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Abstract
Cemented granular materials (CGMs) are multi-phase materials consisting of a skeleton of solid particles and a cement

phase completely or partially filling the voids among the particles. Although CGMs have been increasingly used in

geotechnical applications, their mechanical behaviour has not been clearly understood yet. Peridynamics is a numerical

method that can accurately simulate the damage/failure process in solid materials only based on inherent material prop-

erties. However, it has limited capability for modelling complicated materials like CGMs. In this paper, a novel peridy-

namics model is developed to remove the restrictions and investigate the mechanical behaviours of CGMs with different

volume fractions of cementitious phase. The irregularly shaped particles are created based on X-ray scanning of rock

particles. Key mechanical phenomena including inter-particle frictional contact, distribution of cement bonds and cement

clogs between particles are considered in the model. The simulation results in this paper are supported by experimental

tests, showing that the mechanical parameters of CGMs vary significantly with change in the cement volume fraction. For a

small cement volume fraction up to 2%, pure cement bonds control the overall behaviour of CGMs. From 2 to 12%, the

bulk behaviour of cement clogs affects CGMs, and after 12%, cement bonds and clogs with defects control the behaviour

of CGMs. This peridynamics model is capable of modelling the unconfined compressive strength and Young’s modulus of

CGMs under a large variation of cement ratios.
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1 Introduction

Cemented granular materials (CGMs) are of great impor-

tance in engineering construction. CGMs consist of a

skeleton of densely packed particles and cohesive materials

filling the pores completely or partially [55]. CGMs can be

found in different forms and scales such as mortars, con-

cretes, asphalts [27], grouted soils [5], cemented sands,

sedimentary rocks and some biomaterials (e.g. wheat

endosperm) [1] ranging from meso- to macroscales [25].

Both the contact force field between particles [3] and

cohesive materials may affect the stress distribution to a

high extent and control overall mechanical behaviour of

CGMs. Therefore, in addition that the matrix governs the

cohesive force field between particles, its bulk behaviour is

a determinative factor in overall behaviour of CGMs; thus,

the behaviour of CGMs is more complicated over cohesive

granular materials [57]. Numerous methods have been

proposed to describe the mechanical behaviour of CGMs

such as experimental methods [10, 44, 60], theoretical

methods [36, 52] and numerical methods [15]. Topin et al.

have recognized four dominant features in mechanism of

CGM behaviour, including: (1) cohesion between matrix

and particles, (2) the arching effect whereby weekly

stressed zones are initiated and propagated through CGM

bulk, (3) partially filled pores leading to frictional beha-

viour of contact zones and (4) particle jamming whereupon

the stress concentration and particle crushing may happen.

It has been indicated that even a small change in volume of

cohesive matrix may strongly affect the strength and

stiffness of CGMs [14]. Thus, the complex mechanical
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behaviour of CGMs has been a great challenge in numer-

ical studies.

Nnumerical methods for simulation of CGMs may be

broadly classified into homogenization/continuum methods

and discrete methods. Regarding the scale of simulations,

Shen et al. [46] have categorized these numerical methods

into three major groups, including (1) macroscopic phe-

nomenological models such as modified elastic–plastic

models which treat CGMs as a continuous single-phase

material, (2) double-phase mixture models and (3)

micromechanical-based models in which CGMs are simu-

lated based on integration of microscopic mechanical fea-

tures of each component.

Many efforts have been ever made in modelling CGMs

using macroscopic theoretical constitutive models,

homogenization theories and numerical methods based on

classical continuum mechanics (CCM), for example, the

traditional finite element method (FEM) [9]. Some

approaches have been developed to simulate initiation and

propagation of cracks and failure processes in homoge-

nized CGMs or continuum cement-based materials like

concrete using CCM-based methods such as cohesive zone

model (CZM) [13, 21], lattice element method (LEM)

[1, 10] and extended finite element method (XFEM)

[32, 33]. In CZM, a cohesive zone is presumed in front of

crack initiation point. Once the stress level is reached to a

threshold, crack initiates and the stress level decreases as

the crack propagates and the damage zone grows. CZM and

LEM are highly mesh dependent and become less com-

putationally efficient as the number of elements increases.

To overcome this drawback, XFEM has been developed

[8, 19] in which enrichment functions with additional

degrees of freedom are embedded in FEM with nodes or

elements to make it capable of modelling initiation and

propagation of cracks in a continuum material. However,

the selection of the enrichment functions and crack prop-

agation criteria is still an obscure challenge. Moreover, the

mechanism of these methods in controlling crack coales-

cence and branching as well as multiple cracks propagation

is still ambiguous [54]. The main problem with continuum-

based methods is that once the fracture is initiated, singu-

larities arise near separated parts of solids. Extra efforts are

often needed to solve the problem with singularities. On

the other hand, the homogenization methods describe a

CGM as a single-phase continuum material and approxi-

mates macroscopic responses of a CGM by homogenizing

the properties of particles and cement in a representative

volume element (RVE). The methods cannot be accurate

enough to simulate the complex discontinuous nature and

highly heterogeneous load distribution within the media

[23].

Various numerical studies on CGMs have been carried

out using discrete methods. In discreet methods, local

microscale phenomena are considered to predict the ani-

sotropic response of CGMs based on the geometries and

heterogeneous properties of the individual phases whereby

a more accurate predication of damage process in CGMs

can be achieved. For example, discrete element method

(DEM) [7] is known as one of the commonly used

numerical methods for modelling CGMs in the form of

rigid particles connected to each other by cement bonds

[6, 27, 46, 53, 59]. DEM is relatively simple to use and

computationally inexpensive. It is also able to upscale

micromechanical phenomena to macroscale simulations by

a multi-scale method. For example, the FEMDEM has been

proposed to combine the continuum simulation with the

discrete modelling, where the FEM solves the boundary

value problem of a macroscopic model and DEM is used

for microscopic behaviour of the CGM [38, 58].

Two types of bonds can be easily modelled in DEM:

parallel bonds for cement bond formed in the physical

contact point between two contacting particles and serial

bonds in which cement bond is placed in between two

separated particles [47]. However, DEM is difficult to

model the bulk behaviour of cement that fills in the void

space among a cluster of particles. The cement ‘‘clogs’’, as

termed in this paper, play an important role in controlling

the mechanical behaviour of the CGM [1]. In addition,

damage and failure processes in DEM are simulated by

breakage of the bonds using analytical [56] or experimental

[26] constitutive models. These constitutive models often

require extra parameters to fit to real damage/failure pro-

cesses. Another limitation of DEM is that it is difficult to

model irregular particle shapes, so that simple geometrical

shapes are often adopted, e.g. 2D circular/ellipsoidal

shapes or 3D spherical/oval shapes. ‘‘Clumps’’ of over-

lapping spheres have been developed in DEM as a remedy

to solve this problem [18]. However, the clumped particles

are considered as rigid bodies, and a proper cement bond

model for this type of model (especially for modelling

‘‘clogs’’) is yet to be developed.

There are some non-local continuum-based methods that

can provide solutions to simulate the mechanical behaviour

and damage/failure process for solid materials in an engi-

neering scale [40, 43, 63]. PD is a meshless non-local

integral-based numerical method developed by Silling [50]

in which singular partial derivatives do not arise as dis-

continuities initiate and propagate in continuum solids.

Instead, the force–displacement calculations of a material

point are integrated over its neighbourhood [49]. There-

fore, PD has been a suitable method to model dam-

age/failure processes in continuum solids [12]. It has been

shown that PD is able to predict important characteristics

of dynamic fracture propagation including fracture

branching, fracture path and propagation speed [20]. Also,
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no external constitutive model is required in PD to locate

crack tips and determine crack propagation and direction.

There are many applications of PD among the literature.

A comprehensive review of different engineering applica-

tions of PD has been collected in [24]. Dihel et al. surveyed

experimental applications for validation of the bond-based

and the state-based PDs [11]. Many practical uses of PD for

the homogeneous and heterogeneous cemented materials

have been reported. For example, 2D [22, 23, 48] and 3D

[28, 30, 37, 45] models of PD for simulation of the

mechanical behaviour and the damage/failure process of

cement pastes and concretes with ideally spherical particles

have been provided. The results of PD simulations of the

three-point load test of notched mortar beams are compared

to those of XFEM simulations, showing that PD is rea-

sonably able to simulate the failure process with fewer

parameters than XFEM [8]. The bond-based PD [19] and

the state-based PD [54] have also been upscaled in a FEM

framework to model progressive cracking through cohesive

brittle materials. A two-dimensional coupled PD/DEM has

been provided in [25] to model the behaviour of granular

materials. Some couplings of PD with smoothed particle

hydrodynamics (PD-SPH) have been reported among the

literature for geomaterials [16, 17, 41].

However, the PD method has limitations to model dis-

crete systems such as densely packed granular materials

because inter-particle contact cannot be accurately simu-

lated. As a remedy, some hybrid methods were used to

model a single particle crushing using PD and physics

engine for inter-particle contact [62]. Recently, a DEM-like

contact model has been developed for PD and used in some

simple 2D simulation [25].

In this paper, a new PD model with an innovative

contact algorithm is developed to simulate cemented

granular materials with complex shapes. Development of

this peridynamics model makes it able to employ peridy-

namics as a continuum-based method for the simulation of

highly heterogenous materials like CGMs. As shown in

Fig. 1, different phenomena in CGMs can be simulated

using the model, including the effect of cement bonds

surrounding contact points and bulk behaviour of cement

clogs within the void space enclosed by multiple particles.

In addition, the irregular shapes of the granular particles

are simulated accurately and efficiently. The developed

model can demonstrate initiation and propagation of

cracks, and damage processes of CGMs only based on the

material properties of different. The present model can

continuously simulate all phases in CGMs without the need

to couple with the other homogenization/discrete numerical

methods. Also, the effect of pre-existing discontinuities

and defects in different phases is considered. The results of

the model are compared to laboratorial tests of CGMs with

different cement volume fractions.

This article is organized as follows. In Sect. 2, the

fundamentals of PD model are described along with the

formulation of ordinary state-based PD material model,

damage model and time integration scheme. The illustra-

tion of a new contact model is provided further in this

section. In Sect. 3, the process of experimental tests is

illustrated including constructing CGM samples and tests

process. Section 4 is dedicated to implementation of the

PD simulations to conduct different tests and compare the

results to those of experimental.

2 Fundamentals of PD modelling

In this section, details of elastic state-based material model,

damage model, the touch-aware contact model and time

integration scheme for PD simulations are provided.

A PD solid material is discretized into a set of material

points with certain volume and mass so that the total vol-

ume of all material points equals to the volume of the solid.

Each material point has a neighbourhood of adjacent

material points within a radius of ‘‘horizon’’ and vector

connecting a material point to a neighbour is called a

‘‘bond’’. PD has been initially developed as ‘‘bond-based

PD’’ in which the bond stretch is linearly proportional to

internal force between a material point and its neighbour.

The restriction with the bond-based PD is that it leads to a

constant Poisson’s ratio of 0.33 in 2D and 0.25 in 3D [12].

Although bond-based PD may be deemed as a sufficient

approximation for some brittle materials like some types of

ceramics, it is not valid for all kinds of material. To

overcome this shortcoming, the ‘‘state-based PD’’ has been

developed [51]. In the state-based PD model, the relation

between displacement and internal force within material

points is defined using ‘‘states’’. The states are

Fig. 1 Different entities in a schematic CGM

Acta Geotechnica (2023) 18:2529–2548 2531

123



mathematical functions which link deformation of a bond

to collective deformation of other bonds within a neigh-

bourhood [42]. The state-based PD is divided into two

classes: ‘‘ordinary state-based PD’’ and ‘‘non-ordinary

state-based PD’’. In this research, ordinary state-based PD

is used. Note that the ordinary state-based peridynamics is

formulated in material (or initial) configuration using the

total Lagrangian approach. The non-ordinary state-based

PD can be formulated in both material (initial) and current

(deformed) configurations [4].

2.1 Ordinary state-based linear elastic material

The constitutive equation of motion for the ordinary state-

based PD can be established based on a strain energy

density obtained from CCM. In the ordinary state-based

PD, the direction of the states is necessarily along the

bonds, whereas the non-ordinary state-based PD is inde-

pendent from CCM, and this curtailment is removed.

However, the non-ordinary state-based PD can be compu-

tationally expensive. In the state-based generalization of

PD theory, force states calculate pairwise force densities

between a material point x and its neighbours within Hx

with horizon ðdÞ in initial configuration. The deformation

between x and its neighbours is also calculated by the

deformation states; therefore, the state-based PD material

model is defined as a constitutive relationship between the

deformation and force states. Figure 2a, b shows a PD

domain of a CGM in initial and deformed configurations,

respectively. Assume that X 2 R3 denotes a CGM domain

in a 3D space. Superscriptions I and D demonstrate initial

and deformed configurations of X, respectively. X is a

union of individual bodies, Xi, i ¼ 1; 2; . . .;N including

rock particles and cement matrix. The system is under an

external force density f ext and displacement boundaries

oXu, which may cause geometrical deformations whereby

damage and failure of CGM occur.

In the present PD model, both intra-body force densities

denoted as f int within rock or cement bodies and inter-body

cohesive force densities, f coh, between rock particles and

cement bodies are calculated by PD material model, and

inter-particle fictional contact force densities f cont are

determined by a touch-aware contact model. Let x 2 XI

denote the coordinates of a material point, x0 2 XI be the

coordinates of a neighbour material point in Hx with d in

the initial configuration and y and y0 2 XD be the coordi-

nates of those material points in the deformed

configuration.

The vector connecting material points x and x0 is called
‘‘bond’’ and denoted by n. States are mathematical objects

mapping n in Hx to some other quantities, such as vectors

and scalars. Assume that u x; tð Þ is the displacement vector

of point x at time t. The conservation of the linear

momentum [2] is formulated in a total Lagrangian formu-

lation as in Eq. (1):

qðxÞ€uðx; tÞ ¼ f intðx; tÞ þ bðx; tÞ: ð1Þ

where q xð Þ is the mass density, f int x; tð Þ is the internal

force density field and b x; tð Þ is an external body force field

Fig. 2 Schematics of an ordinary state-based PD domain ðXÞ representing a CGM includes two particles X1 and X2 in frictional contact, and a

cohesive body X3 between particles under different types of boundary conditions. a Initial configuration and b deformed configuration
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acting on a material point x at time t. b x; tð Þ includes all

force density fields acting on a material point x, such as

f ext, f coh and f cont. Different PD material models are

defined based on how f int x; tð Þ is calculated.The ordinary

state-based linear elastic PD was introduced in [51] in

which the internal force density field (f int x; tð Þ) and the

cohesive force density (f coh x; tð Þ) may be obtained from

Eq. (2).

f intðx; tÞ ¼ hðs; tÞ
Z

Hx

Tðx; tÞhni � Tðx0; tÞhnif gdVx0: ð2Þ

where dVx0 denotes an infinitesimal volume around x0 2 Hx;

and h s; tð Þ is a history-dependent scalar function which

controls breakage of a single bond between x and x0 based
on a bond stretch parameter s (see Sect. 2.2). T x; tð Þhni is a
vector state which represents the pairwise force density

along n acting on x. T x; tð Þhni calculates the pairwise force
density due to the relative deformation between two adja-

cent material points x and x0. Therefore, a non-local

f int x; tð Þ can be achieved by an integration over all material

points within Hx: Different material models can be

obtained based on how T is defined and whether T is in

direction of n or not. In this paper, the ordinary state-based

linear elastic material model is considered to simulate the

behaviour of rock particles and cementitious bodies. For an

ordinary PD material model, T is given by Eq. (3) [34].

T x; tð Þhni ¼ C x; tð ÞMhni; ð3Þ

where M is a unit state vector in direction of the position

state vector from x to x0, and C x; tð Þ is a scalar coefficient.
For a linear elastic material model C x; tð Þ is given by

Eq. (4).

Cðx; tÞ ¼ 3Kh
m

xhniahnið Þ þ 15G

m
xhniedhni
� �

: ð4Þ

where K and G are bulk and shear moduli of material,

respectively. h and m are scalars called ‘‘dilation’’ and

‘‘weighted volume’’, respectively, and xhni is a scalar state
called ‘‘influence function’’ and defines the degree of

interactions of material points. In fact, choice of the

influence function controls the PD ‘‘surface effect’’,

meaning that if a material point is consumedly close to the

surfaces of domain, its neighbourhood may not be com-

pletely spherical. Therefore, the influence of absent

neighbours within the horizon must be considered [29].

ahni is a scalar state indicating the norm of n and edhni is
deviatoric part of the displacement scalar state ehni. (For
more details, see [34])

Time integration is one of the most principal parts of a

numerical simulation. In this study, a central difference

explicit time integration scheme has been formulated in

PD. In the explicit time integration, the final response of a

model is obtained through a sequence of calculations over

small time step ðDtÞ and it is suitable for simulations in

which inertial effect and time-dependent phenomena are

important [31].

2.2 PD damage model

The pairwise force density between x and x0 is denoted as

f ðsÞ. The relative bond stretch s due to f ðsÞ is defined by

Eq. (5) [50].

s ¼ ehni
ahni : ð5Þ

In PD formulation, the crack is initiated where the bond

stretch exceeds a threshold value Sc; thus, the bond is

called ‘‘broken’’. Moreover, the propagation of the crack is

defined as the coalescence of a chain of broken bonds.

Therefore, initiation and propagation of cracks and the

damage process are inherently defined in PD and no other

constitutive relations is required. On the other hand, the

relation between two material points is irreversibly termi-

nated once a bond is broken; thus, hðs; tÞ in Eq. (2) may be

defined according to Eq. (6).

hðs; tÞ ¼ 1 if s\Sc and t0 � t� t1
0 otherwise

�
; ð6Þ

where ½t0; t1� is the time history range. As shown in Eq. (7),

assume n ¼ nj j and the work required to break a bond is

w nð Þ, therefore, according to Fig. 3, the total work ðG0Þ
needed to break all the bonds around a material point

Fig. 3 Calculation scheme of PD model for total energy required to

break bonds within a horizon
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within a neighbourhood to initiate a unit area of crack

surface can be achieved by Eq. (8) [50].

w nð Þ ¼
ZSc

0

f ðsÞnds; ð7Þ

G0 ¼
Zd

0

Z2p

0

Zd

z

Zcos�1 z=nð Þ

0

w nð Þn2 sin/d/dndhdz: ð8Þ

Since G0 is a function of Sc, its inverse may yield Sc.

Therefore, Sc is called ‘‘critical stretch’’ can be written in

terms of the ‘‘energy release rate’’ ðG0Þ. It is the only

parameter required to model damage process in PD. A

closed-form prediction of Sc for a 3D state-based PD model

is presented in Eq. (9) [54].

Sc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G0

3Gþ 3=4

� �4

K � 5=3

� �
G

� �� 	
d

vuuut : ð9Þ

As a criterion for demonstrating the local damage ratio

of the material points in this article, a damage parameter u
is defined in Eq. (10) which is normalized in the range of

[0,1].

uðx; tÞ ¼
R
Hx
hðs; tÞdVx0R
Hx
dVx0

: ð10Þ

Note that the choice of the critical bond stretch may

depend on fracture patterns, crack size and crack location

or orientation [61]. However, if the horizon (or element

size) is fine enough, the critical stretch bond model can still

be good for engineering applications.

2.3 The touch-aware non-local contact model

The contact force field plays a key role in simulation of the

mechanical behaviour of CGMs. CGMs are known to have

a densely packed initial configuration of rock particles with

cement filled in between the particles. Therefore, in

numerical simulations of CGMs, it is of great important for

the contact model to have the capability of calculating the

contact force field accurately enough for the densely

packed particle system.

Most recently, a touch-aware contact model is devel-

oped [35] for PD simulations of contact force field in

highly irregularly shaped particles. The advantages of the

touch-aware contact model are summarized as follows:

• It is appropriate for highly irregular, densely packed

granular systems.

• Contact calculation is triggered once two bodies are ‘‘in

touch’’. The contact force calculation is non-local,

which is consistent with PD framework.

• The contact model converges to theoretical solutions

efficiently.

• The contact model is ‘‘stiffer’’ than the conventional PD

contact model that is based on the short-range force.

• It can model frictional contacts with dynamic impact

damping.

Figure 4 depicts a schematic of the touch-aware contact

model. In the first step, radii of surficial material points of

each contacting body are calculated. (Radius of material

point xi is denoted as rxi .) Also, the normal contact vectors

of surficial material points are determined (Nxi for material

point xi). In the second step, the touch-aware algorithm

looks for a material point like xi in X1 called as a ‘‘direct

contact point’’ and in touch with another material point x�j
in X2. The neighbourhood Hxi contains materials points

(shades of red colours) in X1 within a radius of d around xi.

We define the contact neighbourhood Lxi as the material

points xj (shades of green colours) in X2 within a contact

radius of rcxi , as shown in Fig. 4.

Define a non-dimensional overlap ratio D between the

pair of material points in touch (xi and x�j ) (Eq. 11).

D ¼
rxi þ rx�j � xi � x�j










xi � x�j








 ð11Þ

The normal contact force density on xi is calculated by

integrating its interaction with all xj in its contact neigh-

bour Lxi (Eq. 12) [35],

f contn xið Þ ¼ 1

2

XN
j¼1

1

nij


 



18s

pd4

� 	
D
Nxi

Nxi

8xi 2 X1; xj 2 Lxi ;

j ¼ 1; 2; 3. . .;N;

ð12Þ

where N is the number of material points in direct contact

neighbourhood and nij is the bond length between points xi
and xj. s is ‘‘contact stiffness’’ with the unit of force per

length, d is the horizon and
Nxi

Nxi
is the unit outer-normal

vector at the direct contact point. The above equation

shows a non-local feature of the contact algorithm. Another

non-local feature of the algorithm is that the contact force

is also distributed to all material points xk within Hxi , which

are called ‘‘indirect contact points’’, [35], i.e.

f contn xkð Þ ¼ 1

2

XM
j¼1

1

nkj


 



18s

pd4

� 	
; D

Nxi

Nxi

8xk 2 Hxi ; xj 2 ðLxi \ LxkÞ; j ¼ 1; 2; 3. . .;N

ð13Þ
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where M is the numbers of material points in indirect

contact neighbourhood and nkj is the bond length between

points xk and xj. Note that the summation is over the

overlapped region of two contact neighbourhoods around

xi and xk, i.e. ðLxi \ LxkÞ, which is called ‘‘indirect

neighbourhood’’.

Damping force density can be calculated using Eq. (14).

f contdamp xið Þ ¼ civxi ; ð14Þ

where ci is the damping coefficient and vxi is the local

velocity vector of the material point xi. The fiction force

density for a material point xi can be achieved by Cou-

lomb’s law given in Eq. (15).

f contfric xið Þ ¼ l f contn xið Þ


 

Txi ; ð15Þ

where l is friction coefficient and Txi is a unit vector

normal to Nxi .

Finally, the total contact force density ðf contÞ is included
in the body force term b in Eq. (1) and can be calculated

using Eq. (16).

f contðxÞ ¼ f contn ðxÞ þ f contdampðxÞ þ f contfric ðxÞ: ð16Þ

where f contn ðxÞ, f contdampðxÞ and f contfric ðxÞ are the normal contact

force density, the damping force density and frictional

contact force density, respectively. One can refer to [35]

for detailed numerical implementation and validation of the

‘‘touch-aware’’ contact model.

3 Experimental tests on CGM

In this study, a set of CGM samples were prepared using

different cementation percentages followed by a series of

uniaxial compression tests conducted on these samples. As

shown in Fig. 5a, the CGM is comprised of irregular rock

particles with a size from 14 to 20 mm, washed and dried

to make the initial packing of granular aggregates in a

mould with an inner diameter and height of 100 and

200 mm, respectively. The rock particles are crushed

granite with Young’s Modulus, Poisson’s ratio, uniaxial

compressive strength and mass density of 55 GPa, 0.2,

150 MPa and 2780 kg/m3, respectively. As shown in

Fig. 5b, the self-compaction cement was poured into the

mould that cement the rock particles into a CGM. Two

ends of the mould are kept open to flow the cement slurry

from top to bottom, and a screen net and a container is

placed beneath the mould to collect overflowed slurry and.

After curing for 28 days in the wet room, the sample was

ready for the uniaxial compression test, see Fig. 5c.

In this research, the volume fraction of rock aggregates

is in the range of 48 to 52% is obtained for all samples. To

quantify the amount of cement used in each sample, the

cement volume fractions ð;Þ are defined as the ratio of the

volume of cement to the total volume of the sample. By

controlling the viscosity of the cement, 38 samples were

prepared with different cement volume fractions (5%, 10%,

15%, 20%, 25%, 30%, 40%, 45% and 50%), and 3 to 6

samples were prepared for each cement percentage. In

addition, 4 samples purely from the cement slurry (without

rock particles) were prepared to test the mechanical

parameters of the cement matrix.

Fig. 4 Schematic of the touch-aware contact model
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Figure 6 shows images of some prepared samples with

different ;. A uniaxial servo control loading machine

(MTS) is used to achieve the mechanical behaviour of

CGM samples through uniaxial loading tests under a dis-

placement rate control of 0.03 mm/min (see Fig. 7). Two

MTS external linear variable differential transducers

(LVDTs) with an initial gauge length of 100 mm are

attached to lateral surfaces of samples to accurately mea-

sure the strain data.

Two parameters, uniaxial compressional strength (UCS)

ðrcÞ and Young’s modulus ðEÞ, were obtained from each

uniaxial compression test. rc is calculated based on the

maximum stress the sample can tolerate and E is the linear

slope of the stress–strain curve at 50% of rc. The first

experimental test series are performed on three pure

cement samples to obtain the averaged UCS and Young’s

modulus of the cement. The tests reflect a complete brittle

behaviour for the pure cement matrix with rc = 85 MPa

and E = 20 GPa can be obtained. The result of experi-

mental tests on some of CGM samples is provided in

Fig. 8. Also, plots of UCS and Young’s modulus of CGM

samples versus different cement volume fractions ð;Þ are

presented in Figs. 9 and 10, respectively.

As shown in Fig. 9, UCS of experimental samples

increases with a downward curvature as ; increases up to

16.5%. Then, the increase in USC becomes linear to

36.5%. After 36.5% of the cement volume fraction, UCS

dramatically increases. Young’s modulus of cement

increases with a downward curvature up to 6.5% of cement

volume fraction; afterwards, it increases with a uniform

Fig. 5 CGM sample preparation a rock particles, b pouring cement slurry into the sample in a mould, c a CGM sample in a cylindrical shape with

a diameter of 100 mm and height of 200 mm

Fig. 6 Pictures of samples for experimental tests with different cement ratios ð;Þ (a)–(d)
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linear trend with ; (see Fig. 10). In the next section, the

results of PD simulations are demonstrated and compared

to those of the experimental tests.

4 PD sample preparation

In this paper, an open-source PD software ‘‘Peridigm’’ [39]

has been used to implement the program codes and conduct

the numerical simulations. Peridigm is capable of per-

forming parallel computations on the framework of the

message passing interface (MPI) platform on multi-thread

central processing units (CPUs). The hardware used in this

research consists of a CPU of 20 threads with a calculation

frequency of 5.3 GHz and 60 GB of memory.

4.1 Generation of irregular particles

In this section, the details of the numerical simulations of

CGMs using the present PD model are provided. In the first

step, rock particle geometries are created based on X-ray

data points scanned directly from real rock particles (the

first step). Then, the geometry of each particle is converted

to 3D tetrahedron mesh as shown in Fig. 11a. The material

points are placed in the centres of inspheres of tetrahedrons

to form a particle, as shown in Fig. 11b.

The second step of the numerical simulation process is

creating densely packed aggregates of rock particles. It is

the skeleton of CGM samples and plays a determinative

rule in mechanical behaviour of CGMs. For this purpose,

an initial cylindrical configuration of 70 rock particles is

designed in which the rock particles with irregular shapes

(created in the first step) are condensed to obtain a final

configuration of densely packed aggregates under an iso-

tropic body force field f so that fj j ¼ qg, where q is the

density of rock particles and g is the gravitational accel-

eration. The diameter of the final configuration is 5 cm

with a height of approximately 20 cm.

The mechanical properties of rock particles are based on

those of Granite in Table 1. The touch-aware contact model

with a normal stiffness (s) of 550 MN/m and a friction

coefficient ðlÞ of 0.5 is used to simulate contact field

between the rock particles. A rock volume fraction of 0.52

is achieved after condensation of the particles. Changing l
to 0.4 or 0.45 will result in a slightly different rock volume

fraction to 0.55 and 0.53, respectively, as shown in

Fig. 12a–c. A contact damping ratio of 5% is applied to

attenuate the dynamic vibrations and improve the stability

of contact interactions. The 3D plots of contact force fields

for three densely packed aggregates are illuminated in

Fig. 12d–f.

4.2 Determination of critical stretch
of the cement phase

Critical stretch is a key parameter to control the damage

and failure of the cement phase. To calibrate this param-

eter, a pure cylindrical specimen of cement with diameter

and height of 5 and 10 cm, respectively, is simulated using

the present PD model. The properties of the cement phase

used in the simulation are obtained directly from experi-

mental tests, as listed in Table 2.

A critical stretch ðScÞ of 0.1 mm is determined such that

the simulation results are in a good agreement with those of

experimental tests in terms of UCS of the pure cement

samples. Correspondingly, the energy release rate of the

cement phase is determined, Gc = 760 J/m2 (see Eq. 9).

4.3 Cementation schemes

In the third step, cylindrical samples with diameter and

height of 5 and 10 cm, respectively, are randomly trun-

cated from the final configuration of condensed packings

for cementation and uniaxial testing. Each test sample

possesses about 42 rock particles.

Since bonding distribution and its bulk behaviour as

well as the presence of discontinuities and defects in the

sample are important controlling factors for the behaviour

of CGMs, PD samples were created according to the fol-

lowing three different schemes.

1. CGMs with pure bonds

2. CGMs with bonds and clogs

3. CGMs with bonds, clogs and discontinuities

The details of each scheme are described in the fol-

lowing sections.

Fig. 7 A picture of an experimental CGM sample under uniaxial

loading by MTS machine. The extensometers are connected to the

sample to record the strain accurately
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Fig. 8 Stress–strain plots of experimental tests for CGM samples in different cement volume fractions, ;

Fig. 9 Uniaxial compressive strength versus cement volume fraction

for experimental tests

Fig. 10 Young’s modulus versus cement volume fraction for

experimental tests
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Fig. 11 Geometries of created rock particles with a tetrahedron meshes, b material points

Table 1 Mechanical properties and peridynamics simulation param-

eters of rock particles

Density

[kg/m3]

Young’s

modulus [GPa]

Poisson’s

ratio

Horizon

[m]

Contact

radius [m]

2780 55 0.2 0.01 0.01

Fig. 12 Densely packed aggregates of rock particles created using different frictional coefficients, a l = 0.4, b l = 0.45 and c l = 0.5, and their

corresponding 3D plots of contact force in N for final condensing configurations (d), (e) and (f)

Table 2 Mechanical properties and peridynamics simulation param-

eters of cement

Density

[kg/m3]

Young’s

modulus [GPa]

Poisson’s

ratio

Horizon

[m]

Contact

radius [m]

2.3 20 0.2 0.01 0.01
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4.3.1 Scheme 1: CGMs with pure bonds

In scheme 1, cement bonds are generated between two rock

particles if their shortest distance is smaller than a thresh-

old value, which is considered to be 2 mm in this study.

Since the particles are irregular, theoretically, the bond

between them is also of an irregular shape. However, to

simplify the modelling, each bond is idealized as a cylinder

whose cross-sectional area is the same as the average

contact area between particles. Figure 13 shows examples

of cement bond objects between contacting particles.

Finally, two circular platens are added to the ends of the

samples. As show in Fig. 14, a CGM sample is created as a

combination of rock particles and pure cement bonds. A

total of 24 CGM samples with the cement volume fractions

of 2%, 5%, 10%, 15%, 30% and 50% (4 samples each) are

created by this scheme.

4.3.2 Scheme 2: CGMs with bonds and clogs

To analyse the effect of bulk behaviour of the cement phase

on CGMs, another scheme is created in this section so

called ‘‘cement bonds and clogs’’. The geometry of this

scheme is created by assuming an initial volume fraction of

perfect cement bonds equal to 2%. The rest of cement

phase is dispersedly placed inside CGM samples as ‘‘ce-

ment clogs’’ to achieve the intended total cement volume

fraction. In fact, connected voids between particles form

complicated paths for the cement paste to flow through

CGM samples. The bonds between particles are formed

when the cement paste is initially flowing around con-

tacting points. Because of constrictions in some paths, they

might be blocked, form burgeons of clogs and grow in

voids. Therefore, the cement clogs are that part of the

cement phase that dispersedly fill voids between rock

particles, not necessarily around the local contact points.

Attention must be paid that clogs can include bonds. As the

cement volume fraction increases, uniformly dispersed

clogs in this scheme can grow and stick to each other or

join the initial bonds to make them partially thicker or form

a unified body or may be stayed separate if they are not

close enough which make discontinuous clog bodies. The

process of creating initial bonds is similar to Sect. 4.3.1.

The geometry of clog objects is irregular shapes inspired

by qualitative investigation on experimental samples ran-

domly distributed within CGM samples (see Fig. 15).

Fig. 13 Cement bond objects between two or more rock particles
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After creation of initial bonds around contact points

between particles and clog objects, the volume of rock

particles is subtracted from them using a Boolean opera-

tion. Figure 16 shows different phases of a CGM sample

created in this scheme with rock particles, initial bonds and

a clog body.

In total, 22 CGM samples with the cement volume

fractions of 6.5%, 11.5%, 16.5%, 21.5%, 26.5% and 36.5%

are created in this scheme.

4.3.3 Scheme 3: CGMs with bonds, clogs
and discontinuities

As the cement volume fraction increases, the number and

volume of dispersed clog objects increase and more paths

between particles are blocked. Therefore, with the increase

in the cement volume fraction, the possibility in forming

discontinuities increases. A qualitative investigation on the

cross sections of experimental CGM samples has shown

that at least one discontinuity is clearly observable in CGM

samples in a range of cement volume fraction between 25

and 45% (Fig. 17). Therefore, the effect of discontinuities

in CGM samples in this range must be considered.

The effect of discontinuities in forming bonds and clogs

in CGMs is considered in this scheme. The distribution of

burgeons of clogs in this scheme is not uniform. The bur-

geons of clogs are distributed randomly in some clusters

which are deliberately distanced from each other to make

pre-existed discontinuities. The following procedure is

used to create the CGM samples in this scheme:

I. Initial bonds with a cement volume fraction of 2% is

created in all contact points between rock particles

(see Sect. 4.3.2).

II. The remaining part of cement volume fraction of the

matrix is placed by adding clog objects dispersedly

distributed within distanced clusters to the geometry

of CGM samples.

III. The bond and clog objects are scaled with a factor.

IV. The volume of rock particles is subtracted from bond

and clog objects with a boolean operation.

Fig. 14 a A CGM sample with pure bonds (; ¼ 5%), b rock particles, c cement bonds

Fig. 15 An image of PD geometry of a CGM with bonds and clogs
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V. If the total volume fraction of the cement matrix is

obtained, the process is finished; otherwise, stage IV

is followed.

The initial bonds and clog objects can make heteroge-

nous bonds and at least one discontinuity (two clusters) is

considered through CGM samples in this scheme. Dis-

continuities of the clog objects satisfy defects in the phy-

sics of the cement matrix; however, the CGM samples

make a unified geometry with bonds and clogs sticking to

rock particles. Figure 18 shows schematics of a CGM with

rock particles, defected bonds and discontinuous clogs in

this scheme.

In total, 20 samples are created in this scheme with

different cement volume fractions including: 16.5%,

21.5%, 26.5%, 36.5% and 41.5% (4 samples each) while

the rock volume fraction is kept constant equals to 50%.

5 PD simulation of cemented granular
materials using different cementation
schemes

5.1 Simulations of scheme 1

The PD simulations of this scheme are performed using

different cement volume fractions of 2%, 5%, 10%, 15%,

30% and 50% while the volume fraction of rock particles is

kept as 50%. To account for randomness of the samples,

the samples are created for each cement volume fraction

(24 samples in total) (see Sect. 4.3.1). In fact, all samples

have three phases: rock particles, cement matrix and voids,

except that the samples with cement volume fraction of

50% have only two phases (rock particles and cement

matrix) because the voids are filled by the cement. The

material model of rock and cement phases is modelled by

linear elastic ordinary state-based PD.

In scheme 1, it is assumed that the cement body is

idealized as cylinders and bond two rock particles in a

close distance. The ‘‘touch-aware’’ contact model is used to

model frictional contact with damping between the rock

particles. The loading platens are modelled as elastic

materials much stiffer than both the rock particles and the

cement. The mechanical parameters of the simulations are

provided in Table 3.

Fig. 16 a Perfect clogged CGM sample (/ ¼ 15%) including rock particles (b), perfect cement bonds (c) and a clog body (d)

Fig. 17 A clear discontinuity through clogs and defects in bonds

(highlighted in red) in CGM samples with ; = 30%
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The simulations are performed in a uniaxial compres-

sional strain-controlled mode with a strain rate of 0.01 s-1.

5.2 Simulations of scheme 2

PD simulations are performed using scheme 2, where

cements are assumed to form perfectly distributed cement

bonds and randomly generated clogs. Numerical samples

were created in this scheme with different cement volume

fractions ð/Þ including: 6.5%, 11.5%, 16.5%, 21.5%,

26.5% and 36.5% (see Sect. 4.3.2). The volume fraction of

rock particles is kept constant to 50% and 3–5 samples are

created for each cement volume fraction, which gives 22

samples in total. The material model, contact model and

the simulation parameters are the same as Sect. 5.1.

5.3 Simulations of scheme 3

In total, 20 samples are prepared for PD simulations using

scheme 3. The cement volume fractions of the samples are

16.5%, 21.5%, 26.5%, 36.5% and 41.5%, respectively.

Again, the material model, contact model and the simula-

tion parameters are the same as Sects. 5.1 and 5.2. Fig-

ure 19 shows complete stress–strain curves, and Fig. 20

depicts 3D plots of the damage parameter ðuÞ at the failure
moment of all samples and surface of fracture for typical

samples, respectively.

Note that scheme 3 introduced defects into the cement

bonds and clogs. Under this scheme, the simulated UCS

and Young’s modulus are presented in Figs. 21 and 22,

respectively. A good agreement between the PD simula-

tions and experiments can be observed for all cement

volume fractions in the range between 16.5 and 41.5%.

6 Discussion

From the results provided in Sects. 4 and 5, it is understood

that the skeleton of a CGM consists of packed aggregate of

rock particles with irregular shapes and occupies roughly

Fig. 18 a Defect clogged CGM sample (/ ¼ 26:5%) including rock particles (b), defect cement bonds (c) and discontinuous clogs (d)

Table 3 Mechanical and operational parameters of PD simulation on CGM samples

Rock density

[kg/m3]

Rock Young’s

modulus [GPa]

Rock

Poisson’s

ratio

Rock critical

stretch

Cement density

[kg/m3]

Cement Young’s

modulus [GPa]

Cement

Poisson’s ratio

Cement

critical stretch

2780 55 0.2 2.7e-4 2300 20 0.2 1e-4

Contact normal stiffness [MN/m] Contact friction coefficient Contact damping ratio [%] Contact radius [m] Horizon [m] Contact

radius [m]

550 0.5 5 0.01 0.01 0.01
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50% of total volume of a CGM sample. In the PD simu-

lations, adjusting the friction coefficient of the contact

between the rock particles can slightly affect this volume

fraction of the generated packings. The increase in the

friction coefficient between the rock particles leads to the

decrease in the rock volume fraction.

PD analyses were carried out based on three different

schemes for cement phase distribution. Then, the

mechanical behaviour of CGMs was simulated under dif-

ferent cement volume fractions. Scheme 1 assumed that all

cement bonds are perfectly formed between two particles

wherever they are close enough. As shown in Figs. 21 and

22, a roughly bilinear trend (stages OB and BC) can be

seen in both mechanical properties (UCS and Young’s

modulus) of CGMs. The simulations show that the

mechanical properties of CGMs (UCS and Young’s mod-

ulus) are initially controlled by pure perfect cement bonds

between the particles up to approximately 2% of the

cement volume fraction (OA). The uniaxial compression

strength and Young’s modulus of CGM increase most

significantly with the cement fraction up to 16.5% (OB).

Beyond this volume fraction, cement bonds begin to con-

nect to each other within CGMs. The increase in the

cement amount has a reduced effect on the increase in the

compressive strength and modulus of the CGMs (BC).

Obviously, scheme 1 significantly overestimates the

strength and modulus of CGMs when the cement volume

fraction is greater than 2%.

In scheme 2, the mechanical behaviour of CGMs has

three distinctive stages (AD, DE and EC). For cement

ratios less than 11.5% (AD), the clog bodies are small and

dispersedly distributed. The increase in the compressive

strength and Young’s modulus is much smaller as com-

pared to scheme 1, but the simulations fit better to the

experimental results. From cement volume fraction of

11.5% to 26.5% (DE), burgeons of clog continue to grow

Fig. 19 Stress–strain plots of PD simulation for defect clogged CGM samples in different cement volume fractions, ;
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larger and form connected clogs. During the stage DE, the

compressive strength and Young’s modulus increase most

significantly with the increase in cement volume fraction.

After that (stage EC), the remaining voids are filled up with

cement, and the slope of UCS/Young’s modulus change

decreases. Note that scheme 3 considerably overestimates

the experimental results in the stages DE and EC.

Scheme 3 is similar to scheme 2, but the distribution of

the clog burgeons is heterogeneous such that they are

randomly distributed in distanced clusters and ‘‘disconti-

nuities’’ pre-existed in CGMs. Attention must be paid that

the point D is where the clogs gradually start to connect to

each other. For cement volume fraction from 11.5 to 36.5%

(DF), the discontinuities partially prevent connecting

cement clogs to each other. Therefore, these discontinuities

form weak surfaces in which only heterogeneous bonds can

make chains of load transfer through CGMs. The slope of

Fig. 20 3D damage ðuÞ plots of defect clogged CGM samples for

different cement volume fractions /

Fig. 21 Uniaxial compressive strength versus cement volume fraction

for defect clogged CGM simulations compared to pure bonded CGM,

perfect clogged CGM and experimental results

Fig. 22 Young’s modulus compressive strength versus cement

volume fraction for defect clogged CGM simulations compared to

pure bonded CGM, perfect clogged CGM and experimental results
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the stage DF is similar to that of scheme 2 (AD). As cement

volume fraction increases, all discontinuities are gradually

closed and stronger chains of load transfer are created

through clogs. When it is greater than 36.5% (FC), the last

discontinuity (the weak surface of CGM) closes rapidly and

significant increases in compressive strength and Young’s

modulus can be observed, until the CGM is completely

filled with cement (; = 50%).

Figure 23 shows the computational time of all simula-

tions (schemes 1, 2 and 3) with different cement volume

ratios on a computer with a 20-core CPU of 5.3 GHz. As

shown in the figure, the computational time linearly

increases with an increase in cement volume ratio up to

20%, due to the increasing number of material points

needed for modelling the cement phase. Above 20%, the

cement bodies start to merge and connect with each other,

reducing the overall complexity of shapes. Therefore,

similar amount of material points can be used in simula-

tions for cement ratios of above 20%, and the averaged

computational time is about 150 h for each case.

7 Conclusions

In this paper, a new PD model is developed to investigate

the mechanical behaviour of CGMs in terms of two

important parameters: Young’s modulus and UCS. Dif-

ferent steps of modelling CGMs consist of condensing the

rock particles with irregular shapes, creation of the cement

matrix geometry (bonds and clogs), uniaxial loading and

failure of CGMS are accurately modelled in comparison

with the experimental tests. The experimental CGM sam-

ples consist of an initial packings of granite rock particles

with a volume fraction of 50% cemented by a self-com-

pacting cement. A series of uniaxial loading tests have

been performed on the samples to achieve the stress–strain

curves. The PD model with the touch-aware contact algo-

rithm simulates CGMs with different phases (rock, cement

and voids) and mechanical phenomena including the bulk

behaviour and deformability of rock particles and cement

matrix, frictional contact force field between rock particles,

cohesive force field between cement and rock particles and

damage/failure process of CGMs. The results demonstrate

that the mechanical behaviour of CGMs is highly affected

by the cement volume fraction. In cement volume fractions

less than 2%, the mechanical behaviour of CGMs is mainly

controlled by pure bonds. In cement volume fractions from

2 to 12%, their behaviour is governed by clogs. In more

than 12% of cement volume fraction, discontinuities

gradually become more effective. The research is ongoing

on considering the effect of other physical parameters on

the mechanical parameters of CGMs.
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