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Abstract
The paper describes the formulation and simulative potential of a constitutive model for monotonic and cyclic shearing of

sands. It is a SANISAND-type model that does not consider a (small) yield surface and employs the last stress reversal

point for defining both the elastic and the plastic strain rates. Emphasis is put on the updating of the stress reversal point to

avoid stress-strain overshooting. It incorporates a fabric evolution index that scales the plastic modulus targeting strain

accumulation with cycles and a post-liquefaction formulation affecting the dilatancy function. The paper includes the

calibration process of the 14 model parameters. Model performance is verified against a large database of monotonic and

cyclic shearing tests on Toyoura and Ottawa-F65 sands. To complement sand-specific data, empirical relations are used for

validating the shear modulus at small strains, its degradation with cyclic shear strain, the corresponding increase in

hysteretic damping, the evolving rates of volumetric and shear strain accumulation with cycles and the effect of relative

density and stress level on liquefaction resistance. Model verification shows that a single set of sand-specific parameters

may be used for both monotonic and cyclic shearing of any strain level, irrespective of stress level and relative density.

Keywords Bounding surface plasticity � Constitutive modeling � Cyclic loading � Liquefaction � Monotonic loading �
Sands

1 Introduction

Accurate numerical analyses of boundary value problems

of geotechnical structures rely on the use of properly cal-

ibrated constitutive models that are appropriate for the

geomaterial and the loading at hand. For coarse-grained

geomaterials like sands, users often employ different con-

stitutive models and/or different calibrations of the same

model, depending on the target loading (e.g., monotonic

versus cyclic, cyclic due to earthquakes versus cyclic due

to wave action). Given its complexity, the issue of cyclic

loading of sands has attracted a lot of attention in the lit-

erature, leading to multiple publications of constitutive

models. Some of them incorporate the well-established

mechanical framework of Critical State Soil Mechanics

([50]), while others are based on hypoplasticity theory

(e.g., [5, 25, 41]). Nowadays, a large percentage of the

pertinent Critical State models is of the SANISAND–type,

i.e., bounding surface models ([11, 13]) in which the peak

and the dilatancy deviatoric stress ratios depend on the

state parameter w ([6]). Although the term SANISAND

was coined in 2008 by Taiebat and Dafalias [56], the

concept was first proposed by Manzari and Dafalias [34] in

their two-surface model and adopted thereafter by many.

The reason for its popularity is that it enables successful

simulations for any relative density or stress level with the

same set of model parameters.

In many cases, the papers that present models for cyclic

loading of sands include accurate simulations of monotonic

response, as well as of few cyclic loading tests leading to

liquefaction. Such a presentation, although possibly suffi-

cient for monotonic loading, may not be adequately com-

plete for cyclic loading, whose characteristics are highly

dependent on cyclic shear strain level ([66]). As such, a

complete model verification for cyclic loading should focus
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distinctly on: a) small-strain response (‘‘elastic’’ stiffness

modulus and initial damping ratio), b) medium-strain

response (shear modulus degradation and hysteretic

damping ratio increase with cyclic strain amplitude; strain

accumulation with number of cycles), c) large-strain

response, mainly with emphasis on liquefaction resistance

curves and post-liquefaction strain accumulation. The

importance of these distinct cyclic shear strain regimes for

proper simulations has started to attract attention in the

literature lately. For example, McAllister et al. [37] showed

that if ‘‘elastic’’ modulus stiffness of SANISAND models

is calibrated on the basis of monotonic tests, it underesti-

mates significantly the in situ shear wave velocity leading

to erroneous prediction of seismic ground response. Simi-

larly, specialized models are being formulated for proper

simulation of strain accumulation with large number of

(medium-strain) cycles (e.g., [27, 30]), an issue rarely

studied in papers presenting cyclic models in the past.

Finally, a multitude of recent papers deal specifically with

post-liquefaction strain accumulation (e.g., [58, 74]),

underlining its importance for accurate simulations of

displacements of geostructures in a liquefaction regime. To

the authors’ knowledge, there are few papers that present

model verifications for all 3 distinct cyclic shear strain

regimes (e.g., [1, 8, 10, 42]). Of course, this does not mean

that sophisticated cyclic models that are not verified in this

manner are inaccurate. It only means that their users should

be cautious when using them outside their verified cyclic

shear strain range.

Concurrently, some of the models that have exhibited a

satisfactory performance for cyclic loading may not be as

accurate when it comes to monotonic loading (e.g., the

NTUA-SAND model ([1]) requires a change in the values

of 2 model parameters in order to capture the monotonic

response). In addition, some promising cyclic models were

never implemented in numerical codes (e.g., [42]), while

models that have been implemented in such codes have not

been necessarily verified for the whole range of cyclic

loading response (e.g., [77]). It goes without saying that

targeted verification may also come from use in boundary

value problems (e.g., [76]), which may even be preferable

from mere comparison with element test data (e.g., [35]).

In this respect, one should acknowledge models that have

been widely used throughout the years, at least for lique-

faction-related problems (e.g., [12]). Such models should

be considered as equally accurate, at least for the problems

that they have been repeatedly used in the past.

Based on the above, there is a need for a constitutive

model for sands, which will be able to capture accurately

both the monotonic response (until the critical state) and

the cyclic response (for any shear strain level) with a single

set of parameters for any relative density and stress level.

This is the goal of the SANISAND-type model presented

herein, which also incorporates stress reversal surfaces

([38, 68]) facilitating the simulation of cyclic loading

without a (small) yield surface. In this respect, it is a

SANISAND-R model, a term introduced recently by

Papadimitriou et al. [44]. It builds on the NTUA-SAND

model ([1]), from which it inherits concepts like the small-

and medium-strain nonlinearity and the fabric evolution

index for large strain response, albeit modified. Stress

reversals are appropriately updated in order to avoid the

stress–strain overshooting problem ([14]), but also to

establish that strain accumulation does not appear at very

small-strain cyclic loading in accordance to the literature

([66]). Post-liquefaction strains are in focus with an

appropriate modification of the dilatancy function. It

should be clarified in advance that the proposed is, by-

design, a general-purpose constitutive model for sands.

This means that its accuracy may not always be equal to

that of dedicated models. For example, the accuracy of a

fabric-based anisotropic model (e.g., [44]) may be superior

for monotonic loading; however, such a model can only be

used successfully for boundary value problems related to

static loading (e.g., [9, 45]). On the contrary, the proposed

model provides the user with a satisfactory performance

without a need for recalibration regardless of whether the

problem is static, cyclic or dynamic. In the sequel, this

paper presents the model formulation in Sect. 2, which is

followed by the thorough calibration of its 14 model

parameters in Sect. 3. Then, Sect. 4 presents an elaborate

verification against monotonic and cyclic test data, while

the paper ends in Sect. 5 with notes regarding the appli-

cability of the proposed model and its limitations.

2 Model formulation

2.1 Constitutive model platform

The formulation of the model is presented in the multiaxial

stress space and the equations are given in tensorial form.

Second-order tensors are written in bold characters, so as to

be distinguished from scalars, while normal stress com-

ponents are considered effective. A superposed dot over

scalar or tensorial quantities implies material time deriva-

tive or rate. A symbol : between 2 tensors denotes their

double inner product or equivalently the trace (tr) of their

product. Specifically, the strain tensor is depicted as e and

can be decomposed into its (scalar) volumetric component

evol = tre and the (tensorial) deviatoric component e = e–

(evol /3) I, with I standing for the second-order identity

tensor. Superscripts e and p denote the elastic and plastic

part of strains, respectively. The effective stress tensor is

symbolized by r and consists of its hydrostatic component

p = (1/3)trr (i.e., the mean effective stress) and its
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deviatoric component s = r–pI. Of great importance is also

the deviatoric stress ratio tensor r = s/p, which is instru-

mental in the constitutive equations of this model. Given

the above definitions, the basic model equations are foun-

ded on elasto-plasticity theory and are summarized, for

brevity, in Table 1.

Note that, in Eq. (4), the inclusion of scalar-valued

loading index K is Macauley-bracketed implying that the

plastic strain rate is zero when K\ 0 (unloading) or K = 0

(neutral loading), and nonzero in cases of loading (K[ 0).

In Eq. (5), the plastic strain rate direction is defined, with

unit-norm tensor n constituting its deviatoric part. The n

adopts all the properties of unit-norm tensors (i.e., n = nT,

trn = 0 and n: n = 1) and is determined according to the

adopted mapping rule of the model. According to Eq. (6),

loading takes place either with a combination of n : _r[ 0

(p is always nonnegative) and Kp[ 0 (hardening response)

or n : _r\0 and Kp\ 0 (softening response). Considering

all the above, a nonzero deviatoric stress ratio rate serves as

the necessary condition for nonzero plastic strain rates.

This concept, while quite realistic during shearing, should

be used with caution in problems where loading under

constant stress ratio prevails (e.g., one-dimensional con-

solidation). Note also that a nonzero deviatoric stress ratio

rate is not a sufficient condition for nonzero plastic strain

rates. This is because the so-called neutral loading (K = 0)

may appear for tangential loading paths, where both n 6¼ 0

and _r 6¼ 0 continuously, but n : _r ¼ 0 throughout the

loading. In this sense, the model does not have a truly zero

elastic range in stress space, as was clarified for such

models in Dafalias and Taiebat [14].

2.2 Critical state behavior

The proposed model formulation incorporates the Critical

State Theory of Soil Mechanics ([50]) by adopting a unique

Critical State Surface (CSS) in the effective stress r – void

ratio e space. For its projection on the mean effective p –

void ratio e space, i.e., for the Critical State Line (CSL), a

power relation is adopted. Hence, for a given mean effec-

tive stress p, the corresponding critical value of void ratio

ecs on the CSL is given by ([12, 28]):

ecs ¼ eref � k
p

patm

� �n

ð10Þ

where eref is the reference value of void ratio at p = 0

controlling the position of CSL (a model parameter), patm is

the atmospheric pressure (e.g., patm = 101.3 kPa), and k
and n are nonnegative model parameters forming CSL’s

curvature and shape in the (p – e) space.

The current state of the material is always identified

with reference to the CSL through the state parameter w,
which quantifies the difference between the current void

ratio e and the corresponding critical state value ecs at the

current mean effective stress p via ([6]):

w ¼ e � ecs ð11Þ

Parameter w determines the state of the material as a

combined function of its density (through void ratio e) and

its effective mean stress (through ecs), expressing how far

from critical is the current state. It is obvious that a state (e,

p) above the CSL in the (p – e) space corresponds to w[ 0

and consequently to contractive behavior, while, on the

contrary, a state below the CSL in the (p – e) space

Table 1 Basic constitutive formulation

Description of equation Constitutive equation Eq. number Notes/References

Volumetric component of

strain rate
_evol ¼ _eevol þ _epvol (1)

Deviatoric component of

strain rate

_e¼ _eeþ _ep (2)

Elastic strain rate per

effective stress rate _r
_ee ¼ _ee þ _eevol

3
I ¼ 1

2Gt
_s þ _p

3Kt
I (3) Gt and Kt: tangential values of elastic shear and bulk

moduli (Eqs. 21 & 23)

Plastic strain rate _ep ¼ _ep þ
_ep
vol

3
I ¼ Kh iR (4)

Plastic strain rate direction R ¼ nþ D=3ð ÞI (5) D: the dilatancy function (Eqs. 36 & 38)

Loading index per effective

stress rate _r
K ¼ 1

Kp
L : _r ¼ 1

Kp
n : p _r (6) Kp: the plastic modulus (Eq. 24)

Loading direction L ¼ n� n:r
3
I (7)

Effective stress rate per strain

rate _e
_r ¼ 2Gt _eþ Kt _evolI � Kh i 2Gtnþ KtDIð Þ (8)

Loading index per strain rate _e
K ¼ 2Gtn : _e� n : rð ÞKt _evol

Kp þ 2Gt � n : rð ÞKtD

(9)
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corresponds to w\ 0 and consequently to dilative behav-

ior. The explicit incorporation of w in model equations,

starting from the model surfaces in the next paragraph, is

what gives the SANISAND character to this model.

2.3 Model surfaces

Being of the SANISAND-type, the proposed bounding

surface model is stress ratio-driven. For the common case

of loading in triaxial compression (TC), the critical state

Mc
c, the bounding (or peak) Mb

c and the dilatancy Md
c stress

ratios (collectively Mc;b;d
c ) are related to each other via the

state parameter w, as follows:

Mb
c ¼ Mc

c exp nb �wh i
� �

ð12Þ

Md
c ¼ Mc

c exp ndw
� �

ð13Þ

where Mc
c; nb and nd are nonnegative model parameters.

Note that the subscript c depicts that loading is in triaxial

compression, while superscripts c, b or d clarify which of

the three stress ratios is of interest. These exponential

equations are adopted from Li and Dafalias [26] and

Dafalias and Manzari [12]. Note also that here Macauley

brackets appear in Eq. (12) to make it qualitatively com-

patible with the linear form of this equation in Manzari and

Dafalias [34]. Hence, based on Eqs. (12) and (13), for

dilative states where w\ 0, Md
c \Mc

c\Mb
c holds. This

implies that the peak stress ratio is higher than the critical

state ratio, while the dilatancy stress ratio is lower than

both of them. Similarly, for contractive states (w[ 0)

Md
c [Mc

c ¼ Mb
c holds, implying purely contractive

response (since the Md
c is not reached) and attainment of

the peak stress ratio at critical state.

The generalization of these three stress ratios in multi-

axial stress space takes the form of surfaces, namely the

critical state, the bounding and the dilatancy surface. All

three surfaces have the shape of an open cone, with their

apex on the origin of stress space, are homologous, and

their apertures are defined by the stress ratio values Mc
h, Mb

h

and Md
h , respectively. The subscript h in the foregoing

stress ratio values depicts that this generalization is per-

formed with the aid of the Lode angle h, that is hereby

defined in terms of the unit-deviatoric loading direction

tensor n, according to:

cos 3hð Þ ¼
ffiffiffi
6

p
tr n3
� �

¼ 3
ffiffiffi
6

p
det n ð14Þ

where det is the determinant of a (second-order) tensor.

Based on its definition, angle h ranges between 0� and 60�,
where 0� corresponds to loading in triaxial compression

(TC) and 60� to triaxial extension (TE). All the interme-

diate values of h correspond to non-triaxial loading con-

ditions. Hence, the M stress ratio of the aforementioned

surfaces can be defined as a continuous function of angle h.
In this model, this function is depicted by g and is used as

follows:

Mc;b;d
h ¼ gðh; cÞMc;b;d

c ð15Þ

where c ¼ Mc
e=Mc

c is a nonnegative model parameter that is

equal to the ratio of the critical stress ratio in triaxial

extension (TE) over that in TC. In this paper, the adopted

g(h,c) function is borrowed from Loukidis and Salgado

[33], although its more general form (involving 3 inde-

pendent parameters) dates back to van Eekelen [18]. It

reads:

gðh; cÞ ¼ 2lc

1þ c1=l � 1� c1=lð Þ cos 3hð Þ½ �l
ð16Þ

where exponent l controls the convexity of the surface on

the p-plane of the deviatoric stress ratio space. This l is set

fixed to 0.16 here, which provides convexity for the usual

cases of c[ 0.67. Observe here that g = 1 for h = 0o and

g = c for h = 60o, thus rendering the pertinent values for

the stress ratios in TC and TE on the basis of Eq. (15). The

procuring shape of the three model surfaces (for c = 0.712)

on the foregoing p-plane is shown in Fig. 1 for an exem-

plary case where w\ 0, which dictates their apertures as a

function of Eqs. (12) and (13).

2.4 Mapping rule

The distance of the current stress ratio r from these surfaces

on the p-plane of the deviatoric stress ratio space is a key

component of the constitutive equations. The distance from

each surface is defined with the aid of the image points rc,

Fig. 1 Model surfaces on the p-plane of the deviatoric stress ratio

space and adopted mapping rule. The relative location of dilatancy

and bounding surfaces corresponds to a dilative state (w\ 0)
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rb and rd (collectively rc,b,d) of r on the critical state, the

bounding and the dilatancy surfaces, respectively. These

image points are defined on the basis of the selected

mapping rule, which is schematically illustrated in Fig. 1.

This radial mapping rule has been repeatedly used in the

past (e.g., [1, 68]).

The all-important tensor rini refers to the tensor r when

the last load reversal took place, i.e., when the loading

index K of Eq. (6) or Eq. (9) took a negative value last. For

the first shearing path, it is, by default, equal to the value of

tensor r at the initial state (e.g., end of consolidation). This

correlation to the recent shear history via rini dates back to

the concept of stress reversal surfaces by Mróz et al. [39]

and Mróz and Zienkiewicz [38]. Having determined the

image point rb on the bounding surface allows for the

definition of the unit-norm deviatoric tensor n starting from

the stress origin and depicting its direction as:

n ¼ rbffiffiffiffiffiffiffiffiffiffiffiffi
rb : rb

p ð17Þ

Given the unit-norm tensor n, the image points on all

three model surfaces may be computed as:

rc;b;d ¼
ffiffiffi
2

3

r
Mc;b;d

h n ð18Þ

where Mh
c,b,d is defined in Eq. (15). Consequently, the

scalar distance between the current stress ratio r and the

model surfaces (collectively d c,b,d) is computed along the n

direction, as:

dc;b;d ¼ ðrc;b;d � rÞ : n ð19Þ

According to Eq. (19), a positive dc,b,d value implies a

current stress ratio r located inside the corresponding sur-

face, while a negative value of the distance dc,b,d depicts

that it is outside.

2.5 Elastic moduli

The maximum value of the shear modulus Gmax used

herein follows a hypoelastic formulation, since it is a

function of the current values of the mean effective stress p

and the void ratio e. Specifically, based on Hardin [21], it

holds:

Gmax ¼ Go patm

1

0:3þ 0:7e2

� � ffiffiffiffiffiffiffiffi
p

patm

r
ð20Þ

where Go is a model parameter and patm is the atmospheric

pressure. However, the tangential value of the shear mod-

ulus Gt entering the calculation of the elastic strain rate (see

Eq. (3)) incorporates a Ramberg–Osgood-type ([48]) hys-

teretic behavior, which provides a nonlinear degradation

with strain. This concept, originally proposed by

Papadimitriou et al. [43] and then used slightly modified by

Andrianopoulos et al. [1], Loukidis and Salgado [33] and

Taborda et al. [55], allows for a smooth decrease in the

tangential shear modulus Gt, from its maximum value

(equal to Gmax from Eq. (20)) and a consequent smooth

increase in hysteretic damping with increasing shear

amplitude (e.g., [67]). In more detail, the nonlinear hys-

teretic form of Gt is given as:

Gt ¼
Gmax

T
ð21Þ

where T is a positive scalar (C 1) variable, defined as:

T ¼ 1þ 2
1

a1

� 1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
r� rinið Þ : r� rinið Þ

r

a1
Gmax

p

� �
c1

0
BB@

1
CCA ð22Þ

Respectively, the tangential bulk modulus Kt entering

Eq. (3) is interrelated to the tangential shear modulus Gt on

the basis of a constant value m of the Poisson’s ratio (a

model parameter) according to:

Kt ¼
2

3

1þ vð Þ
1� 2vð ÞGt ð23Þ

Note that according to Eq. (22) variable T reduces the

shear modulus Gt as the current deviatoric stress ratio

r diverts from the stress ratio rini at the last stress reversal.

In comparison with the Andrianopoulos et al. [1] version of

variable T, the first difference is that in its denominator the

current values of Gmax and p are used and not those at the

last stress reversal (the same was also assumed in [33]).

The second difference is the use of a1 (B 1) and c1 ([ 0) as

fixed constants here, and not as model parameters that is

the common choice in practically all pertinent formulations

in the literature (e.g., [1, 33, 43, 55]). The hereby adopted

fixed values are a1 = 0.85 and c1 = 0.03%, i.e., they cor-

respond to the upper bound of the range originally pro-

posed by Papadimitriou et al. [43]. Fixing these parameters

provides user-friendliness, but obviously reduces the flex-

ibility of the model. However, extensive verification

against data from multiple sands has shown that the plastic

formulation of the model (described in the sequel) is

flexible enough to provide the remainder of the measured

nonlinearity.

It has to be underlined here that without the additional

nonlinearity offered by variable T it is impossible to attain

accurate simulations across the whole range of shear

strains, from small–strain dynamic loading to large-strain

monotonic shearing using the same set of model parame-

ters, with the Gmax being calibrated from truly small-strain

measurements (e.g., bender elements, geophysical mea-

surements). Another significant contribution of this for-

mulation was highlighted in Loukidis and Salgado [33],
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where it was shown that without variable T it is impossible

to obtain compatible drained and undrained stress–dila-

tancy response while retaining realistic values of Poisson’s

ratio m and Gmax irrespective of type of loading.

2.6 Plastic modulus

The plastic modulus Kp in Eq. (6) is given by:

Kp ¼ ho hh hf hpp hep p
db

ðr� riniÞ : n
ð24Þ

where hh, hf, hpp, hep are nonnegative model functions that

will be discussed extensively in the sequel, and ho a non-

negative model parameter. Based on Eq. (24), the sign of

plastic modulus Kp is controlled by the sign of the distance

db. According to Eq. (6), when K[ 0, hardening response

occurs when the r lies inside the bounding surface (db[0),

or, on the contrary, softening response occurs when the r

lies outside the bounding surface (db\0). Moreover, the

denominator (r – rini):n implies that at the initialization of a

load reversal (where rini has just been updated to the value

of r) the Kp takes an infinite value, thus leading to zero

plastic strain at the beginning of every new shearing

process.

Next, the effects of mean effective stress p and void

ratio e on the Kp, that are introduced via functions hpp and

hep respectively, will be discussed. Specifically, function

hpp is given by:

hpp ¼
ffiffiffiffiffiffiffiffi
patm

p

r
ð25Þ

which, in combination with p multiplying the right part of

Eq. (24), results in a total effect of mean effective stress on

Kp having an exponent of 0.5, in agreement with Eq. (20)

for the elastic moduli. Note that in constitutive models for

sands, the selected value of 0.5 for this exponent is the

most common choice, although there are models in which

this exponent reaches 1.5 (e.g., [55]). Similarly, the

decreasing effect of void ratio e on the plastic modulus Kp

is introduced via:

hep ¼ e�ch ð26Þ

where ch is a nonnegative model parameter.

In the sequel, function hh introduces an additional effect

of Lode angle h on the plastic modulus. This is related to

the need to show more compliant response in loading with

intermediate h values (0o\ h\ 60o), than what the g(h,c)
function of Eq. (16) provides in terms of the shape of

model surfaces. For example, the comparison of resistance

to liquefaction from cyclic triaxial tests (where angle h
jumps from 0� to 60�) versus that from cyclic simple shear

tests (where angle h takes intermediate values) shows that

the former is larger than the latter (e.g., [40, 62]). Hence,

here the function hh (B 1) is introduced as a multiplier of

the Kp which reads:

hh ¼ 2gðh0; cÞ � 1½ �5=2 ð27Þ

Function hh actually utilizes function g of Eq. (16) to

capture the foregoing effect, but for a modified Lode angle

h0 = h ? 30o. In this way, for h = 0o (triaxial compression)

and h = 60o (triaxial extension), the value of g entering

Eq. (27) is the same and hh attains its maximum value. For

intermediate values of h, g attains lower values, resulting in

lower values also for hh.

Finally, scalar-valued function hf is a macroscopic index

of the effects of fabric evolution on the sand response. The

use of such fabric-related functions emphasizing on cyclic

shearing effects is common practice in constitutive mod-

eling (e.g., [1, 8, 12]). In this model, this significant effect

on plastic strains is described macroscopically by the

function hf on Kp, which reads:

hf ¼
1þ fp � cf

	 
2
1þ f

ini
: n

	 
 ð28Þ

Specifically, the hf in Eq. (28) borrows elements of its

formulation from the respective hf functions of Papadim-

itriou and Bouckovalas [42] and Andrianopoulos et al. [1].

Specifically, the numerator is a quadratic function of sca-

lar-valued variable fp, while the denominator is a linear

function of the inner product of an expression of a devia-

toric fabric tensor f and the loading direction n. In addition,

both fp and f initiate from zero at the initial state (leading to

hf = 1) and evolve independently with plastic volumetric

strain, the latter only in dilation. Apart from these quali-

tative similarities to the hf function in [42] and [1], in

quantitative terms there are significant differences, since in

the new model the evolution laws of fp and f are as follows:

_fp ¼ 2� að ÞN hpf _e
p
vol ð29Þ

_f ¼ �N hpost�liq f þ f 1það Þ
max n

h i
� _epvol
	 


ð30Þ

where

N ¼ No hef �woh i0:1 ð31Þ

is the common evolution rate parameter for both fp and f,

that is calibrated via No a nonnegative model parameter,

that is the only parameter requiring calibration for function

hf. The above equations also include scaling functions that

introduce effects of initial state on the evolution rate of

both fp and f. Firstly, it is the effect of initial state

parameter wo, which appears in Macauley brackets that

ensure a smooth transition between states where fabric

evolution is important (when wo\ 0) and states where it is

neglected (when wo[ 0), the latter mainly due to lack of

pertinent experimental evidence. Then, the effects of the
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initial values of mean effective stress po and void ratio eo
are included separately via:

hpf ¼
patm

po

� � 1

2e2o � 1:5 ð32Þ

hef ¼ e�0:5ch
o ð33Þ

Finally, note that parameters fmax and a that enter

Eqs. (29) and (30) are variables that initiate from zero at

the initial state and evolve during loading, as per:

fmax ¼ max fp
� �

ð34Þ

0� a ¼ �2

R
_evol

�� ��R
_epvol

�� ��� 1

 !
� 1 ð35Þ

where fmax is the maximum value that scalar fp has taken

during loading from the initial state, while a is a variable

that takes values between 0.0 and 1.0, on the basis of the

absolute values of 2 strain integrals measured during

loading from the initial state: that of the total volumetric

strain and that of the plastic volumetric strain.

Equations (28–35) constitute a complete framework for

describing the effects of fabric evolution on the sand

response. Function hpost-liq entering Eq. (30) accounts for

cyclic mobility and accumulation of strains after lique-

faction is triggered, and its formulation is detailed in a

special section below. For now, note that hpost-liq = 1 until

initial liquefaction occurs, i.e., until the state when the

current p becomes (for the first time) smaller or equal to a

critical value pl, defined as pl = min (0.05 po; 10 kPa). In

more detail, according to Eq. (29), function fp in the

numerator of hf follows the whole shearing history of the

sand, similarly to other models (e.g., [1, 42]). Model con-

stant cf and the inclusion of the (fp–cf) difference into

Macauley brackets in Eq. (28) imply that there is a

threshold value of fp, beyond which stiffening starts to

affect the plastic modulus. This prevents stiffening during

the early stages of monotonic shear loading, when the

stress point remains inside the dilatancy surface, without

essentially affecting cyclic loading in which the fp sur-

passes quickly the value of cf. A value of cf = 1 is found

appropriate for both monotonic and cyclic loading of var-

ious sands and is hereby adopted as a constant. Note that in

existing similar models (e.g., [1, 42]), cf = 0 holds.

At the same time, and according to Eq. (30), deviatoric

fabric tensor f evolves only during dilation and not during

the whole shearing history of the sand, i.e., unlike the fp.

During a dilative shear path, and due to the negative sign in

the front of Eq. (30), the f develops in the opposite direc-

tion of the tensor quantity in brackets that is a function of

the current values of the fabric tensor f and the loading

direction n. As such, in dilative shear paths the f may stop

developing only if the tensor quantity in brackets becomes

zero, which appears when the f = –fmax
(1?a)n, i.e., when

the f takes its maximum norm, that is a nonnegative

function (as fp initiates from zero) of the maximum value

that the fp ever took during loading. However, it has to be

underlined here that, unlike previous similar models (e.g.,

[1, 42]), it is not the value of fabric f that enters the hf in

Eq. (28), but the value of fini, i.e., the value of fabric f at

the last load reversal. In any case, based on Eq. (28),

whenever the denominator of hf takes values greater than

1.0, this leads to a decrease of Kp and hence a softening

response is predicted. Such a softening response does not

appear during monotonic loading (since fini = 0), but only

during unloading paths following loading outside the

dilatancy surface.

Focusing on the common evolution rate parameter N for

both fp and f, Eq. (31) incorporates its dependence on

initial state. Particularly, function hef in Eq. (33), like its

similar form included in the Kp equation (Eq. (26)), indi-

cates a decreasing effect of (initial) void ratio on the rate of

fabric evolution. Moreover, function hpf (Eq. (32)) that

multiplies N in Eq. (29) for the fp evolution implies also a

decreasing effect of (initial) mean effective stress on the

rate of fabric evolution. Since the numerator of hf (via the

fp evolution) mostly governs the stiffening response with

cycles, the inclusion of functions hpf and hef in the evolu-

tion of fp in Eq. (29) ensures that the new model is in line

with experimental results (e.g., [62]) and analytical rela-

tions (e.g., [22]) for the decreasing effect of overburden

stress and relative density on the resistance to liquefaction

via factor Jr. This also explains the upper-bound value of

1.5 in hpf of Eq. (32) in order to disallow excessive

increase in liquefaction resistance for very small po values.

Gradual stiffening response with cycles is apparent both

in drained and in early stages of undrained cyclic element

tests. That is the reason why the accumulation of fabric-

related components was conceptually chosen to develop

with the plastic component of volumetric strain rate and not

its total rate, similarly to all pertinent literature models

(e.g., [1, 12]). However, this option creates an inherent

quantitative differentiation of the fabric evolution under

different drainage conditions. For example, if drainage

occurs, the change of void ratio e directly affects the plastic

modulus Kp via Eq. (26), and hence the value of the plastic

volumetric strain rate entering fabric evolution via

Eqs. (29) and (30). To counterbalance this effect, the

intensity of fabric evolution during loading is set to depend

on the correlation between the integral of the total volu-

metric strain and the integral of the plastic volumetric

strain during loading via factor a that is introduced in

Eq. (35) and takes values between 0.0 and 1.0. Based on its

definition in Eq. (35), when the integral of total volumetric

strain is equal to zero (e.g., in the extreme case of fully

undrained conditions), then a = 1.0. On the other hand,
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when the ratio of the volumetric strain integrals is greater

than 1.0, i.e., when volume change is significant (e.g., in

the case of fully drained conditions), then a = 0.0. For all

the intermediate states, factor a attains values between 0.0

and 1.0 according to Eq. (35). Given the above definitions,

the term (2–a)N that acts as the scaling factor in Eq. (29)

takes values between N and 2 N, while the maximum norm

fmax
(1?a) that fabric tensor f may take in the bracketed

tensor term of Eq. (30) takes values between fmax and fmax
2.

It is understood that making fabric evolution partially a

function of the integral of total volumetric strain via factor

a may seem inconsistent. However, based on all the above,

this integral affects merely the scaling factor of fp evolution

in Eq. (29) and the maximum norm of tensor f in Eq. (30).

In other words, both fp and f continue to evolve as functions

of the plastic volumetric strain rate in Eqs. (29) and (30),

and the role of factor a is merely to enhance or reduce

fabric evolution effects on the plastic modulus Kp

depending on whether the loading induces volume change

or not. Such a factor does not appear in any previous

similar model (e.g., [1, 12, 42]) that focused mostly on

undrained loading (and liquefaction) and an example of its

necessity for other than undrained conditions is discussed

below. Specifically, Fig. 2 presents the predicted shear

stress–strain (s–cSS) relation and volumetric strain (evol–
cSS) accumulation within 30 cycles of a strain-controlled

drained cyclic simple shear test with single amplitude

cyclic shear strain equal to cSS,cyc = 0.1%. Subplots c and d

include the model prediction having factor a varying

according to Eq. (35), while subplots a and b present the

same predictions but with a factor a = 1.0 that leads to the

lowest fp evolution rate equal to N and the highest maxi-

mum norm of f equal to fmax
2. According to experimental

evidence for drained cyclic loading (e.g., [51]), even for

large cyclic shear strain amplitudes for which the shearing

leads to dilation before the load reversal, the volumetric

strain evol accumulates with cycles, but at a steadily

decreasing rate (e.g., see Fig. 2d), while the stress–strain

relation becomes gradually stiffer (e.g., see Fig. 2c). In

order to achieve this response, the new model (with vari-

able a) employs fp evolution rates higher than N, thus

enhancing the numerator of hf, concurrently with values of

Fig. 2 Effect of factor a on the shear stress–strain (s – css) relation and the volumetric strain (evol – css) accumulation in 30 cycles of a strain-

controlled drained cyclic simple shear test: a and b a = 1; c and d variable a, according to Eq. (35)
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maximum norm of f lower than fmax
2, thus reducing the

importance of the denominator of hf. As a result, the pre-

dicted response is a gradual stiffening with cycles due to

the effect of a gradually increasing hf.

On the contrary, using a constant value of a = 1.0 leads

to a milder increase in the numerator of hf concurrently

with the potential for a more intense increase in its

denominator. Such a choice may lead to the undesired

response presented in Fig. 2a and b. Specifically, in the first

cycles (phase A) the response becomes gradually stiffer, as

it should. However, as the stress–strain loops become

stiffer, the values of stress ratio r become higher and the

stress point may shift outside the dilatancy surface. Due to

the large maximum norm of fmax
2, this partly dilative

loading increases the f and thus the denominator of func-

tion hf. As cyclic loading continues (phase B), the hf
gradually decreases, which leads to a softening response

with cycles, i.e., an accelerated rate of evol accumulation.

This unrealistic softening leads to gradually larger evol
increments, which, in turn, allow for an intense evolution

of the fp and of the numerator of hf. As a result, phase C of

the loading appears, where the hf increases and reduces

equally within each cycle, thus leading to a constant rate of

evol accumulation with cycles, which is again unrealistic.

2.7 Dilatancy

According to Eq. (5), the definition of plastic strain rate

direction R in this model implies non-associativity, since

the scalar-valued dilatancy function D is explicitly defined.

Specifically, the dilatancy D is hereby defined with dif-

ferent equations for the contractive and the dilative phases

of loading, a concept not uncommon in constitutive mod-

eling literature (e.g., see [8]).

2.7.1 Contraction

Plastic volumetric strains during contraction (i.e., when

dd[ 0) are computed using the following expression for

the dilatancy D:

D ¼ Ao

ðr� riniÞ : nþ �dd
ini

	 
� 
hpd;c

dd ð36Þ

where Ao is a nonnegative model parameter, while hpd,c is a

nonnegative function related to the effect of mean effective

stress p on the D for contractive states that will discussed in

detail below. The correlation of D to the distance dd

implies that Eq. (36) is founded on a generalization of

Rowe’s dilatancy theory ([49]). However, the bracketed

term in Eq. (36) includes the quantity (r – rini):n, which

becomes zero at each load reversal. At the same time, this

bracketed term includes a quantity in Macauley brackets,

which is related to the value of distance dd at the last load

reversal (depicted by dd
ini) and is nonzero only when the last

load reversal occurred outside the dilatancy surface (dd
ini\

0). Hence, this bracketed term introduces the effect of the

recent load reversal in the definition of D. This differen-

tiation from Rowe’s dilatancy theory implies D = 0 and

D = 0 immediately after load reversal inside and outside

the dilatancy surface, respectively. In all cases, as loading

continues and the quantity (r–rini):n increases, the dilatancy

D increases, before it eventually starts to decrease, as the

effect of the decreasing dd prevails when approaching the

dilatancy surface where the dd = 0, thus rendering D = 0,

regardless of where the previous load reversal appeared.

Note here that the proposed Eq. (36) for D in contrac-

tion gives positive values of D close to zero for small

values of quantity (r–rini):n. This means that for cyclic

loading in which this quantity remains generally small

(e.g., for low amplitude cyclic loading), the D remains

close to zero. This constitutive trait proves very useful for

predicting minimal volume change under drained condi-

tions, or minimal excess pore-pressure build-up under

undrained conditions, when low amplitude cyclic loading is

at hand, thus leading to relatively ‘‘flat’’ liquefaction

resistance curves. Similar formulations for dilatancy (in

contraction), that deviate from Rowe’s dilatancy theory by

introducing the distance from the last shear reversal rini,

can also be found in recent literature (e.g., [8, 10]).

Alternatively, but aiming at the same target, Tsaparli et al.

[61] included in the dilatancy function the ratio of the

distance from the dilatancy surface over the value of the

respective distance at the last shear reversal. Note also here

that a term of similar functionality to the term in Macauley

brackets in Eq. (36) was used also by Boulanger and Zio-

topoulou [8], while reduced and nonzero initial value of

D upon shear reversal is also predicted in Tsaparli et al.

[61].

The last term to be discussed is the function hpd,c of

Eq. (36), given as:

hpd;c ¼
hpd;c� default

min hpd;c�;
hpd;c;liq

hpl;d

� �
after initial liquefaction

8<
:

ð37aÞ

with:

hpd;c� ¼ 1� sign �woð Þh i 1� p

po

� �0:5
* +

� cpd;c

" #

ð37bÞ

hpl;d ¼ exp � p

16pl

� �4
 !

ð37cÞ
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Function hpd,c acquires a double form, depending on

whether or not initial liquefaction has occurred. In its

default form (before initial liquefaction), function

hpd,c = hpd,c*. This hpd,c* function decreases from 1.0 as p

decreases from its initial value po, thus leading to gradual

increase of D as per Eq. (36). Due to the exponent 0.5, the

foregoing decrease of hpd,c* is notable only after a signif-

icant decrease of the p/po ratio (e.g., after significant excess

pore-pressure build-up) and appears only for initially

dilative initial states, i.e., only when the sign of –wo is

positive, and hence, the sign �woð Þh i ¼ 1. The inclusion of

cpd,c = 0.1 (i.e., a small positive number) guarantees that

hpd,c* remains positive and nonzero, when p = 0, while the

Macauley brackets inside the bracketed term of Eq. (37b)

make sure that for p/po[ 1, the hpd,c* remains constant and

does not affect the response. Once initial liquefaction

occurs for the first time, the value of hpd,c* is stored as

hpd,c,liq. Thereafter, the value of hpd,c is estimated as the

minimum of 2 values: the hpd,c* on the basis of Eq. (37b)

and the ratio of the aforementioned stored hpd,c,liq value

over the function hpl,d of Eq. (37c) that introduces an effect

of the p/pl ratio. As a whole, Eq. (37) ensures that in

contractive paths after initial liquefaction, the hpd,c remains

lower than what the hpd,c* prescribes and only when

p/pl[ 20, approximately, the hpd,c becomes equal to hpd,c*

again, due to the operation of Eq. (37c).

2.7.2 Dilation

It has been made clear so far that in this model different

dilatancy D functions are proposed for contraction (dd[ 0

and dilation (dd\ 0). However, it should be noted that

during the transition from contractive to dilative stress state

any discontinuity is prevented, as both D functions are

proportional to dd and thus, at the crossing point with the

dilatancy surface D = 0 holds, due to dd = 0.

During dilation, the dilatancy D takes the following

form:

D ¼ Ao

2hh

hpost�liq hfd

dd ð38Þ

where Ao is the same model parameter as in Eq. (36), while

hh is the function incorporating the loading direction (Lode

angle h) that is identical to that in Eq. (27), i.e., identical to

that incorporated in the plastic modulus Kp equation. It is

noted here that while in contraction the inclusion of the

effect of hh only in Kp is proven sufficient, this effect is too

subtle while in dilation, something that is especially true in

monotonic loading. As also mentioned in the text

explaining the Kp formulation, function hpost-liq accounts

for accumulation of strains after liquefaction is triggered,

and its formulation is detailed in a following dedicated

section. It suffices here to note that hpost-liq = 1 unless

liquefaction occurs. Focusing on the form of Eq. (38), it is

deduced that unlike Eq. (36), it adopts directly the essence

of Rowe’s dilatancy theory by defining a linear relation

between D and dd.

What remains is the explanation of the effect of fabric

evolution on D in dilation that is introduced via function

hfd. Its inclusion in Eq. (38) stems from experimental

observations in cyclic loading tests with very large cyclic

shear amplitudes, in which net volume reduction is

observed cycle after cycle, even if the stress state remains

outside the dilatancy surface for significant portions of the

loading (e.g., see drained cyclic experiments of [51]). This

reduced tendency for dilation seems to appear gradually

and is introduced via function hfd according to:

hfd ¼ 1þ fpd � cfd
	 


ð39Þ

where cumulative index fpd initiates from fpd = 0 at initial

state and has an evolution equation that reads:

_fpd ¼ 1� að ÞN hpf _epvol
	 


ð40Þ

Observe that scalar fpd evolves only when the integrals

of total and plastic volumetric strains have a comparable

measure and hence 0 B a\ 1 holds, as per Eq. (35), i.e.,
_fpd ¼ 0 in fully undrained conditions. In addition, note that

its evolution is solely increasing, due to the inclusion of the

plastic volumetric rate in Macauley brackets in Eq. (40).

On the other hand, for small intensity cyclic loading which

retains the stress state inside the dilatancy surface and

dilation does not occur, the term hpd plays no role. Finally,

the inclusion of the (fpd–cfd) in Macauley brackets in

Eq. (39), implies that a sufficiently large fpd quantity

should be accumulated, before the hfd starts reducing the

D in dilation. This essentially eliminates the hfd effect in

monotonic loading, which does not require any fabric-re-

lated function acting on D (e.g., [65]). For this purpose, a

constant value of cfd = 3 has been found suitable for all

sands.

2.8 Post-liquefaction response and cyclic
mobility

In recent years, within the framework of performance-

based design, special research effort has been focused not

only on liquefaction triggering, but also on the investiga-

tion of post-liquefaction deformations. There is a plethora

of experimental evidence (e.g., [2, 4, 24, 71]) exhibiting

significant shear strain accumulation after initial liquefac-

tion, i.e., the state when the sand first reaches an excess

pore pressure Du that is at least 95% of the initial mean

effective stress po, or equivalently when the mean effective

stress p is smaller or equal to 5% of po. Capturing the
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response after initial liquefaction has proven a challenge

for constitutive models. To this extent, a variety of con-

stitutive schemes has been proposed first by Elgamal et al.

[20], then by Zhang and Wang [77], Boulanger and Zio-

topoulou [8] and Tasiopoulou and Gerolymos [57], and

very recently by numerous publications targeting this issue

(e.g., [3, 10, 31, 74]). In this model, the cyclic mobility

response is captured with the aid of function hpost-liq, pri-

marily in Eq. (38) for the dilatancy D in dilation and sec-

ondarily in Eq. (30) for the evolution equation of the

deviatoric fabric tensor f that affects the plastic modulus

Kp. Specifically, the role of function hpost-liq is to enable

shear strain accumulation with cycles by (primarily)

decreasing the dilation potential (via decreasing the D in

dilation) after initial liquefaction in a progressive way,

similarly to existing attempts in the literature (e.g., [8]).

The target of this reduction of D is to avoid overlaid

repeating stress strain loops during cyclic mobility. Here,

this is achieved via a cumulative function varying contin-

uously with mean effective stress p once initial liquefaction

occurred, a concept originating from Barrero et al. [3]. This

function, here, is given as:

hpost�liq ¼ 1þ 2hl � 1
� �

fl ð41Þ

where fl is a cumulative variable (initiating from fl = 0),

whose evolution equation reads:

Fig. 3 a Typical overlaid effective stress path loops during cyclic mobility following initial liquefaction in undrained simple shear loading;

b corresponding stress–strain loops with progressive shear strain accumulation with cycles; c evolution of function hpost-liq as a function of p/pl
and d effect of model parameter Lo on post-liquefaction shear strain accumulation rate with cycles

Table 2 Values of model parameters for Toyoura sand and Ottawa-

F65 sand

Constitutive part Parameter Values

Toyoura sand Ottawa F-65 sand

Elasticity Go 650 400

v 0.15 0.15

CSL eref 0.934 0.81

k 0.019 0.02

n 0.70 0.75

Mc
c 1.25 1.38

c 0.712 0.74

Plastic modulus nb 1.1 0.7

ho 60 29

ch 12 8

Dilatancy nd 2 2

Ao 1.5 2.4

Fabric No 1550 600

Post-liquefaction Lo 2500 5000
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_fl ¼ S L hpl _e
p
vol

�� �� ð42Þ

with:

L ¼ Lo e0:5ch
o ð43Þ

being the rate of its evolution, calibrated via Lo a non-

negative model parameter and the void ratio eo at initial

state. Equations (41) and (42) include hl and hpl, two

nonnegative functions of p, given by:

hl ¼ exp � p

4pl

� �4
 !

ð44Þ

hpl ¼ exp � p

10pl

� �4
 !

ð45Þ

Crucial for the evolution of fl in Eq. (42) is S, i.e., a flag

function with a default value of zero. This S is set equal to

1 only when initial liquefaction is reached for the first-time

during loading, i.e., when the current p becomes smaller or

equal to the critical value pl. Based on the above, the fl
starts to accumulate via Eq. (42) only when the p becomes

lower than pl for the first time (due to switching to S = 1).

The use of the absolute value of the plastic volumetric

strain rate in Eq. (42) ensures that the fl after initial liq-

uefaction does not decrease, regardless of whether the sand

experiences contraction or dilation. Of major importance in

this fl accumulation is the hpl function which scales the rate

of evolution L in Eq. (42). According to Eq. (45), the hpl is

a continuous nonlinear function of p/pl with an upper limit

equal to 1.0 (when the p approaches zero) and a lower limit

of 0.0 (when the p has increased sufficiently beyond pl). In

essence, function hpl allows for fl accumulation only when

the p is within a low effective stress regime and disallows it

if the p becomes much larger, e.g., in the case of post-

liquefaction re-consolidation. Such a p-dependence was

recently introduced by Barrero et al. [3] and in the sequel

by Yang et al. [74], who properly adjusted the plastic

modulus and dilatancy functions when in this small

p regime. Moreover, Cheng and Detournay [10] did the

same for the adjustment of the plastic modulus. A p-de-

pendence is also introduced on the hpost-liq itself in

Eq. (41), via function hl in Eq. (44) that is very similar to

the hpl function of Eq. (45). This means that the hpost-liq
varies between 1.0 (when hl = 0.0) and (1 ? fl)[ 1 (when

hl = 1.0).

The operation of function hpost-liq is discussed in Fig. 3

on the basis of the predicted response during cyclic

mobility (following initial liquefaction) in undrained cyclic

simple shear loading. The predictions are performed with

the model parameters of Table 2 for Toyoura sand.

Specifically, of interest is the response during the 3 over-

laid effective stress path loops of this test shown in Fig. 3a,

which correspond to the 3 non-overlaid stress–strain loops

of increasing shear strain amplitude in Fig. 3b. Crucial in

the successful simulation of this stress–strain response is

the operation of hpost-liq, whose value during these 3

loading cycles is shown in Fig. 3c. Emphasis on the low

mean effective stress p regime is provided via the shading,

that depicts a range of p\ 20 kPa and p/pl\ 4 (since pl-
= 5 kPa for this example case). Observe in Fig. 3c that

during the dilative phases of the loading cycles the hpost-liq
initiates from a set value (equal to 1 ? fl) at p ? 0 (points

a, c, e, g, i, k) and remains significantly larger than 1.0 only

within the low stress regime, since the increase of p

reduces the value of hl in Eq. (44), thus leading to

hpost-liq = 1.0 asymptotically, and this is regardless of the

value of fl in Eq. (41). However, the value of accumulated

fl increases cycle after cycle (due to the accumulation of

plastic volumetric strain in Eq. (42) and so does the value

of (1 ? fl) from which initiates the hpost-liq in each suc-

cessive dilative phase (compare hpost-liq values in paths a–b,

c–d, e–f, g–h, i–j, k–l in Fig. 3c). Based on Eq. (38), these

increased values of hpost-liq lead to similarly decreased

dilatancy D in successive dilative phases, which in turn

lead to increased shear strains, especially in the low stress

regime (compare range of cSS in paths a–b, c–d, e–f, g–h, i–
j, k–l in Fig. 3b). Finally note that having the hpost-liq
multiplying the � _epvol

	 

term in the evolution of fabric

tensor f in Eq. (30), essentially cancels out the post-liq-

uefaction effect in the evolution of the fabric tensor f, and

through it, on the fabric evolution index hf and the plastic

modulus Kp. This ensures that during cyclic mobility the

effective stress path loops remain essentially overlaid (see

Fig. 3a), despite the shear strain accumulation exhibited by

the stress–strain loops cycle after cycle (see Fig. 3b).

Moreover, Fig. 3d explores the effect of model param-

eter Lo that controls the rate of fl accumulation via L, as per

Eqs. (42) and (43). Observe that as the Lo increases, so does

the rate of fl accumulation, thus leading to larger hpost-liq
values and more intense shear strain accumulation. The

value of rate L in Eq. (43) is also made a function of the

void ratio at the initial state eo, implying lower rates of

post-liquefaction strain accumulation with an increase in

relative density and the opposite, in accordance to data

(e.g., [58]).

In closing, the formulation described above eventually

leads to hpost-liq = 1 when a future loading process leads to

values of p much larger than the pl, i.e., outside the small

p value regime related to liquefaction and cyclic mobility.

In addition, if this future loading process leads to value of

p C po (e.g., re-consolidation after liquefaction), the model

sets fl = 0, i.e., it erases the memory of the preceding liq-

uefaction. This approach is simple, but has a limitation

with respect to what happens if this future loading process
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increases the p, but to values lower than po or when this

possible re-consolidation is followed by another liquefac-

tion event in the future. The model unavoidably retains in

memory the preceding liquefaction phase and hence the

accumulated fl[ 0, something that may be potentially

erroneous. To address such issues, an additional constitu-

tive mechanism to eliminate and readjust this effect for

subsequent totally different loading conditions, like in

Barrero et al. [3], should be included, but such a compli-

cation is beyond the scope of this model.

2.9 Mitigation of the overshooting problem

This model employs the deviatoric stress ratio tensor at the

last load reversal rini for defining a number of constitutive

aspects, namely the loading direction tensor n (Fig. 1), the

small-strain nonlinearity (Eq. 22), the plastic modulus

(Eq. 24) and the dilatancy in contraction (Eq. 36). One of

the problems faced in models employing the last load

reversal point, or in models employing reversal surfaces in

general, is the overshooting upon unloading and immediate

reloading due to the updating of rini in both instances, i.e.,

the prediction of a stress–strain curve that is unrealistic

since it overshoots the expected continuation that this curve

would have if this unloading–reloading cycle had not

occurred. In their recent work, Duque et al. [17] underlined

the sensitivity of both advanced plasticity (e.g., bounding

surface) and hypoplasticity models to this issue. This

problem has been satisfactorily studied in the literature

leading to several approaches for overcoming it (e.g.,

[8, 10, 11, 14, 27, 76]). In this model, the problem is more

complicated, since also the loading direction tensor n may

be affected, while the dilatancy is updated as well. So, the

issue here is not just an overshooting problem, and in terms

of constitutive modeling, it boils down to what is the

‘‘accurate’’ value of rini for having a realistic response in

any load path that may be encountered in boundary value

problems, both static and dynamic.

As a first step, here the approach of Dafalias and Taiebat

[14] is adopted, i.e., a robust methodology for ‘‘adjusting’’

the value of rini depending on the load path. In order to

understand their methodology, the following terms are

defined: r(m) is the current stress ratio tensor along the

current load path (m) at the moment of load reversal (i.e.,

when K\ 0 appears), r
ðmÞ
ini refers to the rini adopted at the

initiation of load path (m), r
ðm�1Þ
ini is the rini of the previous

load path (m-1) and r
ðmþ1Þ
ini refers to the rini that is going to

be adopted after the initiation of the upcoming (m ? 1)

load path. When K\ 0 appears during load path (m), the

r = r(m) and the quandary is whether r
ðmþ1Þ
ini should be

updated to r(m), thus increasing the stiffness of the stress–

strain curve during the upcoming path (m ? 1), or whether

it should take another value. According to Dafalias and

Taiebat [14] the answer depends on the ‘‘magnitude’’ of

load path (m), that is quantified in terms of ep(m), the

integral of plastic deviatoric strain quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3ð Þ _ep : _ep

p
during this path. For intermediate values of ep(m) an

interpolation function for r
ðmþ1Þ
ini should be used, which

according to Dafalias and Taiebat [14] reads:

r
mþ1ð Þ
ini ¼ k r

m�1ð Þ
ini þ 1� kð Þr mð Þ ð46Þ

k ¼ 1� ep mð Þ

ep1

� �n
* +

ð47Þ

where k is the weighting parameter of Eq. (46) that quan-

tifies the significance of load path (m) on the basis of the

relative magnitude of plastic deviatoric strain ep(m) in

comparison with ep1, a model constant serving as a shear

strain threshold beyond which r
ðmþ1Þ
ini = rðmÞ. In this model,

ep1 = 10–4, and n, the model constant controlling the non-

linearity of Eq. (47), is set equal to 1, following the advice

of Dafalias and Taiebat [14] for both. Based on the above,

during any load path (m), both r
ðm�1Þ
ini and r

ðmÞ
ini should be

kept into memory, the former for use in Eq. (46), while the

latter as the rini entering all aspects of the constitutive

model presented above.

According to Eqs. (46) and (47), if load path (m) is

negligible in terms of ep(m), then r
ðmþ1Þ
ini = r

ðm�1Þ
ini (due to

k = 1) and for loading path (m ? 1), only r
ðmÞ
ini and r

ðmþ1Þ
ini

are kept into memory, while the all-important r
ðm�1Þ
ini is

erased from memory. This is fine if loading path (m ? 1) is

significant. If it is not and k = 1 holds again, then, ideally,

the r
ðmþ2Þ
ini should be again equal to r

ðm�1Þ
ini , only that this

value has been erased from memory. This loss-of-memory

problem does not only appear when k = 1, but also for

0\ k\ 1, only that it requires a number of successive

negligible load paths to erase from memory the effect of

the all-important r
ðm�1Þ
ini . Such paths with successive neg-

ligible load paths are not uncommon in boundary value

problems, especially of dynamic nature. This shortcoming

is hereby remedied, by supplementing the foregoing

methodology with a criterion on whether a load reversal (a

state where K\ 0) is ‘‘formal’’ or ‘‘informal.’’ Namely, as

soon as a load reversal is detected for the initiation of load

path (m ? 1) at r = r(m), it is considered by default ‘‘in-

formal’’ and no update of rini is performed (i.e., rini =r
ðmÞ
ini

remains). This holds until the accumulated stress ratio

difference from the ‘‘informal’’ load reversal point is larger

than a preset (small) tolerance level rtol. If this occurs, then

the load reversal point is considered ‘‘formal’’ and the
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estimation of the r
ðmþ1Þ
ini is performed on the basis of

Eqs. (46) and (47). In more detail, the condition that should

be satisfied for considering the last load reversal as ‘‘for-

mal’’ reads:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3ð Þ r� rðmÞð Þ : r� rðmÞð Þ

q
� rtol ð48Þ

where rtol is a model constant selected equal to 0.01 here.

During the (small) loading path following an ‘‘informal’’

load reversal that has not updated the rini, the loading index

K usually continues to be negative, and thus, only elastic

deformations are developed.

In Fig. 4, the effectiveness of this enhanced methodol-

ogy for mitigating overshooting is presented for an exem-

plary case of an undrained triaxial test (for po = 1000 kPa

and eo = 0.870) that is simulated with the model parame-

ters of Table 2 for Toyoura sand. The test is not monotonic,

since when the axial strain becomes equal to ea = 0.5% and

1%, three different cases of unloading–reloading are

imposed, as depicted in subplots a, b and c. Specifically, in

Fig. 4a, a single strain-controlled cycle with a large

Dea = 0.1% is applied at both levels of ea, while in Fig. 4b

this single cycle has a much smaller strain amplitude of

Dea = 0.005%. Finally, in Fig. 4c, at both levels of ea, 10
successive cycles with Dea = 0.005% are applied. In all

subplots, the curve of the reference monotonic test is

included, but this may only be considered relevant in

Fig. 4b and 4c where the applied unload–reload cycles are

of very small-strain amplitude. On top of this monotonic

test curve, in all subplots, three stress–strain curves of the

actual test are compared: one without mitigating over-

shooting, one that employs only Eqs. (46) and (47), and one

that employs the whole methodology (including Eq. (48)).

It is concluded that overshooting correction is not needed

when the unload–reload cycles are of large amplitude

(Fig. 4a). However, it is also shown that the overshooting

correction of Dafalias and Taiebat [14], i.e., Eqs. (46) and

(47), is required when the unload–reload cycles are of

small amplitude (Fig. 4b), with the addition of Eq. (48)

proving necessary for the more general case of multiple

cycles of small amplitude (see Fig. 4c). In closing, note

that the large differences in the stress–strain response with

and without overshooting mitigation shown in Fig. 4 (e.g.,

increase of qTX by more than 100% for ea = 2% in Fig. 4b)

should be viewed as an upper-bound estimate. For fully

drained conditions and/or a more dilative initial state, the

differences would be smaller, yet they would still vouch for

the need of stress–strain overshooting mitigation.

3 Calibration procedure of model
parameters

The proposed model requires the calibration of 14 param-

eters. Their values for Toyoura and Ottawa-F65 sand are

summarized in Table 2.

They are divided in different groups according to the

constitutive part they refer to. Of these 14 model parame-

ters, 2 are related to elasticity, 5 to critical state, 3 to the

plastic modulus, 2 to the dilatancy, 1 to fabric evolution

and 1 to post-liquefaction response. The procedure of

determining their values will be discussed here using

Toyoura sand as merely an example case. As described in

the previous section, the present model has similarities with

the models proposed by Papadimitriou and Bouckovalas

Fig. 4 Performance of different schemes to treat overshooting for the stress–strain response of an undrained triaxial compression test, with three

different cases of unloading–reloading cycles at ea = 0.5% and 1.0%: a single cycle with Dea = 0.1%, b single cycle with Dea = 0.005%, c 10

successive cycles with Dea = 0.005%
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[42], Andrianopoulos et al. [1], Dafalias and Manzari [12]

and Taiebat and Dafalias [56]. Their common constitutive

ingredients include model parameters, whose calibration

rationale is adopted unchanged and need not be repeated.

This is the case for the first 12 out of the 14 model

parameters in Table 2, i.e., the model parameters referring

to elasticity, critical state, plastic modulus and dilatancy. It

is merely mentioned here that out of these 12 model

parameters, only 3 of them (ho, ch and Ao) require trial-and-

error runs, while the remaining 9 parameters may be

directly measured or estimated (e.g., for Toyoura sand:

Mc
c ¼ 1.25, c = 0.712, as in [12]; ecs = 0.934, k = 0.019,

n = 0.70 as in [28]; m = 0.15 in accordance with [52] and

[59]).

The exception to the foregoing rule is elastic parameter

Go that quantifies the elastic shear modulus (Gmax), which

must always be calibrated against small-strain tests (e.g.,

bender elements, resonant column tests), or wave propa-

gation tests in the field or laboratory. According to

McAllister et al. [37], the use of conventional triaxial data

for this purpose (as is often performed in the literature)

may lead to underestimation of its value. Here, the data of

Wicaksono and Kuwano [70] for Toyoura sand are used for

this purpose. As shear modulus was measured through

different dynamic methods (trigger accelerometer, bender

element, plate transducer), an average value is considered

for the calibration of Go. In Fig. 5, the comparison between

the measured and predicted (by Eq. (20)) elastic small-

strain shear modulus Gmax is presented, for the selected

value of Go = 650. The comparison is made in terms of

Gmax versus mean effective stress p, for three different

values of void ratio (e = 0.811-Dr & 45%; e = 0.756-Dr &
60%; e = 0.700-Dr & 75%). Based on the good fitting of

the data in Fig. 5, apart from the appropriate Go value, the

calibrated Eq. (20) predicts quite well the correlation of

Gmax with relative density and stress level.

The remaining 2 model parameters determine the cyclic

response and are estimated on the basis of cyclic tests at the

end of the calibration process, i.e., after the first 12 model

parameters. The fabric evolution intensity constant No is

calibrated by trial-and-error runs that target either the

accumulated volumetric strains during cyclic drained tests,

or the number of cycles to reach initial liquefaction during

cyclic undrained tests. The selection of type of cyclic tests

to be used depends on availability, or the task at hand, but

both can be used equally well. Figure 6 illustrates the key

role of No in controlling the intensity of fabric evolution

function hf, Eq. (28), in 4 indicative loading conditions: 2

under cyclic (subplots a, c) and 2 under monotonic con-

ditions (subplots b, d). In Fig. 6a, the effective stress path

of a cyclic undrained triaxial test shows how the parameter

No can be used to adjust the predicted rate of excess pore-

pressure build-up and the number of cycles until initial

liquefaction is triggered. Model predictions are compared

with an undrained cyclic triaxial test performed by Toyota

and Takada [60] (e = 0.756 (Dr & 60%), po = 98.1 kPa).

In the same way, in Fig. 6c the effect of No on the rate of

accumulation of volumetric strains during a drained cyclic

simple shear test-with the same initial conditions, but now

with Ko = 0.50 instead of 1.0 - is explored. For this type of

loading, experimental data for Toyoura sand are not

available, but at least the accumulation of volumetric

strains is validated against the empirical estimate of Duku

et al. [16]. Moreover, Fig. 6b and 6d compares model

predictions to monotonic triaxial compression tests of

Verdugo and Ishihara [65] (Fig. 6b-undrained test with

e = 0.833 (Dr & 37%), po = 100 kPa; Fig. 6d-drained test

with e = 0.831 (Dr & 37%), po = 100 kPa). These com-

parisons with monotonic test data show that the fabric

evolution function affects only marginally the monotonic

response, but is crucial for a satisfactory cyclic loading

prediction. Hence, the calibration for monotonic tests may

be performed for No = 0, and then, the final value of No can

be calibrated on the basis of trial-and-error simulations of

cyclic tests, without essentially deteriorating the predicted

monotonic response.

The last model parameter Lo requiring calibration is

linked to the post-liquefaction shear strain accumulation

and is quantified also by a trial-and-error procedure. It

controls the intensity of the dilatancy decrease in dilation

after initial liquefaction occurs, and thus the rate of strain

accumulation, as depicted in Fig. 3d. Note that its value

has no effect on the pre-liquefaction phase and this is why

it is calibrated last. Its calibration requires good quality

cyclic undrained tests reaching well beyond initial lique-

faction, thus allowing the estimation of the rate of strain

Fig. 5 Comparison of predicted Gmax values versus their measure-

ments by Wicaksono and Kuwano [70] as a function of void ratio

e and mean effective stress p, after calibration of parameter Go for

Toyoura sand
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accumulation thereafter. In absence of specific experi-

mental data, the semiempirical framework of post-lique-

faction shear deformation accumulation in sands, recently

proposed by Tasiopoulou et al. [58], can prove useful for

this purpose.

4 Model performance

In this section, the performance of the new model is

evaluated. The validation includes simulations of both

monotonic and cyclic shearing tests on Toyoura and

Ottawa-F65 sand that were performed with the values of

model parameters shown in Table 2. In order to present a

thorough evaluation of model performance that addresses

all important aspects of monotonic and cyclic response,

wherever sand-specific data are lacking, the model per-

formance is validated against empirical relations from the

literature, especially for cyclic loading. In the following,

each subsection illustrates a different type of loading and

comparisons are presented for at least one of the two sands,

if not for both. All the information regarding the

characteristics of the element tests employed in this section

is summarized in table format in Appendix.

4.1 Drained and undrained monotonic loading

The new model is used to simulate drained triaxial com-

pression tests (TC) on Toyoura sand, performed by Ver-

dugo and Ishihara [65] on isotropically consolidated

samples. Figure 7 compares numerical simulations to

experimental data in terms of (triaxial) deviatoric stress

qTX = ra-rr versus axial strain ea (subplots a, c) and vol-

umetric strain evol versus axial strain ea (subplots b, d).

Subscripts a and r denote the axial and radial directions of

the triaxial sample, respectively. Subplots a and b pertain to

tests with po = 100 kPa, while subplots c and d to tests

with po = 500 kPa, with po denoting the initial mean

effective stress of the sample. The model simulates quite

accurately the three distinct behaviors of the sand, as they

emerge from the tests based on the initial value of void

ratio eo of the samples after consolidation. More specifi-

cally, stress-strain response and volumetric strain are

properly predicted both in the cases of the dilative response

Fig. 6 Effect of fabric evolution function and its scaling parameter No on: a effective stress path during an undrained cyclic triaxial test;

b effective stress path during an undrained monotonic triaxial compression test; c rate of accumulation of volumetric strain during a drained

cyclic simple shear test; d stress–strain response during a drained monotonic triaxial compression test
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of the medium–dense (eo = 0.810-0.831, with Dr = 37-

43%) samples, as well as the slightly (eo = 0.886-0.917,

with Dr = 14-23%) or intensively (eo = 0.960-0.996, with

Dr\ 3%) contractive samples, for both stress levels.

In the sequel, the model performance is evaluated

against the drained torsional shear tests (TS) of Pradhan

et al. [47]. These torsional shear tests were performed after

Ko-consolidation of the samples to an initial axial stress

ra,o, and then, shear deformation is applied producing shear

stress s in the torsional shear apparatus, while retaining the

effective axial stress constant (ra = ra,o). At the same time,

radial and circumferential strain increments were kept

equal to zero throughout the test, ensuring simple shear

loading conditions. Three different combinations of initial

axial stress ra,o and initial void ratios eo are presented.

Based on Pradhan et al. [47], the Ko value in these samples

is estimated by the empirical relation Ko = 0.52eo and the

thus procuring values were considered in the simulations.

In Fig. 8, the comparison of data to simulations is pre-

sented in terms of the stress ratio s/ra versus shear strain

c = e1–e3 (subplot a) and evol versus c (subplot b), where

subscripts 1 and 3 denote the maximum and minimum

principal values of the tensor, irrespective of its direction.

The overall response is simulated with fair accuracy,

besides the slight stiffer stress–strain response, mainly for

the very dense sample with eo = 0.674 (Dr = 81%).

Figure 9 shows the model performance for drained TC

tests on Ottawa-F65 sand conducted by Vasko [63] and

Vasko et al. [64] for medium–dense (eo = 0.604, Dr &
55%) and dense (eo = 0.585, Dr & 62%) isotropically

consolidated samples. The comparison is presented in the

format of Fig. 7. Three stress levels (100 kPa-300 kPa) are

examined for each density. The comparison for eo = 0.604

is quite satisfactory, while that for eo = 0.585 is considered

fair, with a slight under-prediction of the peak strength of

these denser samples. For both relative densities, the vol-

umetric response is predicted satisfactorily.

Subsequently, in Fig. 10, the model is evaluated against

the undrained TC tests of Verdugo and Ishihara [65] on

isotropically consolidated samples of Toyoura sand. The

comparison of data versus simulations is shown in the

spaces of qTX versus ea (subplots a, c) and qTX versus

p (subplots b, d). The simulations concern two relative

densities (e = 0.735 and 0.833, with Dr & 63%-37%) and a

great range of initial mean effective stresses, from

po = 100 kPa to the extremely high value of

po = 2000 kPa. Hence, the versatility of the model to

predict both contractive or dilative response for this wide

range of initial conditions, depending on the combination

of e-po, is depicted.

Then, Fig. 11 compares experimental data to numerical

simulations for undrained simple shear tests (SS),

Fig. 7 Experimental results and model predictions of drained monotonic triaxial compression tests. Data on Toyoura sand after Verdugo and

Ishihara [65]
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performed by Yoshimine et al. [75], on isotropically con-

solidated samples of Toyoura sand. The initial mean

effective stress po has a common value of 100 kPa for all

samples, and the examined relative densities cover a range

between loose and medium–dense conditions

(e = 0.804–0.888, with Dr & 22–45%). In all cases, the

comparison is made in terms of effective stress paths

q = r1–r3 versus p (subplot a) and stress–strain relations

Fig. 8 Experimental results and model predictions of drained monotonic torsional shear tests. Data on Toyoura sand after Pradhan et al. [47]

Fig. 9 Experimental results and model predictions of drained monotonic triaxial compression tests. Data on Ottawa-F65 sand after Vasko [63]

and Vasko et al. [64]
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q vs c (subplot b). The simulations are fair for the most

dilative of the examined densities and show a gradually

increasing contractive response as the void ratio e in-

creases. However, an under-prediction of the effect of void

ratio e may be observed. This should not be considered as a

shortcoming of the model, since it has been calibrated to

provide satisfactory accuracy for a huge range of void ratio

values of Toyoura sand, from e = 0.674 (Dr & 81% in

Fig. 8) to e = 0.996 (Dr\ 0% in Fig. 7).

4.2 Undrained cyclic loading

With the same set of parameters (listed in Table 2),

undrained cyclic loading tests are simulated in this para-

graph. Figure 12 shows the model capability in simulating

Fig. 10 Experimental results and model predictions of undrained monotonic triaxial compression tests. Data on Toyoura sand after Verdugo and

Ishihara [65]

Fig. 11 Experimental results and model predictions of undrained monotonic simple shear tests (Ko = 1). Data on Toyoura sand after Yoshimine

et al. [75]
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an undrained cyclic torsional shear test conducted by

Zhang [78] on Toyoura sand and presented by Zhang and

Wang [77]. It was isotropically consolidated at

po = 100 kPa and a relative density Dr = 70%, which

according to the given values of emax = 0.973 and

emin = 0.635 corresponds to a void ratio e equal to 0.736.

The single amplitude of the cyclically applied shear stress

for this test is scyc = 33 kPa. The comparison is made in

the spaces of shear stress s versus mean effective stress

p (subplots a, c) and s vs shear strain cSS (subplots b, d).

The comparison is quite satisfactory as the model suc-

cessfully captures the cyclic mobility between loading–

unloading paths and illustrates ‘‘banana-shaped’’ stress–

strain (s versus cSS) loops when approaching p = 0 (initial

liquefaction). Moreover, shear strain continuously increa-

ses during the cyclic shearing after liquefaction triggering

in good agreement with the experimental data.

Then, in Fig. 13, the model is evaluated against an

undrained cyclic triaxial test on Ottawa-F65 sand, per-

formed by El Ghoraiby et al. [19]. The test is performed for

e = 0.585, and the sample was initially consolidated at a

mean effective stress of 100 kPa. The comparison is made

in the spaces of qTX versus radial effective stress rr (ef-
fective stress path in subplots a, c) and qTX vs axial strain ea
(stress–strain relation in subplots b, d). The test is

performed as stress controlled with a single amplitude of

cyclic stress qTX,cyc = 34 kPa. Both the effective stress

path and the stress–strain relation are captured quite well

by the model. Observe how the model predicts well the

initially decreasing rate of excess pore-pressure build-up

with cycles and then how this rate increases to bring the

sand to initial liquefaction. This non-constant rate of excess

pore-pressure build-up is typical of sand response; how-

ever, it is rarely commented on in the literature of consti-

tutive models for liquefaction, despite its importance for

accurate simulations of boundary value problems. On the

other hand, the model shows small bias in strain accumu-

lation in the stress–strain relation (qTX versus ea) toward
the extension side. This is attributed to the different shear

strengths in triaxial compression and extension, which lead

to different strain accumulation rates. This bias is a com-

mon shortcoming of constitutive models aiming at lique-

faction response (e.g., [17]) and has been hereby reduced,

yet not alleviated, due to the introduction of the post-liq-

uefaction constitutive ingredient hpost-liq of Eq. (41). Note

also here that this bias is not evidenced in cyclic loading in

simple shear or torsional shear (e.g., in Fig. 12) where the

Lode angle h change within a loading cycle is very small in

comparison with the ‘‘jump’’ between h = 0o and h = 60o

in cyclic triaxial loadings. This is why any model aiming at

Fig. 12 Experimental results and model predictions of undrained cyclic torsional shear test. Data on Toyoura sand after Zhang [78]
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successful liquefaction predictions should always be veri-

fied in both triaxial and simple shear or torsional cyclic

loading.

4.2.1 Liquefaction resistance curves for different relative
densities

Liquefaction resistance curves are a practical tool for

assessing the simulation success for undrained cyclic

loading, since they provide a grouping of many element

tests for different cyclic stress ratio amplitudes, relative

densities and stress levels and even different loading con-

ditions. Toyoura sand is one of the most widely used sands

for the study of liquefaction, so there is a plethora of

experimental liquefaction resistance curves published by

different researchers worldwide. Given the use of different

Toyoura sand batches, there is significant scatter in the

pertinent data, even when referring to the same values of

relative density, initial stress level, as well as the same

preparation method or loading type. Hence, it was deemed

fairer to evaluate the model’s accuracy in predicting liq-

uefaction resistance through comparison with a group of

liquefaction resistance curves of Toyoura sand from the

literature ([23, 32, 60, 69, 73]) instead of a single set of

curves.

In this perspective, in Fig. 14 a wide range of lique-

faction resistance curves from cyclic triaxial tests is pre-

sented. The grouping of the experimental data was based

on the relative density Dr of the sand, in groups of test data

with Dr = 45% (subplot a), 60% (subplot b) and 75-80%

(subplot c). Notice that there is a large deviation between

the referenced values of emin (0.597–0.635) and emax

(0.970–0.990) in the employed studies. Hence, since the

model requires values of void ratio e and not Dr, their

calculation is based on the average values of emin = 0.609

and emax = 0.976 that were estimated on the basis of the

employed studies. So, the simulated void ratio for

Dr = 45% is 0.811, for Dr = 60% is 0.756 and for

Dr = 77.5% (a mean value between 75 and 80%) is 0.691.

To reduce the scatter of the experimental results, all

selected literature liquefaction resistance curves refer to

isotropically consolidated samples at initial mean effective

stress po = 100 kPa which are prepared with the method of

air pluviation, except for the data of Yamashita and Toki

[73] at Dr = 80%, where the vibration method was used.

The comparison is made in terms of cyclic stress ratio CSR

(= qTX,cyc /2po) versus Nl, the number of cycles required

Fig. 13 Experimental results and model predictions of undrained cyclic triaxial test. Data on Ottawa-F65 sand after El Ghoraiby et al. [19]
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for a double amplitude axial strain equal to 5% to be

developed. Observe that the liquefaction resistance curves

procuring from the simulations generally plot within the

range of the experimental data, albeit showing a slightly

steeper inclination. However, it should be acknowledged

that the typical experimental observation of no-liquefaction

(Nl ? !) at small CSR values is well captured by the

model, i.e., the model remedies a common shortcoming of

liquefaction models (e.g., [1]). Moreover, the model sim-

ulates well the experimentally established increase in liq-

uefaction resistance with relative density.

Subsequently, Fig. 15 presents the liquefaction resis-

tance curves for the undrained cyclic triaxial tests on

Ottawa-F65 conducted by El Ghoraiby et al. [19]. The

comparison is made for two void ratios, e = 0.585 and

e = 0.542, corresponding to Dr & 60 and 80% according to

the values of emin = 0.492 and emax = 0.739 reported by

Vasko [63]. The experimental data and the simulations are

compared in terms of CSR vs cycles Nl to reach axial strain

of single amplitude equal to 2.5%. The simulations are in

good agreement with the model predictions, with a slightly

steeper inclination for the case of e = 0.585 predicted by

the model. Notice again the ability of the model to accu-

rately predict the effect of relative density on liquefaction

resistance, as well as the prediction of no-liquefaction

when a small CSR ratio is applied.

4.2.2 Effect of confining stress level on liquefaction
resistance

As already discussed above, the effect of overburden stress

on cyclic resistance ratio CRR is often expressed and

quantified in terms of a correction factor, known as Jr,

which is defined as:

Kr ¼
CRRra;o

CRRra;o¼100kPa

ð49Þ

In order to assess the ability of the model in predicting

the Kr factor, the undrained cyclic triaxial test simulations

for Toyoura sand that are presented in Fig. 14 and referred

to po = ra,o = 100 kPa are now repeated for higher levels

of initial mean effective stress, namely po = 200 kPa and

400 kPa, without changing the void ratio values. By

comparing the CRR values obtained at 15 uniform loading

cycles (in compliance with other studies, e.g., [8]), the

values of Kr are thus predicted for different ra,o and Dr

values. The same procedure is then followed for estimating

Kr values for undrained cyclic simple shear tests of Toy-

oura sand, for the same initial states (ra,o and e). These

Fig. 14 Experimental results and model predictions of liquefaction

resistance curves on the basis of undrained cyclic triaxial tests. Data

on Toyoura sand after [23, 32, 60, 69, 73]

Fig. 15 Experimental results and model predictions of liquefaction

resistance curves on the basis of undrained cyclic triaxial tests. Data

on Ottawa-F65 sand after El Ghoraiby et al. [19]
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values are compared to the well-established empirical

curves of Idriss and Boulanger [22] in Fig. 16. The com-

parison shows very good agreement with the literature, i.e.,

the model predicts accurately that liquefaction resistance

decreases with increasing confining stresses and that the

rate of decrease is nonlinear. Moreover, the model also

predicts that the cyclic strengths for dense sands are

comparatively more affected by confining stress than what

is observed for loose sands.

4.3 Drained cyclic loading

4.3.1 Shear modulus degradation and damping ratio
increase with cyclic strain

Figure 17 shows the normalized secant shear modulus

G/Gmax degradation curves (subplot a) and the damping

ratio n increase curves (subplot b) derived from simulations

of strain-controlled cyclic simple shear loading of both

sands of interest. The horizontal axis of both diagrams

depicts the single amplitude cyclic shear strain cSS,cyc of

the performed numerical simulations. The secant shear

modulus G and the corresponding damping ratio n refer to

the 1st cycle of loading, while the initial void ratio eo is

selected to correspond to an initial Dr & 60% for both

examined sands (e = 0.756 for Toyoura, e = 0.585 for

Ottawa-F65). Two extreme values of initial effective axial

stress ra,o are examined, namely 100kPa and 1000 kPa. In

terms of shear modulus degradation, the results predicted

by the model are consistent with the empirical relation

proposed by Darendeli [15] for both examined sands, while

they exhibit a less pronounced nonlinearity with respect to

the Vucetic and Dobry [67] curve. Moreover, the simulated

G/Gmax reduction shows a dependency on stress level

consistent with the empirical relations. In terms of damping

ratio n, the results of the new model up to the strain level of

0.1%-especially for the Ottawa-F65 sand - are compared

satisfactorily with the empirical relations. However, for

larger strain levels, there is an over-prediction of n values,

especially at the lower stress level. As explained by

Taborda et al. [55], this is a well-known problem of con-

stitutive models that comply with original Masing rules

([36]), and this model is no exception. At least, significant

over-prediction appears only for very large cyclic shear

Fig. 16 Comparison of Kr values for different loading type and

different relative density Dr values predicted by the model for

Toyoura sand versus the empirical relation of Idriss and Boulanger

[22]

Fig. 17 Comparison of a shear modulus degradation curves and b damping ratio increase curves predicted by the model for both Toyoura and

Ottawa-F65 sands versus the empirical relations of Darendeli [15] and Vucetic and Dobry [67]
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strains (e.g., cSS,cyc = 1%) that are not very common in

boundary value problems of practice, and only for low

vertical stresses (e.g., in free-field conditions). It should be

underlined here that evaluating model accuracy in terms of

G/Gmax versus cSS,cyc curves makes sense, only if the Gmax

value is accurately predicted. In the proposed model, the

Gmax is calibrated directly on the basis of very small-strain

measurements (e.g., see Fig. 5 for Toyoura sand) and thus

satisfies this requirement.

4.3.2 Accumulation of strains with cycles

Figure 18 presents a summary of predicted values of

accumulated volumetric strains evol after 10 cycles of

strain-controlled drained simple shear loading, at various

levels of single amplitude cyclic shear strains cSS,cyc
ranging from 0.01% to 0.5%, for Toyoura and Ottawa-F65

sand. The initial relative densities of 40% and 80%, which

correspond to initial void ratios of eo = 0.829 and

eo = 0.683 for Toyoura sand and eo = 0.640 and eo = 0.542

for Ottawa-F65 sand, are examined. The samples are

consolidated at an initial effective axial stress

ra,o = 100 kPa, and a Ko value equal to 0.50 is applied. The

predicted values are compared with the empirical relations

of Duku et al. [16], considering the proposed values of the

parameters by the authors, as well as the range of experi-

mental data of Silver and Seed [53]. It is observed that, on

the whole, the comparison is acceptable. Specifically, at

small and intermediate cSS,cyc strain levels, the predicted

volumetric strains by the model are closer to the range of

experimental data of Silver and Seed [53], while at larger

cSS,cyc strain levels, the accumulation of volumetric strains

is more in accordance with the empirical relations of Duku

et al. [16]. Moreover, the qualitative dependency of accu-

mulated volumetric strains on relative density Dr is rea-

sonably consistent with the empirical data. Finally, note

that the form given to the dilatancy function in contraction,

as well as the inclusion of the enhanced formulation for

addressing the overshooting problem, reduce significantly

strain accumulation at very small cSS,cyc strains. As such,

the evol accumulated in cyclic shearing with cSS,cyc lower

than a volumetric strain threshold ctv (e.g., smaller than

0.01% on average for sands) is insignificant.

Figure 19 presents a summary comparison of accumu-

lated volumetric strains evol (subplot a) and accumulated

shear strains cTX = ea–er (subplot b) in cyclic drained tri-

axial tests as predicted by the new model versus the per-

tinent values from the empirical relations of Bouckovalas

Fig. 18 Comparison of accumulated volumetric strains from drained

cyclic simple shear tests predicted by the model for both Toyoura and

Ottawa-F65 sands versus the empirical relations of Duku et al. [16]

and the range of experimental data of Silver and Seed [53]

Fig. 19 Comparison of accumulated a volumetric strains and b shear

strains from drained cyclic triaxial tests predicted for Toyoura sand by

the model and by the empirical relations of Bouckovalas et al. [7] and

Stamatopoulos et al. [54]
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et al. [7] and Stamatopoulos et al. [54]. Strain accumulation

is measured after Nd = 1, 30, 100 and 300 cycles, which

means that the model is hereby verified for boundary value

problems that include many more cycles than what earth-

quakes produce. Specifically, only simulations using the

calibration of Toyoura sand are performed here and the

initial relative densities of Dr = 40%, 60% and 80%, with

initial void ratios eo = 0.829, 0.756 and 0.683 are exam-

ined. All simulated tests were anisotropically consolidated

at a mean effective stress po = 200 kPa, with an appro-

priate combination of initial axial and radial stresses, so as

initial stress ratios qTX,o/po = 0.35 (Ko = 0.716) and 0.75

(Ko = 0.50) to be attained after consolidation. The aniso-

tropic consolidation permits, in addition to accumulation of

evol with cycles, to also study the concurrent accumulation

of shear strains cTX. Hence, in both subplots of Fig. 19

different colors of symbols depict the different number of

cycles, while the solid diagonal line is the locus of points of

perfect agreement between predictions by the model and

predictions by the empirical relations. Similarly, the two

dashed lines define the loci of overestimation and under-

estimation by the denoted factor. In terms of accumulated

volumetric strains evol (subplot a), a quite good overall

agreement is observed, as the ratio of predicted over

empirical values ranges between 0.5 and 2. On the other

hand, in terms of accumulated shear strains cTX, the com-

parison is less impressive, but remains satisfactory.

5 Conclusions and discussion

This paper presents a bounding surface plasticity model

with reversal surfaces aiming to provide accurate simula-

tions of both the monotonic response (until the critical

state) and the cyclic response (for any shear strain level) of

granular soils, irrespective of initial density and mean

effective stress level, with a single set of model parameters.

The paper presents the model formulation and the cali-

bration process of its 14 parameters, firstly of the 12

parameters required for monotonic loading and then of the

2 additional parameters related to cyclic loading. Being a

SANISAND-type model, the calibration process includes

trial-and-error runs, for 5 of the 14 parameters. Model

performance is verified against a large database of mono-

tonic and cyclic shearing tests, both drained and undrained,

on samples of Toyoura and Ottawa-F65 sand, covering a

wide range of initial conditions in terms of mean effective

stress po = 61 kPa to 2000 kPa, void ratio eo = 0.542 to

0.996 and state parameter wo = –0.253 to 0.084. Wherever

sand-specific data are lacking, empirical relations are used

for validating specific aspects of the response.

It should be clarified here that being of the SANISAND-

type, the proposed model is accurate in monotonic or cyclic

shearing paths where non-zero deviatoric stress ratio rates

( _r 6¼ 0) prevail, but underpredicts plastic strain in problems

where loading under constant stress ratio appears (e.g.,

one-dimensional consolidation; see also [17]). Accounting

for plastic strains due to such types of loading may require

additional mechanisms for plastic strain rate development

(e.g., [56] or [68]), but such complications are beyond the

scope of this model. Similarly, this model is unable to

capture the plastic strains appearing during effective stress

principal axes rotation, due to the ensuing non-coaxiality

between the stress and the plastic strain rate tensors. For

SANISAND-type models additional plastic load mecha-

nisms, or multiple dilatancy and plastic modulus expres-

sions, or, in the simplest way, a reformulation of the

dilatancy and plastic modulus expressions (e.g., [46, 72])

have been proposed to remedy this shortcoming. Again,

such complexities are beyond the target of this model.

Despite the foregoing limitations, the thorough verification

process proves that the proposed is a useful general-pur-

pose constitutive model for sands, since it provides the user

with a satisfactory performance without a need for recali-

bration regardless of whether the boundary value problem

is static, cyclic or dynamic in nature.

In closing, note that the proposed model (that can be

briefly referred to hereafter as the LiPa model on the basis

of the authors’ surnames) has already been implemented in

an explicit finite difference code with a u-p formulation. It

has also been successfully verified against measurements

from multiple dynamic centrifuge tests involving lique-

faction of the same sand, all with a single set of values for

the model parameters. This validation process is comple-

mentary to the one presented herein and satisfies the notion

of Manzari and El Ghoraiby [35] who consider such a

validation preferable to mere comparison with element test

data, but is beyond the scope of this paper that emphasizes

the constitutive formulation. It may be found in Limnaiou

and Papadimitriou [29].

Appendix

This section presents Table 3 and Table 4 that summarize

the information about the laboratory tests employed in the

model validation process, i.e., in Figs. 7 through 19. This

information includes the sand name, the type of test and its

initial conditions in terms of void ratio eo, axial effective

stress ra,o, mean effective stress po and state parameter wo.

See Tables 3 and 4.
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Table 3 Initial conditions of tests used in model validation process against experimental data

Figure Sand Test* Initial void ratio,

eo

Initial axial effective stress,

ra,o
Initial mean effective stress,

po

Initial state parameter,

wo

7 Toyoura DM/TC 0.831 100 100 (Ko = 1) -0.084

7 Toyoura DM/TC 0.917 100 100 (Ko = 1) 0.002

7 Toyoura DM/TC 0.996 100 100 (Ko = 1) 0.081

7 Toyoura DM/TC 0.810 500 500 (Ko = 1) -0.066

7 Toyoura DM/TC 0.886 500 500 (Ko = 1) 0.010

7 Toyoura DM/TC 0.960 500 500 (Ko = 1) 0.084

8 Toyoura DM/TS 0.674 200 113.33 (Ko = 0.350**) -0.239

8 Toyoura DM/TS 0.798 100 61 (Ko = 0.415**) -0.123

8 Toyoura DM/TS 0.797 200 121.87 (Ko = 0.414**) -0.115

9 Ottawa-

F65

DM/TC 0.585 100 100 (Ko = 1) -0.205

9 Ottawa-

F65

DM/TC 0.585 200 200 (Ko = 1) -0.192

9 Ottawa-

F65

DM/TC 0.585 300 300 (Ko = 1) -0.180

9 Ottawa-

F65

DM/TC 0.604 100 100 (Ko = 1) -0.186

9 Ottawa-

F65

DM/TC 0.604 200 200 (Ko = 1) -0.173

9 Ottawa-

F65

DM/TC 0.604 300 300 (Ko = 1) -0.161

10 Toyoura UM/TC 0.735 100 100 (Ko = 1) -0.180

10 Toyoura UM/TC 0.735 1000 1000 (Ko = 1) -0.105

10 Toyoura UM/TC 0.735 2000 2000 (Ko = 1) -0.046

10 Toyoura UM/TC 0.833 100 100 (Ko = 1) -0.082

10 Toyoura UM/TC 0.833 1000 1000 (Ko = 1) -0.007

10 Toyoura UM/TC 0.833 2000 2000 (Ko = 1) 0.052

11 Toyoura UM/SS 0.804 100 100 (Ko = 1) -0.111

11 Toyoura UM/SS 0.816 100 100 (Ko = 1) -0.099

11 Toyoura UM/SS 0.844 100 100 (Ko = 1) -0.071

11 Toyoura UM/SS 0.863 100 100 (Ko = 1) -0.052

11 Toyoura UM/SS 0.876 100 100 (Ko = 1) -0.039

11 Toyoura UM/SS 0.888 100 100 (Ko = 1) -0.027

12 Toyoura UCyc/

TS

0.736 100 100 (Ko = 1) -0.179

13 Ottawa-

F65

UCyc/

TX

0.585 100 100 (Ko = 1) -0.205

14 Toyoura UCyc/

TX

0.811 100 100 (Ko = 1) -0.104

14 Toyoura UCyc/

TX

0.756 100 100 (Ko = 1) -0.159

14 Toyoura UCyc/

TX

0.691 100 100 (Ko = 1) -0.224

15 Ottawa-

F65

UCyc/

TX

0.585 100 100 (Ko = 1) -0.205

15 Ottawa-

F65

UCyc/

TX

0.542 100 100 (Ko = 1) -0.248

*DM: Drained monotonic, UM: Undrained monotonic, DCyc: Drained cyclic, UCyc: Undrained cyclic

TC: Triaxial compression, TX: Triaxial, TS: Torsional shear, SS: Simple shear
** Ko = 0.52eo according to Pradhan et al. [47]
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surface plasticity. Géotechnique 69:783–800. https://doi.org/10.

1680/jgeot.17.P.307

31. Liu H, Diambra A, Abell JA, Pisanò F (2020) Memory-enhanced
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plasticity model for sands. Géotechnique 47:255–272. https://doi.

org/10.1680/geot.1997.47.2.255

35. Manzari, M.T., ElGhoraiby, M.A. (2021). On Validation of a

Two-Surface Plasticity Model for Soil Liquefaction Analysis. In:

Barla, M., Di Donna, A., Sterpi, D. (eds) Challenges and Inno-

vations in Geomechanics. IACMAG 2021. Lecture Notes in Civil

Engineering, vol 125. Springer, Cham. https://doi.org/10.1007/

978-3-030-64514-4_76

36. Masing G (1926) Eigenspannungen und verfestigung beim

messing (Self stretching and hardening for brass) (in German). In

Proceed. of 2nd International Congress of Applied Mechanics.

Zurich, Switzerland, pp 332–335

37. McAllister G, Taiebat M, Ghofrani A, Chen L, Arduino P (2015)

Nonlinear site response analyses and high frequency dilation

pulses. In Proceed. of 68th Canadian Geotechnical Conference,

Quebec, QC, Canada

38. Mroz Z, Zienkiewicz O (1984) Uniform formulation of consti-

tutive equations for clays and sand. In: Desai C, Gallagher R

(eds) Mechanics of engineering materials. Wiley, United States,

pp 415–450
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