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Abstract
Soil freezing characteristic curve (SFCC) represents the relationship between soil temperature and unfrozen water content

of soil during freezing and thawing processes. In this study, SFCC of sandy soils was determined in laboratory. Pure sand

was mixed with clay at various contents (0, 5, 10, 15, and 20% of the total dry mass), and the mixtures were compacted to

their respective maximum dry density. Compacted specimens were then placed in a close and rigid cell, and the soil’s

temperature was decreased step-by-step to freeze the soil water and then increased back to thaw it. During this thermal

cycle, soil’s temperature and volumetric water content were monitored in order to determine the SFCC. The results show

that SFCC was strongly dependent on the fines content: at higher fines content, the temperature of spontaneous nucleation

was lower, and the residual unfrozen volumetric water content was higher.
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1 Introduction

Frozen soil consists of mineral particles, liquid water, ice

and gas. It is formed from unfrozen soil during freezing,

when a fraction of liquid water solidifies into ice at tem-

peratures sufficiently low below 0 �C [2]. This phase

change causes significant modifications of physical–hy-

draulic–mechanical properties of soils [3]. The freezing–

thawing process is encountered in cold regions, seasonal

cold regions as well as construction works using artificial

ground freezing technique. Two main consequences of this

process that need to be mentioned are frost heave and thaw

settlement. These phenomena can induce damages to

infrastructure [26, 56, 86, 87].

The freezing–thawing process in porous media has been

investigated not only in civil engineering and geosciences

but also in physics [1, 19, 39, 41, 49]. While bulk water

melts at 0 �C, water in porous media melts at temperatures

below 0 �C because of physical interactions between water

and solid particles [22, 53, 58]. Freezing process of a soil

sample (where heat is extracted from the sample with a

constant rate) can be divided into three steps (as shown in

Fig. 1): (i) supercooling with release of sensible heat; (ii)

first water freezing with release of latent heat; (iii) further

water freezing with release of sensible heat. In the first

step, during cooling (extraction of heat from soil), soil

temperature decreases to reach a certain value from that it

cannot decrease anymore. This value is called temperature

of spontaneous nucleation Tsn where the first ice embryo

nucleus forms because it attains the critical size [4, 5].

Formation of ice crystals releases latent heat and thus

increases soil temperature. From Tsn, soil temperature

increases to reach another value which is called freezing

temperature Tf, where it remains on a plateau for a while.

During this second step, soil water is gradually frozen

along with releasing latent heat. After that, within the third

step, soil temperature decreases with further water freez-

ing. Freezing temperature Tf, also considered to be equal to

thawing temperature Tt at which soil state changes from

frozen to unfrozen, is usually used as a boundary value

index to distinguish between frozen soil and unfrozen soil

[74, 85, 90]. These characteristic temperatures (Tsn and Tf)

were investigated in several studies [4, 11, 90].
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Soil freezing characteristic curve (SFCC) represents the

relationship between the temperature and the quantity of

liquid water in soil. It is one of the most essential data in

studying the freezing–thawing process in soils. On the one

hand, several SFCC models were empirically developed.

From SFCC obtained experimentally, empirical models

were proposed using power, piecewise or exponential

functions [9, 24, 29, 40, 43, 67, 69, 81]. On the other hand,

SFCC can be derived from soil water characteristic curve

(SWCC). This approach is based on the theory of similarity

between freezing–thawing and drying–wetting processes

that is illustrated by Clapeyron equation

[20, 35, 46, 59, 64, 66, 88, 89, 95]. More generally, various

physical models were developed based on theory of cap-

illarity, sorption or that of interface pre-melting

[33, 76, 92]. Most of the existing SFCC models consider

the effect of fines content, but this effect is considered in

different ways. For instance, some empirical models used

specific surface or liquid limit as input data, while physics-

based models consider absorption parameters of soil. Due

to the diversity of SFCC models, there is no unified stan-

dard for choosing SFCC in numerical simulations [12]. In

addition, except few models (e.g. [95]), most of the exist-

ing ones consider a unique relationship between unfrozen

water content and temperature. However, this relation

obtained on the freezing path can differ from that of the

thawing path; at a given temperature, water content of the

freezing path can be higher than at of the thawing path.

This hysteresis is usually ignored in the models.

To determine SFCC in the laboratory, a soil specimen is

usually subjected to a freeze–thaw cycle, while unfrozen

water content is measured. Although controlling speci-

men’s temperature is technically feasible, measuring

unfrozen water content is much more challenging. Several

methods and techniques have been developed to evaluate

the unfrozen water content at negative temperature,

including dilatometry [37, 52], gas dilatometry [61],

adiabatic calorimetry [8, 36], isothermal calorimetry [69],

differential scanning calorimetry [38, 39, 83], X-ray

diffraction [6, 7], time/frequency domain reflectometry

(TDR/FDR) [57, 63, 94] and pulsed nuclear magnetic

resonance (P-NMR) [45, 70, 76]. Among these methods,

TDR and P-NMR are the two most common ones. P-NMR

is widely acknowledged as a highly accurate and non-de-

structive technique. However, the equipment required for

this technique is generally expensive [84]. Compared to

P-NMR, TDR/FDR can be used in the laboratory as well as

in the field, and it is cheaper, quicker, and more portable.

With TDR, unfrozen water content is inferred from the

measurement of apparent dielectric constant of soil using

an empirical equation [60, 71] or dielectric mixing models

[55, 63, 77]. It is noted that several factors such as tem-

perature or bound water can affect its accuracy.

Several studies have determined SFCC in the laboratory

in both freezing and thawing processes

[16, 31, 33, 37, 45, 62, 68, 90]. These studies recognized

that hysteresis exists in SFCC in which the unfrozen water

content is different in thawing and freezing processes at the

same temperature. Hysteresis in freezing–thawing process

was believed to be similar to that of wetting–drying pro-

cess. However, the mechanism inducing hysteresis in

SFCC is complex and it may be influenced by several

effects such as supercooling, pore blocking, capillarity, free

energy barriers, contact angles and electrolytes [16, 45]. It

is also noted that hysteresis is significant at temperatures

between -2 and 0 �C [32, 37, 44] and that it should not be

ignored due to impacts on unfrozen water content on frost

heaving [30, 72], creep behaviour of frozen soils [10, 91] as

well as thermal regime of frozen ground [21].

Beside hysteresis effect, it is found that the shape of

SFCC depends also on several factors, including liquid

limit [69], stress condition [50], salt content and solute

types [48, 76], initial water content or degree of saturation

[34, 65, 80], types of soil [16, 44, 90], pore-size distribu-

tion [45], and fines content [45, 68, 69, 90]. Among these

factors, fines content can influence others (liquid limit,

pore-size distribution and types of soil). As far as fines

content is concerned, by determining unfrozen water con-

tent of several clays, a silt and a gravel, Tice et al. [69]

observed significantly different unfrozen water contents at

the same temperature below 0 �C. Tian et al. [68] carried

out tests on three soils corresponding to three clay contents

and found that unfrozen water degree of saturation also

changed in different ways in both freezing and thawing

processes. For soils containing higher clay fraction,

unfrozen water degree of saturation was higher at any

given temperature below freezing point and the hysteresis

loop was smaller. The same findings concerning SFCC

were obtained in the study of Zhang et al. [90] on silty clay,

and silt and in the study of Li et al. [45] on silty clay, fine

Fig. 1 Freezing process of soil–water system
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sand, and medium sand. Some other authors also investi-

gated different soils, but the effect of fines content was out

of their focus [16, 66, 67, 70].

The present study aims at systematically investigating

the effect of fines content on the SFCC of sandy soils.

Clean sand was mixed with clay at dry state firstly and

water afterwards to obtain sandy soils with clay content of

0, 5, 10, 15, and 20% prior to compaction at the Proctor

maximum dry density followed by a saturation phase. The

specimen’s temperature was then decreased progressively

to freeze the soil specimen in undrained conditions prior to

applying the thawing process. During this freezing–thaw-

ing cycle, soil’s temperature and unfrozen water content

were measured. After the introduction, the second section

of this paper presents the materials and experimental

methods. Experimental results are presented in the third

section, before being discussed in the fourth section.

2 Materials and experimental methods

2.1 Experimental setup

The experimental setup is shown in Fig. 2, and the details

of the sensors used are presented in Table 1. Soil specimen

was contained in a rigid metallic cylindrical cell (150 mm

in height and 150 mm in diameter). The cell was immerged

in a temperature-controlled bath (F38-EH JULABO

with ± 0.03 �C accuracy). Soil temperature was measured

with a PT100 sensor, soil volumetric water content was

measured with a ML2x Thetaprobe sensor, and soil suction

was measured with a tensiometer. As Thetaprobe sensor

measures soil apparent dielectric constant (Ka) which is the

ratio of the dielectric permittivity of a substance to free

space, soil unfrozen volumetric water content (hu) was

estimated from measured Ka by using empirical equations

of Smith and Tice [60] (1) and Topp et al. [71] (2) for

frozen and unfrozen states of soil, respectively. Equa-

tion (2) is used only for the initial state (before the

occurrence of freezing) and for the final state where

thawing is complete. Equation (1) is used where ice is

expected to exist in soil (i.e. after the occurrence of

freezing and before the completion of thawing).

hu ¼ �0:1458 þ 3:868 � 10�2 � Ka � 8:502 � 10�4 � K2
a

þ 9:92 � 10�6 � K3
a

ð1Þ

hu ¼ �5:3 � 10�2 þ 2:92 � 10�2 � Ka � 5:5 � 10�4 � K2
a

þ 4:3 � 10�6 � K3
a

ð2Þ

2.2 Material

Fontainebleau sand was carefully mixed with Speswhite

kaolin clay at dry state using an automatic mortar mixer in

order to obtain sandy soils with fines content (dry mass of

clay divided by dry mass of soil) of 0, 5, 10, 15, and 20%.

The physical properties of sand and clay are shown in

Tables 2 and 3, respectively. Figure 3 presents the grain

Fig. 2 Schematic view of the experimental setup. (1) Temperature-

controlled bath; (2) soil specimen; (3) temperature controlling system;

(4) temperature-controlled liquid (30% ethylene glycol ? 70%

water); (5) metallic cylindrical cell; (6) insulating cover; (7)

temperature sensor; (8) tensiometer; (9) soil water sensor; (10)

thermal conductivity probe (results are not presented in this study);

(11) data logger system

Table 1 Properties of sensors using in freezing–thawing tests

Measured parameters Principle Type Accuracy Range

Temperature Resistance temperature detector PT100 ± 0.03 �C -200 to 400 �C
Volumetric unfrozen water

content

Time domain reflectometry (dielectric

constant)

ThetaProbe ML2x (4

rods)

0.01 m3/m3 0.01 to 1 m3/m3

Tensiometer Piezoelectric transducer T5x ± 0.5 kPa -160 to 100 kPa

Thermal conductivity Transient line heat source KD2-Prob (RK-1) 10% 0.1 to 4 W/(m

K)
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size distribution of these soils. In this study, the name of

each soil corresponds to its clay content (for instance, S10

corresponds to a soil having 10% of clay in dry mass). Prior

to the preparation of the soil specimens, each soil was

carefully mixed with distilled water using the mortar mixer

to obtain optimum water content (determined from the

Normal Proctor compaction curves obtained on the same

soils [17]). Afterwards, wet soil was packed in a plastic bag

for at least 24 h to ensure the homogenisation of water

content, prior to compaction in the cylindrical cell to reach

its maximum dry density.

2.3 Experimental procedure

After soil compaction in the cell, sensors were installed as

shown in Fig. 2 and an insulating cover made of expanded

polystyrene was placed in order to avoid heat exchange

between soil specimen and ambient air. The whole system

was then transferred inside the temperature-controlled bath.

Prior to the freezing–thawing test, soil specimen was sat-

urated by injecting water from the bottom of the specimen

during 0.5–2 days depending on fines content. After the

saturation (when a layer of water of 10 mm was visible on

the top of the specimen), the temperature of the bath was

first set at a temperature between 0 and -1 �C (slightly

higher than the expected Tsn). Each test started with the

cooling path. The bath temperature was decreased in steps

of 0.1 �C to freeze the soil pore water. Once the freezing

was triggered, the temperature continued to be decreased in

steps of 0.2 �C until -2 or -3 �C to observe the change of

liquid water content during further cooling. Afterwards,

during the heating path, the bath temperature was increased

in steps of 0.2 �C until 0 �C to thaw the frozen soil. During

both cooling and heating paths, the bath temperature was

changed to the subsequent step only when soil temperature

and volumetric unfrozen water content (measured by the

sensors) had reached their equilibrium state. The equilib-

rium state was considered reached when these two quan-

tities did not change (\ 0.05 �C for temperature and\ 1%

for water content) during at least 2 h.

The test programme is shown in Table 4. The test

number shows the soil tested (S0 to S20) followed by the

number of replicate test (T1 to T4). At least two tests were

performed for each soil. Tests T1 were performed follow-

ing the procedure described above to obtain the complete

SFCC curves. For the other tests (T2, T3, T4), only the

freezing path of the same procedure was performed in

order to replicate the characteristic temperatures.

3 Experimental results

3.1 Typical test (S10-T1)

As an example, the results of test S10-T1 are shown in

Fig. 4 where soil temperature, suction, and volumetric

unfrozen water content are plotted versus elapsed time for

the cooling path.

Table 2 Physical properties of sand

Property Value

Median grain size, D50 (mm) 0.21

Uniformity coefficient, CU 1.52

Minimum void ratio, emin 0.54

Maximum void ratio, emax 0.94

Particle density, qs (Mg/m3) 2.65

Minimum dry density, qd,min (Mg/m3) 1.37

Maximum dry density, qd,max (Mg/m3) 1.72

Table 3 Physical properties of clay

Property Value

Liquid limit, LL (%) 55

Plastic limit, PL (%) 30

Plasticity index, PI 25

Specific surface area (m2/g) 0.94

Particle density, qs (Mg/m3) 2.65

Particle diameter\ 0.002 mm (%) 79

Particle diameter[ 0.01 mm (%) 0.5

Maximum dry density, qd,max (Mg/m3) 1.45

Fig. 3 Grain size distribution curves
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From -1.2 �C, soil temperature was decreased in steps

of 0.1 �C down to -1.6 �C. During this period, soil tem-

perature was controlled through the bath’s temperature,

suction remained equal to zero and volumetric water con-

tent remained constant. When soil temperature reached

-1.6 �C, soil freezing started inducing abrupt changes in

the three measured quantities. Results obtained during this

stage (elapsed time of 70–86 h) are shown in Fig. 5 for a

better view.

As shown in Fig. 5, when the bath temperature was

changed from -1.5 to -1.6 �C (at 76 h), soil temperature

changed to -1.6 �C after a few minutes. At 77 h, while the

bath temperature was still maintained at -1.6 �C, soil

temperature increased abruptly to -0.1 �C prior to a pro-

gressive decrease and reached the imposed temperature

(-1.6 �C) again at 83 h. Soil suction started to increase at

78 h and reached a maximum value of 300 kPa prior to fall

down to 100 kPa. At 77 h, soil water content decreased

abruptly from 28 to 26% prior to decrease progressively to

3% at 82 h. These results are representative of a freezing

process in soil (Fig. 1) where the phase before 77 h cor-

responds to the supercooling step. At 77 h, soil water

started to freeze: soil temperature increased abruptly

because of latent heat release prior to decrease because of

heat diffusion towards the liquid surrounding the cell; soil

suction increased quickly because of the cryogenic suction

induced by ice formation in the pore space (the sudden

decrease in suction from 300 to 100 kPa corresponded to

the cavitation of the tensiometer, after this moment, the

sensor did not provide anymore the real soil suction);

volumetric water content decreased because of ice forma-

tion. From these typical results, the following parameters

were defined to characterise the freezing process (see

Fig. 5): (i) temperature of spontaneous nucleation, Tsn; (ii)

freezing point, Tf; (iii) residual volumetric unfrozen water

content, hr (the value recorded at temperature equal to Tsn);

(iv) duration of the temperature plateau, tp; and (v) duration

of the freezing process, tf.

After the freezing process (from 83 h), decrease in

temperature induced slight decrease in volumetric unfrozen

water content (see Fig. 4), while soil suction measurement

was no longer available because of the cavitation of the

tensiometer.

Figure 6 shows the results of test S10-T1 during the

heating path. During this path, temperature was increased

by steps of 0.2 �C from -2.8 to 0 �C. It induced thawing of

frozen water (corresponding to a gradual increase in

unfrozen water content).

From the results shown in Figs. 4, 5 and 6, volumetric

unfrozen water content obtained at the end of each step is

plotted versus the corresponding soil temperature for test

S10-T1 in Fig. 7. These results correspond to the SFCC of

Table 4 Physical properties of soils

Test

no

Fines content

(%)

Dry

density

(Mg/m3)

Porosity

(–)

Test duration

(h)

S20-

T1

20 1.98 0.25 754

S20-

T2

20 1.96 0.26 26

S15-

T1

15 1.99 0.25 712

S15-

T2

15 2.00 0.25 64

S10-

T1

10 1.91 0.28 590

S10-

T2

10 1.90 0.28 153

S5-T1 5 1.78 0.33 817

S5-T2 5 1.78 0.33 143

S5-T3 5 1.78 0.33 190

S0-T1 0 1.67 0.37 756

S0-T2 0 1.67 0.37 286

S0-T3 0 1.67 0.37 75

S0-T4 0 1.68 0.37 187

Fig. 4 Soil temperature, volumetric unfrozen water content and

suction versus elapsed time during the cooling path of test S10-T1
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soil S10 obtained from test S10-T1, which include both

freezing and thawing paths.

3.2 Effects of fines content

SFCC of all soils is shown in Fig. 8 where volumetric

unfrozen water content was plotted versus temperature. As

the initial volumetric water content (which depends on soil

dry density) was different from one soil to the others, it is

thus difficult to analyse the effect of fines content from

these results. For this reason, volumetric unfrozen water

content was used to calculate unfrozen water degree of

saturation (Sr ¼ h=hsat; where hsat is the volumetric

unfrozen water content at saturate state). Figure 9 shows

SFCC of all soils where unfrozen degree of saturation was

plotted versus temperature. For each soil, from the initial

saturated state, when soil temperature decreased from 0 �C,

soil remained saturated with unfrozen water. When tem-

perature reached the temperature of spontaneous nucle-

ation, freezing was triggered inducing significant decrease

in unfrozen water degree of saturation. After this step,

cooling induced only slight decrease in unfrozen water

degree of saturation. During the heating path, unfrozen

water degree of saturation increased gradually with tem-

perature and the relationship between these two quantities

was significantly different from the cooling path for all

soils.

In order to quantitatively assess the effects of fines

content, temperatures of spontaneous nucleation Tsn and

freezing point Tf were plotted versus fines content

(Fig. 10). The results show that the temperature of freezing

Fig. 5 Soil temperature, volumetric unfrozen water content and

suction versus elapsed time during the freezing process of test S10-T1

(detailed view from 70 to 86 h)

Fig. 6 Soil temperature and volumetric unfrozen water content versus

elapsed time during the heating path of test S10-T1

Fig. 7 Soil freezing characteristic curve determined from test S10-T1
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point was close to 0 �C for all soils. The results were quite

repeatable (with variation less than 0.1 �C) and only a

slight trend of decrease of Tf when fines content increase

could be observed. For Tsn, results showed a higher scat-

tering (up to 0.5 �C, except for test at 0% of clay content

where this value varied from -0.4 to -1.5 �C). In general,

Tsn is lower at a higher clay content.

Figure 11 shows the residual unfrozen water content hr
(the value determined at a temperature equal to Tsn, see

Fig. 5) versus fines content. A good repeatability (with a

scattering of 0.5%) could be observed. The results show

that residual unfrozen water content was higher at a higher

fines content.

Figure 12 presents the duration of the temperature pla-

teau tp and the duration of the freezing process tf (see the

definition on Fig. 5) versus fines content. Results of tp were

Fig. 8 Soil freezing characteristic curve (volumetric unfrozen water

content versus temperature) for all soils

Fig. 9 Soil freezing characteristic curve (unfrozen water degree of

saturation versus temperature) for all soils

Fig. 10 Temperatures of spontaneous nucleation and freezing point

versus fines content

Fig. 11 Residual unfrozen water content versus fines content
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quite scattering for 0 and 5% of fines content, varying from

0.80 to 4.40 h. They were more repeatable at higher fines

contents. A general decrease of this duration when the fines

contents increased could be observed. Results of tf varied

between 5 and 10 h (except one test, S0-T1 where it was

very long, 37.50 h). These results did not show any clear

trend.

Table 5 shows the obtained characteristic parameters of

all tests for better comparison.

4 Discussion

In this study, in order to determine the relationship between

unfrozen water content and temperature during a freezing–

thawing cycle, large soil specimens (150 mm in height and

150 mm in diameter) were prepared in order to embed

several sensors within the soil mass. To minimise thermal

and any other gradients, soil temperature was changed by

small steps and equilibrium was checked at the end of each

step prior the subsequent step. At equilibrium, the soil

temperature and unfrozen water content were thus sup-

posed to be homogeneous within the specimen. Similar

large soil specimens were equally used in previous studies

investigating SFCC with TDR method for measurement of

unfrozen water content [54, 57, 80, 90]. Smaller specimens

were used when measurements were performed by pulsed-

NMR method [47, 66, 68]. In several previous works,

specimens were immerged in a cooling bath with constant

cooling rate or at low temperature (between -15 and

-30 �C) and kept for several hours [14, 48, 74, 75]. For

determining SFCC, unfrozen water content was measured

at various controlled temperatures [34, 47, 54, 57, 80, 90].

The difference between two successive controlled tem-

peratures in these studies varies between 0.3 and 5 �C. In

the present work, temperature steps of 0.1 and 0.2 �C were

chosen before the occurrence of freezing phenomenon and

afterwards, respectively, in order to determine more accu-

rately the freezing point, the temperature of spontaneous

nucleation and the SFCC.

The measurement of unfrozen water content in the

present study was converted from the measurement of

apparent dielectric constant. In this study, under the influ-

ence of temperature, dielectric constant of each phase in

soils changes, particularly those of water and ice [27, 79].

Several models exist to estimate moisture content from

unfrozen soil apparent dielectric constant

[15, 28, 51, 55, 57, 60, 63, 71, 77]. The most used is Topp’s

empirical model [71], but it is not compatible with frozen

soils [60, 61, 93]. Otherwise, Smith and Tice [60] proposed

a model based on comparison of unfrozen water content

measured from NMR and TDR methods for 25 soils cov-

ering a wide range of specific surface areas. For this reason,

in the present work, the model of Smith and Tice [60],

which provides an accuracy of ± 3% compared to mea-

surements from NMR method, was used for frozen soils.

Hysteresis of SFCC (difference between the freezing

and the thawing curves) is usually attributed to the same

factors inducing hysteresis in SWCC, such as the effect of

electrolytes, pore geometry, pore blocking, effect of con-

tact angle and change in pore structure [54]. Actually, in a

freezing process, increasing solute concentration by form-

ing ice from water increases the effect of electrolyte.

Fig. 12 Duration of the temperature plateau and duration of the

freezing process versus fines content

Table 5 Summary of characteristic parameters in freezing of tests

Test no Fines content

(%)

Tsn (�C) Tf (�C) hr (–) tp (h) tf (h)

S20-T1 20 -1.86 -0.11 6.5 0.15 5.65

S20-T2 20 -1.53 -0.09 7.0 0.10 6.95

S15-T1 15 -1.61 -0.07 5.2 0.17 5.70

S15-T2 15 -1.63 -0.09 5.0 0.13 4.00

S10-T1 10 -1.65 -0.07 2.9 0.58 5.50

S10-T2 10 -1.55 -0.06 2.7 0.80 6.10

S5-T1 5 -1.52 -0.03 2.3 0.82 5.90

S5-T2 5 -1.21 -0.07 2.1 3.10 7.35

S5-T3 5 -1.35 -0.03 2.1 1.70 7.40

S0-T1 0 -0.39 -0.04 1.5 4.40 37.50

S0-T2 0 -1.51 -0.02 1.10 1.00 7.70

S0-T3 0 -1.10 -0.04 1.40 0.80 10.70

S0-T4 0 -1.40 -0.02 1.35 0.80 7.40
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Otherwise, forming ice also changes soil skeleton that

affects matric potentials of soils. In addition, the hysteric

behaviour is also mainly attributed to supercooling of pore

water [16, 68, 70, 90]. Instead of freezing at 0 �C, pore

water is necessarily supercooled at lower temperature. In

the present work, an insignificant hysteresis of hu was

observed for all soils below Tsn (at frozen state). First, the

effect of electrolytes can be ignored. Second, temperature

below Tsn of -1 to -2 �C corresponds to a suction of 1 to

2.5 MPa following the Clapeyron equation. This high

range of suction corresponds mainly to water in micropore

(intra-aggregates) in the clay matrix where SWCC is also

reversible. As a result, hysteresis of SFCC observed in the

present work could be contributed mainly to supercooling.

After the triggering of freezing, SFCC obtained at tem-

perature lower than Tsn was generally reversible (see

Figs. 8 and 9).

Results shown in Fig. 9 demonstrate significant effect of

fines content on the thawing path of SFCC; at a given

temperature, a higher unfrozen water degree of saturation

was obtained at a higher fines content. These results are

consistent with the findings of previous works

[45, 68, 69, 91]. Following these studies, Gibbs–Thompson

equation can be used to relate the pore-size distribution and

the thawing path of SFCC; a lower temperature corre-

sponds to a smaller pore. In the present work, soil having

higher fines content would have a larger volume of

micropores (inter-aggregates and intra-aggregates pores) a

lower volume of macropores (space between sand

particles).

Tsn determined in this study can be associated with

supercooling. Figure 10 shows that this parameter gener-

ally decreased with an increase in fines content and it was

measured with a relatively high scattering. For bulk water,

Tsn depends on numerous factors such as sample volume,

cooling velocity, the presence and concentration of solutes,

the presence of solid impurities, and effects of external

fields (impulse waves, electromagnetic radiation, etc.)

[23, 41, 73]. In the case of soils, additional factors can be

soil components and their fractions. Many studies deter-

mined Tsn of various soils and found that increasing clay

content in soils decreases temperature of spontaneous

nucleation to lower range [4, 90]. These studies focussed

on clays or clay and silt, and these results agree with sandy

soils in the present study. It is noted that the supercooling is

considered as a necessary phase to activate nucleation

process and it appears in both cases, either in free pure

water or within the porous volume of soils. Because of the

high value of released latent heat, about 334 J/g, which

appears during nucleation process, water needs to be

supercooled at Tsn for equilibrating energy before crystal-

lization. According to Yershov [82], Tsn is remarked as the

temperature at which embryo nuclei form and grow to the

critical sizes, about 472 H2O corresponding to 10–26 m3.

The relatively high scattering of results obtained in the

present work can be thus explained by the random beha-

viour of the crystallization process. The slight effect of

fines content on Tsn can be explained by the effect of soil

pore-size distribution on the supercooling: soil having a

higher fines content would have higher volume of micro-

pores, and Tsn is generally lower in a smaller pore.

Numerous studies investigated Tf and showed that Tf
depends on many factors such as salt content

[11, 13, 25, 48, 75], salt types [14, 74], initial water content

[4], and soil types [18, 39, 42, 45, 66, 90]. In the present

study, Tf was found close to 0 �C for all soils. This result

can be explained by two main reasons: soils were studied at

saturated state, and fines content is sufficiently low. Bing

and Ma [14] obtained similar results with saturated sandy

soil containing less than 7.5% of clay. Furthermore,

freezing point remains constant also above a certain value

of water content for all soils [14, 41, 78]. Actually, for the

soils considered in the present study, with relatively low

contents of low plasticity kaolin clay, the amount of bound

water should be negligible and Tf should be similar to that

of bulk pure water, i.e. close to 0 �C.

Residual unfrozen content was found higher at a higher

fines content (Fig. 11). It is believed that residual unfrozen

relates almost directly to the amount of specific surface of

soils. According to several studies [45, 66, 68, 69, 90],

unfrozen water content remaining in soils at the same

temperature decreased in the following order: clay, silts,

sands and gravel. Following Bing and Ma [14], only free

water was frozen when freezing is triggered. Unfrozen

water should then correspond to bound water. According to

Tian et al. [68], the amount of bound water in soils is

proportional to the thickness of the electric double layer

and specific surface area. In the present study, a higher

fines content corresponds to a higher specific surface area

and then a higher amount of bound water.

The duration of temperature plateau, tp, would depend

then on the amount of latent heat released when freezing is

triggered. This amount mainly depends on Tsn,as shown in

Table 5. As the results of Tsn show significant scattering

and a general slight increase when fines content increased

(Fig. 10), similar trends were observed with tp (Fig. 12).

The duration of the freezing process, tf, which is much

longer than tp, corresponds to the thermal diffusion of

latent heat released during the whole freezing process. This

duration would depend thus mainly on the thermal diffu-

sivity of the frozen soil (which at the same time evolves

during freezing).
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5 Conclusions

The results obtained in this study show that fines content in

sandy soils significantly influenced the soil behaviour

under a freezing–thawing cycle. Based on the investigation

of five levels of fines content (varying from 0 to 20%), the

following conclusions can be addressed:

– When the temperature decreased from 0 �C, freezing

was triggered at Tsn inducing a sudden decrease of hu
from the saturated state to the residual state. After-

wards, hu continued to decrease but with a lower rate.

The subsequent heating induced an increase of hu
(which represents a progressive melting of frozen

water).

– The thawing path of SFCC was strongly dependent on

the fines content; at a given temperature, a higher hu
was observed for a higher fines content.

– Tsn was higher at a higher fines content and varied

between -1.0 and -2.0 �C.

– Tf varied between 0 �C and -0.2 �C, only a slight

decrease of Tf with an increase in fines content was

observed.

– hr (varied from 1 to 7%) was higher at a higher fines

content.

– tp was found scattering and slightly decreased when

fines content increased.

– tf was found independent of fines content.

The findings of the present study would be helpful to

predict the soil behaviour under freezing–thawing process.

That would imply several applications in cold regions and

also in geotechnical engineering ground improvement by

artificial ground freezing.
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