self-weight cannot be

ignored in the lower-bound analysis of geotechnical prob-

lems. In an effort to tackle this issue, sophisticated

numerical techniques are introduced to generate a statically

allowable stress field, especially under complicated cases

such as in the presence of weak interlayers. Similar to

FEUB analyses, finite element method is also adopted to

achieve this specific purpose. In combination with the

lower-bound theorem, a FELB procedure is therefore

formed and will be used in this study.

2.3.1 Generation of a statically allowable stress field

In FELB analyses, a soil mass is discretized into finite

three-nodded triangular elements for the case of a plane

strain problem. Stress variables are adopted herein, in

contrast to velocity variables used in FEUB analyses.

Correspondingly, stresses within an element or on an edge

can be linearly expressed by nodal stresses and shape

functions. In the process of generating a statically allow-

able stress field, the following four conditions must be

satisfied: (1) stress equilibrium within each element; (2)

stress continuity at the interface; (3) stress boundary con-

ditions; and (4) no violation of yield criterion. A schematic

view of nodal variables and linearized MC criterion is

presented in Fig. 2, serving to better demonstrate the

conditions required in lower-bound analyses.

Stress equilibrium within a soil mass implies the stress

distribution in a constructed stress field is equivalently

compatible with external loadings (body stress). Mathe-

matically, it gives

orx
ox

þ osxy
oy

¼ Xx;
ory
oy

þ osxy
ox

¼ Xy ð17Þ

where rx; ry; sxy are stress components of the stress state

at a point within an element, Xx; Xy are components of

body forces per unit volume in x- and y-directions. Thereof,

stress components can be explicitly expressed with linear

combinations of two nodal normal stresses and one nodal

shear stress, using shape functions.

After having discretized the soil mass into a series of

triangular elements, there exist many interfaces formed by

two adjacent elements. Continuity of normal and shear

stresses on the interface is supposed to be satisfied, i.e.

rna ¼ rnb; ssa ¼ ssb ð18Þ

where rna; rnb are the normal stress perpendicular to the

edge shared by two adjacent elements a and b, ssa; ssb are
the shear stress along this edge.

For the case of free boundaries or boundaries subject to

tractions, stress boundary conditions are:

rn ¼ qn; ss ¼ ts ð19Þ

in which rn; ss are stress components normal and tan-

gential to a boundary, qn; ts are prescribed stresses normal

and tangential to this boundary.

The above three items serve to guarantee a stress field

satisfying stress equilibrium within the entire soil mass and

along all boundaries or interfaces. Besides, the stress state

of any point in the domain of interest is not allowed to

violate the yield criterion. When Mohr–Coulomb yield

criterion is adopted in this study, this condition is given as

F ¼ rx � ry
� �2þ 2sxy

� �2� 2c cosu� rx þ ry
� �

sinu
� �2 � 0

ð20Þ

where F is the generalized Mohr–Coulomb yield criterion

in a plane strain analysis.
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2.3.2 Derivation and optimization of lower-bound
solutions

After having constructed a statically allowable stress field

satisfying the above four conditions, a lower-bound for-

mulation, for example limit surcharge load Q on slope

crest, can be derived in closed form. Based on stress

equilibrium and integral calculation, load Q can be calcu-

lated as

Q ¼
Z
s

qnds ¼
Z
s

kLqqnds ð21Þ

where s denotes the portion of the boundary to which qn is

applied, kLq is the overload coefficient pertaining to a lower-

bound analysis, and qn is the prescribed load.

As stated earlier, geotechnical structures remain

stable when the applied load is no greater than the lower-

bound solution. This means in a lower-bound analysis, the

objective is to seek the maximum failure load. After having

explicitly expressed the four conditions in nodal stress

variables, a lower-bound analysis of slope stability is

transformed to a linear programming model, which gives:

max kLq

s:t:

A1X ¼ B1

A2X ¼ 0

A3X ¼ B3

A4X�B4

8>>>>><
>>>>>:

ð22Þ

in which X ¼ rx1 ry1 sxy1 rx2 ry2 sxy2 � � �
�

rxnp rynp sxynp�T is the vector of unknown stress com-

ponents for a total of np nodes,

A1; B1; A2; A3; B3; A4; B4 are matrices of constraint

coefficients that are assembled from

Ae
1; B

e
1; A

d
2; A

b
3; B

b
3; A

i
4; B

i
4, respectively. Specific

expressions can be found in Appendix B.

Again, the above linear programming model is suited to

a pseudo-static analysis of slope stability or pseudo-dy-

namic analysis at a specific time instant. When considering

a time-dependent dynamic earthquake (acceleration), the

continuous time is discretized to time increments, and in

this case, acceleration time-history is accordingly dis-

cretized. Based on various acceleration values at dis-

cretized time instants, corresponding kLqðtÞ results are

yielded. The optimal pseudo-dynamic lower-bound

(a) (b)

(d)(c)

Fig. 2 A schematic view of elementary analysis and linearized MC criterion for the generation of a statically allowable stress field
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solution is then sought from the following modified

mathematical programming model.

min
t; t2 tstart ;tend½ �

max
X

kLqðtÞ

s:t:

A1X ¼ B1

A2X ¼ 0

A3X ¼ B3

A4X�B4

8>>>>><
>>>>>:

ð23Þ

It is worthwhile pointing out that matrix B1 is time-

dependent, due to the consideration of pseudo-dynamic

seismic forces as body forces. In order to solve the model,

Eq. (23), the interior-point algorithm implemented into

MATLAB is also adopted, to calculate optimal lower-

bound solutions of seismic slope stability.

In FEUB and FELB modelling, some assumptions are

made for ease of simplification. It mainly includes: rigid

failure block without considering volumetric strain, small

deformation which is required to make virtual work prin-

ciple valid, perfectly elastic–plastic soils, and Drucker’s

postulation. Meanwhile, an associated flow rule is also

assumed for soils used in this study.

3 Finite-element limit-analysis of seismic
slope stability

3.1 Slope model containing dual weak
interlayers

It is well known that unexpected uncertainties exist below

ground, such as weak interlayers. In reality, a weak inter-

layer in soil strata may not be infinite in length and have

negligible effects on slope stability when it is far away

from sloping surface. In such case, a proper manner to

account for the dimension and position of weak interlayers

is imperative. For the case of a soil slope, H denotes its

height, and a for slope angle, as shown in Fig. 3. Dual

weak interlayers are mainly considered herein, and a

detailed slope model including the dimension and position

of each weak interlayer is illustrated in Fig. 3. For ease of

distinction, the parameters specific to upper and lower

weak interlayer are additionally denoted with subscript

u and l, respectively. For example, the Mohr–Coulomb

strength parameters and unit weight are represented by ci,

ui and ci (i = u, l). A total of 7 parameters are used to

describe the position and dimension of upper and lower

weak interlayers. Specifically, a projected horizontal length

of lu1 of upper weak interlayer is positioned at a projected

horizontal distance of lu2 measured from the left terminal

of upper weak interlayer to the intersection point on

sloping boundary. Such intersection point has a vertical

distance of Du from the slope toe. As for the lower weak

interlayer, its left side is extended to the left boundary of

the model and its length counts from x = 0 plane with a

projected horizontal length of ll1. Dl denotes the vertical

distance of the intersection point between lower weak

interlayer and x = 0 plane to slope toe. Hereof, some

parameters are normalized by slope height H, i.e., gu1-
= lu1/ H, gu2 = lu2/ H, and gl1 = ll1/ H. Meanwhile, the

upper (lower) weak interlayer is inclined at an angle of bu
(bl) with respect to horizontal plane.

3.2 Upper-bound and lower-bound solutions
of seismic slope stability

The presence of weak interlayers complicates the problem

of slope stability, particularly in conventional limit analy-

sis, owing to the difficulties to construct KAVF and SASF.

A pioneering work is carried out in this study to investigate

the seismic stability of a soil slope containing dual weak

interlayers, using FEUB and FELB analyses. Such analyses

well combine the merits of finite element method and limit-

analysis theorems, becoming powerful to tackle seismic

slope stability issues under weak interlayers. Since FEM is

adopted to construct KAVF and SASF, a typical FE mesh

model with corresponding model parameters is presented

in Fig. 3 as an example. Meanwhile, velocity and stress

boundary conditions must be satisfied in upper- and lower-

bound analyses, respectively. For instance, zero velocity

conditions in normal and tangential directions of side and

bottom boundaries are prescribed in an upper-bound anal-

ysis, vn ¼ us ¼ 0. Apart from non-zero normal stress

boundary for the case of surcharge loading imposed on

slope crest surface, kqðtÞ qn, zero normal and shear stresses

exist on other free boundaries in a lower-bound analysis.

After having generated the mesh, detailed information

of nodes and elements is obtained and then used to form the

linear programming model. Thereof, the overload coeffi-

cient, kUq or kLq , is taken as the objective function in upper-

or lower-bound analysis. In general, FoS is more com-

monly used because it tends to provide a more intuitional

estimate for slope stability. Therefore, the seismic stability

of a soil slope containing weak interlayers is to be evalu-

ated by FoS. Determination of FoS is based on the strength

reduction technique, and iterative algorithm is therefore

necessitated. The main principle for FoS calculation herein

is to compare the optimized overload coefficient computed

from the mobilized soil strength parameters with the pre-

scribed value kq. Based on the definition of kq(ratio of

prescribed surcharge to qn), it has two specific values: kq ¼
0 at the absence of surface surcharge and kq ¼ 1 in the

presence of surcharge. Accordingly, kUq and kLq from upper-
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and lower-bound analysis should be calculated first, prior

to the determination of FoS.

A detailed procedure for the assessment of modified

pseudo-dynamic FoS is shown in Fig. 4 with a flow

chart and elaborated as below. Firstly, read MC strength

parameters, soil cohesion and friction angle in each soil

layer, and let the strength reduction factor, SRF, equal 1.0.

Secondly, compute mobilized strength parameters, and

read other data information including geometric and load

parameters such as soil self-weight, traction force qn, and

time-dependent seismic force qeðtÞ. Thirdly, establish

upper- and lower-bound linear programming models, and

then apply the interior-point algorithm to calculations of

kUq ðtÞ and kLqðtÞ at a specific time instant t. Next, repeat the

above process to calculate all values of kUq ðtÞ and kLqðtÞ
during the period of an earthquake, and select the minimal

value as the optimal solution, kUq;opt and kLq;opt. If kUq;opt
(kLq;opt) is equivalent to kq, the upper-bound (lower-bound)

solution of FoS, FoSU (FoSL), is eventually calculated;

otherwise, repeat from the second step until the equivalent

condition is satisfied, by increasing or decreasing SRF.

In the majority of existing studies, the procedure for

seismic slope stability analysis terminates after having

obtained FoSU or FoSL, in either upper- or lower-bound

analysis. Little research is found to provide both upper- and

lower-bound solutions, particularly when considering

dynamic earthquakes and weak interlayers. Resorting to the

proposed procedure of this study, the true solution of

failure load, for example true FoS of seismic slope

stability, can be estimated. Its true value is theoretically

limited within the range of lower- and upper-bound solu-

tions. Ideally, true solution can be sought when the lower-

bound solution equals the upper-bound, and this is merely

feasible for extremely simple problems. For the case of

complicated issues such as in the presence of weak inter-

layers, narrowing the gap between upper- and lower-bound

solutions is of much interest for researchers, so as to better

estimate seismic slope stability.

4 Comparison and discussion

4.1 Comparison

Validation of the proposed procedure is divided to two

parts: comparison with existing literature for slope stability

under a single weak interlayer, and comparison with

numerical results for seismic slope stability under dual

weak interlayers. Referred to Zolfaghari et al. [33], the

same case example containing complex layering is selected

for comparison, with identical slope geometry and soil

properties. Apart from constant soil unit weight (19 kN/m3)

in each layer, the MC strength parameters vary in different

layers. Effective soil cohesion values are 15, 17, 5 and

35 kPa, and effective friction angles are 20, 21, 10 and 28

degrees, from layer 1 to 4. Layer 3 herein can be regarded

as a weak interlayer which is characterized by much lower

MC strength parameters in contrast to neighboring soils.

FEUB and FELB modelling as introduced earlier are used

λq(t)qn

α

βu

H

lu2 lu1Du
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s)

σn=τs=0
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x

Upper soft band

(cu, φu, γu)

Soil

(c, φ, γ)

Typical mesh

βl

ll1
ηl1=ll1/H

Lower soft band

(cl, φl, γl)

Dl

H=10 m, α=40°, Du=0 m, βu=10°,

ηu1=1, ηu2=0.5, Dl=1 m, βl=5°, ηl1=1

(in lower bound analysis)

L
U

Fig. 3 Sketch of the slope model and typical mesh containing dual soft bands
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to estimate the stability of layering soils, without consid-

ering seismic forces. It can be seen as a special case of the

pseudo-dynamic analysis of seismic slope stability con-

sidering a weak interlayer, with kh = kv = 0.

Based on the preceding analyses, it yields an upper-

bound solution of 1.123 and a lower-bound solution of

1.094 for FoS. Some researchers performed limit equilib-

rium analysis (Morgenstern-Price) to calculate FoS with

different types of optimization techniques. Specifically, a

minimum FoS of 1.24 was obtained using the simple

genetic algorithm (SGA) with a non-circular failure surface

[33]. In Cheng et al. [5], FoS = 1.144 was optimized from

Fig. 4 A flow chart showing the procedure of FEUB and FELB analysis for seismic slope stability
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genetic algorithm (GA), 1.110 from particle swarm opti-

mization (PSO), 1.139 from modified harmony search

(MHS). In Gandomi et al. [7], the best FoS value was

optimized from PSO (1.115), cuckoo search (CS, 1.064),

and levy flight krill herd (LKH, 1.058). Theoretically, the

true FoS is well within the range of [1.094, 1.123], based

on the upper- and lower-bound theorems. On the one hand,

one can note that the FoS calculated from FELB and FLUB

agrees well with the limit equilibrium solutions from cited

references. This to some extent validates the correctness of

the proposed procedure for slope stability analysis con-

taining a weak interlayer, with minor discrepancies

between FoS results. On the other hand, it is proved that

limit equilibrium solutions are neither upper bounds nor

lower bounds, and some results are either greater than the

upper bound or lower than the lower bound. Interestingly,

the development of advanced optimization techniques

tends to yield a small FoS value, from 2005 to 2015. It

demonstrates that the accuracy of limit equilibrium results

is highly associated with optimization algorithms, which in

turn may raise some concerns on the reliability of limit

equilibrium solutions.

Apart from FoS, the finite-element upper-bound analysis

is capable of providing the kinematically admissible

velocity field at limit state by post-processing. As for the

case example in previous comparison, the velocity field is

illustrated in Fig. 5, which can also be used to characterize

the critical failure surface. For ease of distinction, the

failure surface in Gandomi et al. [7] is selected only for

comparison, with the critical failure surface optimized

from the limit equilibrium method. It is found that the

critical failure surface from two approaches is similar in

shape, although the critical failure block simulated from

LKH is a little smaller than that obtained from this study.

Note that, in the presence of a soft band, the failure surface

gradually develops downwards and then penetrates into the

soft band. Afterwards, the failure mass tends to slide along

the bottom of the soft band, which is observed from both

the velocity field and critical failure surface. This is sen-

sible because the soft band provides least resistance to

prevent slope failure, showing a worst condition for slope

stability.

In the presence of earthquakes, seismic forces can be

considered in different manner. Pseudo-static and modified

pseudo-dynamic solutions of FoS are presented in Fig. 6,

which are calculated from FEUB, FELB and FEM and used

for comparison herein. The default parameters of this study

correspond to: H = 10 m, a = 40�, Du = 0 m, bu = 10�,
gu1 = 1, gu2 = 0.5, Dl = 1 m, bl = 0�, gl1 = 3.19; c = cu-
= cl = 18 kN/m3, c = 30 kPa, u = 20�, cu = cl = 10 kPa;

uu = ul; kh = 0.1; kv = 0.5kh, H/TVs = 0.2, Vp = 1.87Vs,

n = 10%. Undoubtedly, seismic slope stability gradually

weakens with the increase in kh, due to increased seismic

forces to destabilize soil slopes. In terms of pseudo-static

FoS, it is worthwhile highlighting that FEM results are well

within the small range of upper and lower bounds, which in

turn validates the applicability of the FEUB and FELB

procedure for pseudo-static analysis of seismic slope sta-

bility. This phenomenon can be observed for both uu = 10�
and uu = 15�. It is substantiated that larger soil friction

angle is favorable for seismic slope stability, owing to

higher soil resistance provided to prevent slope failure.

Interestingly, modified pseudo-dynamic solutions are much

less than the pseudo-static, and this is more pronounced at

larger kh. This is attributed to the fact that at limit state the

magnitude of seismic acceleration and forces is larger from

1020253035 1540

35

40

45

50

LKH

(Gandomi et al., 2015)

This study

Fig. 5 Velocity field from FEUB and critical failure surface from FEUB and limit equilibrium
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the modified pseudo-dynamic approach than that from the

pseudo-static, based on above parameters. In such case, the

use of pseudo-static approach over-estimates seismic slope

stability, which is not conservative in slope design, espe-

cially in earthquake-stricken regions with high intensity.

In FEUB modelling, it is straightforward to obtain the

velocity field and failure surface at limit state, which aids

to reveal the slope failure mechanism in the presence of

weak interlayers. After having optimized FoS, velocity

fields specific to different scenarios are plotted through

post-processing and illustrated in Fig. 7. At the absence of

earthquakes, kh = 0, the results of FoS and velocity field

are not influenced by pseudo-static (P-s) or modified

pseudo-dynamic (MP-d) approach. It is found that the

velocity field (black arrow) obtained based on FEUB

agrees well with the deformation contour from FEM

modelling; Meanwhile, the critical failure surface at

u = 10� is also consistent with the plastic shear strain

band, which further verifies the validity of the FEUB

procedure. Velocity magnitude around slope toe is rela-

tively large, in contrast to other parts, which is also

demonstrated by red deformation contour from FEM. It is

concluded that a rotational-translational failure mechanism

is induced in the presence of weak interlayers, i.e., a

translational mechanism around the lower weak interlayer

and a rotational one far away from the weak interlayer.

When pseudo-static acceleration is increased from 0 to

0.2 g, the failure mechanisms are similar but a larger

failure region is observed at stronger earthquakes. This is

sensible because more driving forces coming from pseudo-

static forces are exerted on slope model to make such slope

fail. The velocity field and critical failure surface are again

in good agreement with FEM results at 0.2 g. When con-

sidering earthquake inputs with modified pseudo-dynamic

approach, the earthquake magnitude would influence the

formation of failure mechanism. Specifically, with an

increase in kh from 0 to 0.2, the failure region below upper

weak interlayer gradually disappears, and the failure sur-

face changes from crossing to following the upper weak

interlayer. kh = 0.1 is an intermediate case where the

velocity below upper weak interlayer is much less than the

above. Meanwhile, the failure width on slope crest surface

gradually increases with kh. Overall, the failure region at

limit state is ultimately determined by mobilizing the soils

to reach a minimum FoS.

4.2 Discussion

Pseudo-static and modified pseudo-dynamic approaches

are separately used to estimate seismic slope stability in

this study. Effects of two seismic inputs on FoS are dis-

cussed here, and P-s and MP-d solutions of FoS are shown

in Fig. 8, with the above default parameters and uu = 10�.
In order to investigate pseudo-dynamic effects, non-di-

mensional H/TVs is adopted. Undoubtedly, P-s FoS solu-

tions remain constant irrespective of H/TVs ratios, which

gives 1.117 and 1.17 from FELB and FEUB analyses,

respectively. It is as expected that MP-d solutions of FoS

vary nonlinearly with H/TVs. An increase of H/TVs from

0.03 to 0.25 leads to a significant reduction in FoS, giving a

minimal lower- and upper-bound solution of 0.673 and

0.707, respectively. Such minimal solution corresponds to

the worst case for seismic slope stability, resulting from the

resonance effect when earthquake frequency equals the

first natural frequency of soils relating to shear waves.

Afterwards, FoS is rocketed to 1.273 and 1.333 at H/

TVs = 0.345. When H/TVs ratio continues to increase, FoS

value experiences a downward and upward trend regularly.

It is worth pointing out that H/TVs = 0.4675 corresponds to

the case where earthquake frequency equals the first natural

frequency of soils relating to primary waves. It is therefore

inferred that minimum FoS solutions can be obtained under

resonance conditions where horizontal or vertical acceler-

ations are maximally amplified. H/TVs ratios varying from

0.03 to 0.8 are able to cover quite a large range of earth-

quake signal (frequency range of 0.3–8 Hz when Vs =

100 m/s), and hence such a range would suffice to con-

sider its effects on seismic slope stability. In contrast to the

extremely simplified P-s approach, the MP-d approach

carries more dynamic information including frequency,

wave velocities, soil damping, temporal and spatial vari-

ables. The corresponding pseudo-dynamic solutions are

therefore likely to be more reliable. Based on the results of

Fig. 8, pseudo-static solutions due to the loss of detailed

dynamic information of earthquakes are either under-esti-

mated or over-estimated in different cases. It is concluded

that the accuracy of seismic slope stability solution is

Fig. 6 Slope safety factor against different earthquake inputs and

research methodologies
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significantly related to the way to consider earthquake

inputs, and the MP-d approach is preferred to the simple

pseudo-static.

Different from existing studies where either upper- or

lower-bound solution is yielded only, this study is capable

of estimating the true solution of seismic slope stability.

For the previous case, the true FoS is theoretically within

the range of FELB and FEUB FoS curves, as shown in the

shadow area of Fig. 8. The narrower the gap between upper

and lower bounds, the closer to the true solution. It is

calculated that the discrepancy ranges from 4.0 to 5.0% for

the MP-d analysis, and it gives a constant difference of

4.5% in the P-s analysis. Relatively, the above difference is

satisfactory for slope stability analysis, particularly in the

presence of earthquakes and weak interlayers. It also

indicates that the finite-element limit-analysis method aids

to better estimate the seismic stability of a soil slope

containing dual weak interlayers. This is the unrivalled

advantage of this method over other approaches. Mean-

while, FEM modelling in Abaqus is also used to calculate

FoS, using P-s approach for simplicity. FoS = 1.154 is

simulated from FEM, which is 1.4% less than the P-s

upper-bound solution, demonstrating the validity of the

FEUB analysis.

Velocity fields against different H/TVs ratios are pre-

sented in Fig. 9, from P-s and MP-d analyses. In the P-s

analysis, the critical failure surface well matches the plastic

shear strain band simulated from FEM modelling. It again

verifies the correctness of the FEUB modelling in P-s slope

stability analysis and the rationality of a rotational-trans-

lational failure mechanism induced in the presence of weak

interlayers. Critical failure surface crosses the finite upper
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Fig. 7 Effects of earthquake inputs on slope failure mechanisms at limit state
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approaches
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weak interlayer and then develops downwards to follow the

bottom of the lower weak interlayer. In such case, soils

close to lower weak interlayer demonstrate translational

movement, and rotational movement for other soils. The

static case also proves the applicability of a rotational-

translational mechanism to slope stability analysis consid-

ering a weak interlayer as assumed in Huang et al. [11].

Figure 9 demonstrates that H/TVs ratio has an obvious

effect on the critical failure surface. It is noted that at H/

TVs = 0.03 the failure mechanism is quite close to the

pseudo-static one, apart from similar FoS solutions in

Fig. 8. This makes sense because such case corresponds to

a very slow earthquake disturbance, demonstrating an

insignificant dynamic earthquake and hence resembling the

pseudo-static case. For a general case, e.g., H/TVs = 0.2,

the failure mechanism (failure surface) is determined by

the combined effects of horizontal and vertical seismic

accelerations. When H/TVs is increased to 0.25, the failure

surface gradually changes to develop along the upper weak

interlayer with a long failure width on slope crest. This is

attributed to the fact that the horizontal acceleration dom-

inates in the determination of minimal FoS. Comparatively,

a deep-seated failure surface is developed to the bottom of

lower weak interlayer at H/TVs = 0.4675, because in this

case the vertical acceleration is maximally amplified and

hence dominates the formation of failure mechanism. For

the case of H/TVs = 0.75 where earthquake frequency

equals the second natural frequency of soils relating to

shear waves, the resonance effect attenuates exponentially

with less amplification in horizontal seismic forces. Part of

soils below upper weak interlayer are also mobilized to

reach critical state under the combined effects of horizontal

and vertical accelerations, although the critical velocity

field is much less than the above.

Finite-element limit-analysis method combines the

characteristics of FE modelling and limit analysis, and note

that in FEM the mesh does have some effects on the

accuracy of results. In an effort to discuss the mesh effect,

different mesh sizes including Mesh 1 (816 elements),

Mesh 2 (1616 elements), Mesh 3 (2460 elements) and

Mesh 4 (3248 elements) are considered herein, as shown in

Fig. 10. Employing the FEUB and FELB procedures in the

preceding section, the upper and lower bound solutions are

listed in Table 1 for comparison, considering P-s and MP-d

seismic effects. Manifestly, the use of very coarse mesh

(Mesh 1) tends to overestimate upper bound results but

underestimate lower ones. When mesh elements increase,

the difference between upper (lower) bound solutions

obtained from Mesh 2, 3, 4 gradually decreases, and it is

found that the results from Mesh 3 is very close to those of

MP-d FEUB

H/TVs=0.4675

(e)

(a)

P-s FEUB

(b)

MP-d FEUB

H/TVs=0.03

(c)

(f)

MP-d FEUB

H/TVs=0.75

(d)

MP-d FEUB

H/TVs=0.25

+1.479e+01
+1.364e+01
+1.248e+01
+1.132e+01
+1.017e+01
+9.010e+00
+7.854e+00
+6.698e+00
+5.542e+00
+4.385e+00
+3.229e+00
+2.073e+00
+9.169e-01
+0.000e+00

PEMAG
(Avg: 75%)

MP-d FEUB

H/TVs=0.20

Fig. 9 Velocity field and failure surface at limit state under different scenarios
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Mesh 4. Therefore, the use of a fine mesh tends to seek a

more accurate result. It is also worthwhile pointing out that

too many mesh elements would require more computa-

tional efforts.

Another parameter that affects the accuracy of numeri-

cal results in FEUB and FELB calculations is time incre-

ment chosen in an optimization process. Provided that

uu = ul = 15�, effects of time increment Dt on MP-d upper

and lower bound solutions are investigated, and

(a) Mesh 1-816 (b) Mesh 2-1616

(c) Mesh 3-2460 (d) Mesh 4-3248

Fig. 10 Four types of mesh with different mesh elements in finite-element limit analysis

Table 1 Mesh effects on accuracy of upper and lower bound seismic solutions

Cases Methods Mesh types

Mesh 1-816 Mesh 2-1616 Mesh 3-2460 Mesh 4-3248

kh = 0.1

uu ¼ ul ¼ 10�
MP-d Upper 1.002 0.993 0.989 0.988

Lower 0.909 0.932 0.940 0.938

P-s Upper 1.191 1.170 1.170 1.168

Lower 1.091 1.114 1.117 1.118

kh = 0.2

uu ¼ ul ¼ 10�
MP-d Upper 0.711 0.706 0.702 0.700

Lower 0.641 0.659 0.667 0.665

P-s Upper 0.995 0.983 0.984 0.982

Lower 0.921 0.934 0.940 0.938

kh = 0.1

uu ¼ ul ¼ 15�
MP-d Upper 1.109 1.102 1.098 1.097

Lower 1.035 1.049 1.052 1.052

P-s Upper 1.320 1.300 1.300 1.299

Lower 1.233 1.242 1.246 1.247

kh = 0.2

uu ¼ ul ¼ 15�
MP-d Upper 0.791 0.786 0.783 0.783

Lower 0.732 0.748 0.751 0.752

P-s Upper 1.116 1.103 1.104 1.102

Lower 1.041 1.053 1.055 1.056
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corresponding results are shown in Table 2 against differ-

ent H/TVs and kh. It is found that the selection of T/300 to

T/10 has certain effects on the accuracy of MP-d results,

especially under large time increment, but negligible

effects at small time increment. Overall, the result gradu-

ally converges to a specific value with the decrement of

Dt. Nonetheless, it would consume more computational

time when choosing a much smaller Dt. In order to balance

the results’ accuracy and computational efficiency, T/30 as

selected in this study is proved to be appropriate.

5 MP-d FEUB and FELB solutions

Figure 11 portrays the relationship between MP-d FoS

versus bu, gu2 and kh, based on the above default parame-

ters and uu = ul = 10�. It is again substantiated that an

increment of kh leads to a significant reduction in FoS,

owing to increased driving forces. At the absence of

earthquakes, FoS at gu2 = 0 gradually decreases when the

upper weak interlayer inclination is increased from 0 to a

specific angle, and afterwards FoS continues to go up.

However, a marginal decrement in FoS is observed at

gu2 = 0.5. When kh value is increased to 0.1 or 0.2, the

downward trend at gu2 = 0.5 becomes gradually obvious,

and the overall change pattern of FoS profile is analogous

to kh = 0, with the increase in angle bu. Note that the

upper- and lower-bound FoS profiles are similar, with less

than 5% difference between the two. Some velocity fields

at limit state are plotted to better interpret the upper-bound

results, as illustrated in Fig. 12 where kh = 0.1. For a

horizontal upper weak interlayer with gu2 varying from 0 to

0.5, more soils are mobilized to reach the limit state, and

the critical failure surface is therefore likely to be devel-

oped to the lower weak interlayer. Upper weak interlayer is

fully covered in the failure block. An increase of its

inclination would reduce the internal energy dissipation

rates because the velocity field in upper soils tends to

decrease, thereby yielding a decreasing FoS. At a fixed gu2
value (e.g. 0.5), the failure mechanism is evolved from a

deep-seated failure to a localized failure on sloping surface,

when bu steepens from 0� to 20�. Due to less internal

dissipation rates provided by weak interlayers, lower MP-d

FoS solutions are accordingly induced.

The combined effects of gu1 and bl on seismic slope

stability are presented in Fig. 13 considering uu = ul-

= 15�. Overall, MP-d FoS solutions experience a down-

ward trend with an increase of gu1. Note that the FoS

profile can be categorized to three different sections: a

gradual (at bl = -5�) or minor (non-negative bl) decrease at
small gu1, a significant drop in the middle range of gu1, and
lastly a gradual convergence section. In the first section, the

failure surface is developed to lower weak interlayer, and

upper weak interlayer is fully buried. This is why a small

increase in gu1 has minor effects on FoS. The obvious

reduction of FoS may be attributed to a transition

Fig. 11 Upper- and lower-bound solutions of MP-d slope safety factor

against bu, gu2 and kh

Table 2 Effects of time increment on accuracy of MP-d upper and lower bound seismic solutions

Cases Methods Time increment Dt

T/10 T/20 T/30 T/50 T/100 T/300

H/TVs = 0.2, kh = 0.1 MP-d Upper 1.112 1.098 1.098 1.098 1.098 1.098

MP-d Lower 1.066 1.052 1.052 1.051 1.052 1.051

H/TVs = 0.2, kh = 0.2 MP-d Upper 0.803 0.782 0.783 0.782 0.782 0.782

MP-d Lower 0.768 0.750 0.751 0.750 0.750 0.750

H/TVs = 0.3, kh = 0.1 MP-d Upper 1.241 1.241 1.241 1.241 1.240 1.240

MP-d Lower 1.192 1.192 1.192 1.192 1.191 1.191

H/TVs = 0.3, kh = 0.2 MP-d Upper 0.894 0.894 0.894 0.894 0.894 0.894

MP-d Lower 0.859 0.859 0.859 0.859 0.859 0.858
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mechanism from a deep-seated failure to a shallow failure,

i.e., the failure surface following the lower weak interlayer

gradually moves upwards to follow upper weak interlayer

only. Afterwards, the FoS is directly affected by the length

of upper weak interlayer and not associated with the lower

one, thereby yielding a descending FoS and enlarged fail-

ure area, with less internal dissipation rates produced along

lengthened upper weak interlayer. It is found that FoS

curves gradually converge with increasing gu1. It can be

reasonably inferred that FoS would eventually remain

unchanged if gu1 keeps increasing, regardless of bl. This is
because the critical failure mechanism would not be infi-

nitely affected by the length of upper weak interlayer. For

the case of no upper weak interlayer, gu1 = 0, it is noted

that FoS at bl = - 5� is much greater than that for non-

negative bl. This can be well interpreted by the failure

mechanism as shown in Fig. 14a and b where a large

portion of soils near lower weak interlayer produces neg-

ative external work rates by gravity for the former case. For

non-negative bl, gravity-induced work rates are almost

positive with negligible negative values around or ahead of

slope toe, in such active failure. The failure mechanism in

Fig. 14c proves that at small gu1 the overall failure region

is similar as that without an upper weak interlayer. When

gu1 continues to increase, the failure block is gradually to

be truncated by the upper weak interlayer, and the lower

weak interlayer’s effect gradually disappears when gu1
exceeds a specific value, as illustrated in Fig. 14d and e. As

for the failure mechanism in Fig. 14f where a portion of

soils are mobilized between two weak interlayers with a

small velocity field, this shows a transition case and indi-

cates that FoS would continue to decrease until a lowest

value which is completely not affected by the lower weak

interlayer and gu1.
As for the position of upper and lower weak interlayers,

a total of 7 parameters are necessitated, and 4 parameters’

effects on seismic slope stability are discussed above. For

completeness the remaining 3 parameters including gl1, Du

and Dl, are investigated herein, and their effects on slope

safety factor are portrayed in Fig. 15 where above default

parameters and uu = ul = 15� are considered. For the case
of Du = 2 m and Dl = 1 m at very small gl1, the outcome

of FoS only has a minor change, because the failure

mechanism does not develop to the lower weak interlayer

(Fig. 16a). It is observed that slope safety factor undergoes

a significant drop at relative small gl1, for the case of Du-

= 4 m, Dl = 1 m and Du = 2 m, Dl = 0. This is stemmed

from the fact that when the critical failure surface could

(c) (d)

(b)(a)

ηu2=0.0

βu=0°

ηu2=0.50

βu=10°

ηu2=0.50

βu=20°

ηu2=0.50

βu=0°

Fig. 12 Critical velocity field and failure surface against gu2 and bu

Fig. 13 Upper- and lower-bound solutions of MP-d slope safety factor

against gu1 and bl
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reach the lower weak interlayer, an increase in the length of

lower weak interlayer is likely to induce a larger failure

block (Fig. 16b), producing less soil resistance and hence

lower safety factor, in contrast to smaller gl1. However,
such gl1 effect is not infinite and after it exceeds a specific

value, the failure mechanism would not change at limit

state (Fig. 16c). In such case, additional increase in gl1 has

no influence on safety factor which is therefore converged

to a constant. Note that at fixed gl1 and Du, a much less FoS

is yielded when the lower weak interlayer shifts 1 m

upwards, apart from at very small gl1 where a localized

failure happens only. This is sensible because: (1) at small

gl1 the entire lower weak interlayer is fully mobilized and

the upper weak interlayer may be partially crossed to reach

the limit state, and an increase in gl1 means an expanded

failure region with less soil resistance stemming from weak

interlayers; and (2) in contrast to that at Dl = 1 m, more

resistance is produced by parent soil due to increased

velocity discontinuities, for the latter case, which can be

well interpreted from the failure mechanism in Fig. 16d. In

contrast, when the upper weak interlayer shifts 2 m

upwards, FoS solutions are manifestly raised, and this is

particularly pronounced at small gl1. Since the upper weak

interlayer exists close to slope crest surface, a toe or below-

the-toe failure is more likely to be induced at limit state,

thereby having more soil resistance from parent soil and a

larger failure area (Fig. 16e). For ease of comparison, a

lower weak interlayer is considered only and the results are

proved to be the highest, in contrast to above cases. This is

because less internal rates of work are produced in upper

weak interlayer, even if the overall failure region is the

same. This also demonstrates that existence of additional

weak interlayers above is not favorable for slope stability.

(b)

ηu1=0.0

βl=5°

ηu1=0.0

βl=-5°

(a)

(e)

ηu1=2.0

βl=-5°

(f)

ηu1=2.0

βl=10°

(c)

ηu1=0.5

βl=5°

(d)

ηu1=2.0

βl=5°

Fig. 14 Critical velocity field and failure surface against gu1 and bl

Fig. 15 Upper- and lower-bound solutions of MP-d slope safety factor

against gl1, Dl and Du
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The change pattern of FoS is similar as above, and the

failure mechanism is highly associated with the length of

lower weak interlayer (Fig. 16f).

6 Conclusions

This study proposed a finite-element limit-analysis proce-

dure for the assessment of seismic slope stability with

considerations of dual weak interlayers. Modified pseudo-

dynamic approach is principally adopted to represent hor-

izontal and vertical accelerations, apart from the pseudo-

static. In the presence of weak interlayers within soils, the

scientific challenge lies in the construction of a kinemati-

cally admissible velocity field and a statically allowable

stress field, within the framework of plasticity theory. In an

effort to tackle this issue, finite element method is used to

discretize the whole domain of interest into infinitesimal

elements. Velocity and stress fields are therefore generated

by following corresponding conditions. Within the dis-

cretized velocity field and stress field, complicated pseudo-

dynamic forces are readily considered in work rate calcu-

lations (upper-bound analysis) and stress equilibrium

equations (lower-bound analysis). Combining limit analy-

sis theorems with finite element method, seismic stability

analysis of soil slopes in the presence of dual weak inter-

layers is transformed to linear programming models. Inte-

rior-point algorithm is implemented into MATLAB to

optimize the upper- and lower-bound formulations. P-s and

MP-d solutions of FoS are sought after optimization. It is

worthwhile highlighting that both upper- and lower-bound

solutions can be calculated in this study, aiding to better

estimate the true solution of seismic slope stability, which

is limited to the range of lower and upper bounds. This is

the intrinsic advantage of the proposed procedure over

other approaches including FEM and limit equilibrium.

Therefore, FoS solutions obtained herein are more mean-

ingful, providing a reliable guidance for the design of soil

slopes containing dual weak interlayers at ultimate bearing

capacity state. Some key findings are summarized as.

(1) MP-d approach tends to yield a more reliable

solution for seismic slope stability, because more

detailed information such as shear and primary wave

properties and soil damping is considered. In contrast

to the pseudo-static, a smaller FoS tends to be

computed from a MP-d analysis, due to amplified

seismic forces. It indicates that the use of P-s

approach may yield unconservative solutions, and

hence is unsafe for slope design.

(a)

ηl1 =0

      Dl =1 m

      Du =2 m

(b)

ηl1 =0.5 

      Dl =1 m

      Du =2 m

(c)

ηl1 =2

      Dl =1 m

      Du =2 m

(d)

ηl1 =0.5

      Dl =0 m

      Du =2 m

(e)

ηl1 =0.5

      Dl =1 m

      Du =4 m

(f)

ηl1 =2

      Dl =1 m

Fig. 16 Critical velocity field and failure surface against gl1, Dl and Du
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(2) In the presence of dual weak interlayers, FoS is

complicatedly influenced by the combined effects of

two weak interlayers. Overall, increase in gu1, bl, gl1
and decrease in Du, Dl lead to a reduction of FoS, to

varying extent. The key reason lies in the reduced

soil resistance provided by weak interlayers, in

contrast to patent soil, demonstrating that the pres-

ence of weak interlayers is unfavorable for slope

stability which is also highly associated with the

position of dimension of weak interlayers.

(3) Velocity fields at limit state provides a sound avenue

to reveal the failure mechanism of slope instability

under the effects of weak interlayers and earth-

quakes. The results demonstrate a rotational-transla-

tional failure mechanism in the presence of weak

interlayers. Meanwhile, the critical velocity field can

also be used to better interpret upper-bound

solutions.

(4) In both P-s and MP-d analyses, FEUB and FELB

modelling are performed for seismic slope stability

analysis, aiming to better estimate the true solution.

Overall, the results show around 5% difference

between upper- and lower-bound solutions, demon-

strating a sound estimate of true FoS. This is the core

advantage of the proposed procedure over other

approaches, and hence is recommended to be applied

to other geotechnical stability problems in future.

Appendix A: Finite-element upper-bound
analysis

Ae
11 ¼

1

2Ae

be1 0 be2 0 be3 0

0 ce1 0 ce2 0 ce3
ce1 be1 ce2 be2 ce3 be3

2
4

3
5 ðA1Þ

Ae
12 ¼

M1 M2 � � � Mk � � � Mp

N1 N2 � � � Nk � � � Np

R1 R2 � � � Rk � � � Rp

2
4

3
5 ðA2Þ

Ad
23 ¼

Td
1 0

0 Td
1

� �
; Td

1

¼ sin hd � cos hd � sin hd cos hd

� cos hd � sin hd cos hd sin hd

� �
ðA3Þ

Ad
24 ¼

Td
2 0

0 Td
2

� �
; Td

2 ¼ tanu tanu
1 �1

� �
ðA4Þ

Ab
3 ¼

Tb
3 0

0 Tb
3

� �
; Tb

3 ¼ cos hb sin hb

� sin hb cos hb

� �
ðA5Þ

Bb
3 ¼ ubs1 vbn1 ubs2 vbn2

� �T ðA6Þ

where Ae is the area of a random element e (Fig. 1a),

be1 ¼ ye2 � ye3, be2 ¼ ye3 � ye1, be3 ¼ ye1 � ye2,

ce1 ¼ �xe2 þ xe3,c
e
2 ¼ �xe3 þ xe1, ce3 ¼ �xe1 þ xe2, with (xe1,

ye1), (x
e
2, y

e
2), and (xe3, y

e
3) being the coordinates of three

nodes in element e. For an external linearization of the

MC failure criterion with p planes, Mk ¼ cosð2kp=pÞþ
sinu,Nk ¼ � cosð2kp= pÞ þ sinu,Rk ¼ 2 sinð2kp=pÞ, k ¼
1; 2; � � � ; p. hd is the angle of velocity discontinuity (e.g.,

edge d) inclined to x-axis as shown in Fig. 1b. hb is the

angle of a random boundary (e.g., boundary b) with respect

to x-axis as shown in Fig. 1c. ubsi and vbni denote the pre-

scribed tangential and normal nodal velocity at node i

(i = 1, 2), respectively.

Ce
i1 ¼ 2Aec cosu½ 1 1 � � � 1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

p

� ðA7Þ

Cd
i2 ¼

1

2
cld½ 1 1 1 1 � ðA8Þ

Ce
e1 ¼

Ae

3
0 c 0 c 0 c½ � ðA9Þ

Cq
e2 ¼

lq

2
0 qn 0 qn½ � ðA10Þ

Ce
e3 ¼

Ae � c
3

khðt; yÞ kvðt; yÞ khðt; yÞ kvðt; yÞ khðt; yÞ kvðt; yÞ½ �
ðA11Þ

where ld denotes the length of a velocity discontinuity (e.g.,

d), lq is the length of an edge (e.g., q) where traction force

qn acts.

Appendix B: Finite-element lower-bound
analysis

Ae
1 ¼

1

2Ae

b1 0 c1 b2 0 c2 b3 0 c3
0 c1 b1 0 c2 b2 0 c3 b3

� �
ðB1Þ
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1 ¼ Xe

x Xe
y

� �T ðB2Þ
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2 ¼

Td �Td 0 0

0 0 Td �Td

� �
; Td

¼
sin 2hd cos 2hd � sin 2hd

� 1

2
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2
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" #
ðB3Þ
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Ab
3 ¼

Tb 0

0 Tb

� �
; Tb

¼
sin 2hb cos 2hb � sin 2hb

� 1

2
sin 2hb

1

2
sin 2hb cos 2hb

" #
ðB4Þ

Bb
3 ¼ qbn1 tbs1 qbn2 tbs2

� �T ðB5Þ

Ai
4 ¼

m1 m2 � � � mk � � � mp

n1 n2 � � � nk � � � np
r1 r2 � � � rk � � � rp

2
4

3
5
T

ðB6Þ

Bi
4 ¼ 2c cosu cosðp=pÞ½ 1 1 � � � 1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

p

�T ðB7Þ

where Ae is the area of a random element e (Fig. 2a),

be1 ¼ ye2 � ye3, be2 ¼ ye3 � ye1, be3 ¼ ye1 � ye2,

ce1 ¼ �xe2 þ xe3,c
e
2 ¼ �xe3 þ xe1, ce3 ¼ �xe1 þ xe2, with (xe1,

ye1), (x
e
2, y

e
2), and (xe3, y

e
3) being the coordinates of three

nodes in element e. Xe
x ; X

e
y are body stress components in

x- and y-direction. hd is the angle of interface d with

respect to x-axis (Fig. 2b). hb is the angle of edge b inclined
to x-axis (Fig. 2c). qbn1; t

b
s1 (q

b
n2; t

b
s2) represent nodal normal

and shear stresses at the node 1 (node 2) of edge b. For an

internal linearization of the Mohr-Coulomb criterion with

p planes, mk ¼ cosð2kp=pÞþ sinu cos ðp=pÞ,nk ¼ � cos

ð2kp=pÞ þ sinu cosðp=pÞ, rk ¼ 2 sinð2kp=pÞ,ðk¼1; 2; � � � ;
pÞ.
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14. Michalowski RL (1995) Slope stability analysis: a kinematical
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