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Relation between void ratio and contact fabric of granular soils
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Abstract
Void ratio is one of the key engineering properties of granular soils. It reflects how well the grains are packed and hints

whether the soil is contractive or dilative upon shearing. On the other hand, fabric tensor has been at the centre of

experimental and theoretical granular mechanics research over the past decade for its intimate relation with the material’s

anisotropy and critical-state behaviour. This paper tests the hypothesis that the void ratio and the fabric tensor of granular

soils are tightly correlated to each other. Through discrete element method, a series of isotropic/anisotropic consolidation

tests and monotonic triaxial compression and extension tests are conducted. The obtained void ratio data are found to

collapse onto one unique surface, namely the fabric–void ratio surface (FVS), when plotted against the first two invariants

of the contact-based fabric tensor. The robustness of this relation is confirmed by testing samples with different initial void

ratios under various consolidation and monotonic triaxial stress paths. An additional undrained cyclic triaxial test followed

by continuous shearing to critical state is performed to further examine the fabric–void ratio relation under complex

loading paths. It is found that the previously identified FVS from monotonic tests still attracts the states of these specimens

at critical state, although their fabric–void ratio paths deviate from the FVS during cyclic loading. The newly discovered

FVS provides a refreshing perspective to interpret the structural evolution of granular materials during shearing and can

serve as an important modelling component for fabric-based constitutive theories for sand.
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Abbreviations
a1, a2, a3 Parameters in the Gunary equation

A1, A2 Parameter in the NL-FVS equation

b, be Principal stress ratio and principal strain ratio

d; d Particle diameter and average particle

diameter

e Void ratio

e0 Initial void ratio taken at p = 50 kPa

ec Critical-state void ratio

er Reference void ratio

edata Void ratio of the DEM data

eFVS Corresponding void ratios on the FVS of

DEM data

E Particle Young’s modulus

E1, E2, E3 Major, intermediate, and minor principal

values of the second kind fabric tensor

Eij Fabric tensor of the second kind

F Fabric anisotropy

Fc Critical-state fabric anisotropy

Fdata Fabric anisotropy from DEM data

Fn, Fs Normal and tangential forces between two

particles in contact

Fij Fabric tensor of the third kind

Gij Fabric tensor of the first kind

h Parameter in the O’Hern equation

hr Parameter in the NL-FVS equation

I Inertia number

kn, ks Normal and tangential stiffness of a particle

Kn, Ks Normal and tangential stiffness of a contact

Mc, Me Critical stress ratio at compression and

extension

n, nr Porosity and reference porosity

n Unit contact normal vector

N Number of loading cycles in cyclic triaxial

test

Nc, Number of contacts

Np Number of particles in the assembly

p Mean effective stress

pa Atmosphere pressure
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pc Mean effective stress at the end of consoli-

dation or the beginning of triaxial shearing

q Deviatoric stress

R Particle radius

Z Coordination number

Zc Critical-state coordination number

Zr Coordination number at reference porosity

Zdata Coordination number from DEM data

Zth Threshold coordination number that distin-

guish the liquefied and non-liquefied state

dn, ds Normal and tangential displacement of a

contact

dij Kronecker delta

Dtcr Critical time step

e1, e2, e3 Major, intermediate, and minor principal

strain

ea Axial strain

_e Strain rate

g, g0 Deviatoric stress ratio and the deviatoric

stress ratio during consolidation

hE Fabric lode angle

k Parameter in the equation of e-p normal

consolidation line

l Particle friction coefficient after the initial

compaction with p[ 5 kPa

l0 Particle friction coefficient during the initial

compaction with p B 5 kPa

n Parameter in the equation of e–p normal

consolidation line

q Directional distribution of contact normals

q Directional distribution density of contact

normals

qg Particle density

r1, r2, r3 Major, intermediate, and minor principal

stress

u Parameter in the O’Hern equation

f Parameter in the NL-FVS equation

C Maximum void ratio in the equation of e–

p normal consolidation line

X Solid angle

1 Introduction

Void ratio (or porosity) is the most widely used index by

geotechnical engineers and soil mechanists to characterize

the ‘‘state’’ of granular soils. The celebrated critical state

soil mechanics framework uses void ratio to define critical

state which further distinguishes dense and loose soils [36].

Void ratio (e) informs engineers how well the soil is

packed [3] and its potential for liquefaction [33]. On the

other hand, fabric structure characterized by the directional

statistics of particles, voids, and contact normal vectors is

also tightly related to the macro-behaviour of granular soils

including anisotropy [2, 60], non-coaxiality [8], critical

state [23], and liquefaction [49]. However, despite both

void ratio and fabric tensors are quantitative descriptors of

soil internal structure, their interconnections are seldomly

studied. A specific question is, can the fabric data be used

to deduce the void ratio of granular materials? First of all, it

is straightforward to see that void ratio is proportional to

the hydrostatic component of void-based fabric tensors

[24]. Such clear relation does not exist for particle- or

contact-based fabric tensors. Many studies in the field of

granular physics, powder technology, and chemical engi-

neering have been devoted to establishing a relation

between e and the coordination number (Z), i.e., the first

invariant of the non-normalized contact fabric tensor. For

monodisperse granular assemblies, an e–Z relation can be

pinned down by considering several idealized packings

including cubic (Z = 6, e = 0.9099), orthorhombic (Z = 8,

e = 0.6540), tetragonal–sphenoidal (Z = 10, e = 0.4533),

and rhombohedral (Z = 12, e = 0.3503). A number of

empirical e–Z equations have been also proposed for bi-

disperse or polydisperse granular assemblies based on

experiments and DEM simulations of gravitational

stable or compressed specimens [9, 17, 31, 40, 42, 55].

For general stress paths that involve shearing, the rela-

tion between Z and e is no longer unique. This can be

demonstrated by considering an undrained test: if each

e uniquely corresponds to one Z value, Z must be a constant

during undrained shearing, since e is kept constant. This is

not supported by DEM experiments, showing that

undrained samples can liquefy where Z drops sharply

[10, 29, 47]. It is thus inferred that e should at least also be

a function of the fabric anisotropy (F), or equivalently the

second invariant of contact fabric tensor. Rothenburg and

Kruyt [37] have similarly pointed out that the relationship

between Z and e is affected by the anisotropy of contact

orientations. Kruyt [20] showed that Z evolves with both

volumetric and shear strains, implying that e may be a

function of both Z and fabric anisotropy. Huang et al. [15]

shows that the critical state e–Z relation is not unique and is

dependent on the intermediate principal stress ratio b, and

the variation of e is apparently related to F which is sen-

sitive to b. They clarified that the increase of F with b is the

cause of non-uniqueness of e–Z relation at critical state. In

an attempt to integrate fabric tensor in the constitutive

modelling of sand, Zhang et al. [59] suggested that a

relation between e and soil fabric is imperative to unify the

classical notion of critical state defined in the e–p–q space

[36] (p is the mean effective stress; q is the deviatoric
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stress) and the recently discovered critical fabric surface

(CFS) in the principal fabric space [52]. Hence, the fabric–

void ratio relationship is worth a systematic investigation

for better understanding and modelling of the micro–

macro-behaviour of granular soils.

The objective of this paper is to study the linkage

between void ratio and the non-normalized second-rank

contact fabric tensor for granular soils. Towards this goal, a

series of three-dimensional (3D) DEM simulations consists

of consolidation, undrained, and drained monotonic triaxial

tests are conducted (Sect. 2). The fabric tensor and the void

ratio data are plotted in the e–Z–F space, through which a

unique fabric–void ratio surface (FVS) is identified

(Sect. 3). The FVS is then mathematically represented and

further validated by additional DEM tests with various

initial void ratios (Sect. 4). Finally, an undrained cyclic

triaxial tests is performed to examine whether the proposed

FVS can capture the fabric–void ratio data for samples

experiencing stress reversals (Sect. 5). The significance of

proposed FVS is discussed in Sect. 6. The main conclu-

sions and possible future extensions of this work are dis-

cussed at the end (Sect. 7).

2 Methodology

2.1 DEM configuration

The open-source program YADE [39] is used in this study

to carry out all DEM simulations. Consolidation and tri-

axial tests are simulated employing periodical boundary

conditions on a granular representative volume (REV)

made of 10,000 sphere particles with a grain size distri-

bution shown in Fig. 1. The choice of 10,000 particles is

made to balance the computational efficiency and the

representativeness of the granular specimen. Other DEM

studies on granular REVs have used similar or fewer par-

ticles [21, 41, 62]. All particles are randomly generated

without contacts in a 3 9 3 9 3 cm3 box and then

isotropically or anisotropically consolidated prior to

shearing. Linear elastic contact law is adopted with the

particle normal stiffness kn and tangential stiffness ks being

kn/d = ks/d = 100 MPa, where d is the particle diameter.

The normal and tangential interparticle forces between two

particles with stiffness kn1, ks1 and kn2, ks2 are calculated by

Fn = Kn dn = kn1 • kn2/(kn1 ? kn2) dn and Fs = Ks ds = ks1
• ks2/(ks1 ? ks2) ds, where Kn, dn and Ks, ds are the stiffness
and displacement of the contact in the normal and tan-

gential direction. The interparticle friction is modelled by

the Coulomb’s law with the friction coefficient set to

l = 0.5, a typical value for quartz sand [47, 61].

The simulation is conducted under quasi-static condition

where the influence of particle mass (inertia) is negligible,

so that the density scaling technique can be adopted to

reduce the computation cost [28, 29, 44, 54]. Specifically,

the critical timestep of the system is related to the mini-

mum particle size and elastic wave propagation speed by

Dtcr ¼ min Ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qg
� �

i

.

Ei

r
� �

[39], where subscript ‘‘i’’

represents the ith particle, R the particle radius, qg the

particle density, and E the elastic modulus. By scaling the

particle density from qg = 2.65 9 103 kg to

2.65 9 106 kg, Dtcr is increased by a factor of
ffiffiffiffiffiffiffiffiffiffi

1000
p

¼ 31:62, allowing the computation to accelerate by

31.62 times. For triaxial test simulations, the inertia num-

ber I ¼ _ed
ffiffiffiffiffiffiffiffiffiffi

qg
�

p
q

should be much less than 10–3 to ensure

the quasi-static condition [4, 12, 27, 32], where _e is the

strain rate, d the average particle diameter, and p the mean

effective stress. Through a parametric study, a strain rate of

0.05 s-1 is selected to ensure the maximum I � 10�3, such

that the quasi-static requirement is satisfied.

In DEM, a common method to control the initial void

ratio of granular specimens is to adjust the initial friction

coefficient l0 when generate and initially compact the

spheres before the official test program starts [11, 54, 57].

The use of a lower value of l0 eases the particle rear-

rangement during initial compaction and thus leads to a

denser specimen, and vice versa. Note that the value of l0
must be less than or equal to l; otherwise, the sample will

have sudden collapse at the moment when l0 is updated to

l. Since we are interested in the consolidation data in this

study, it is necessary to update l0 to l at the very early

stage of compaction, such that this operation does not

interference with the consolidation and triaxial data which

must reflect the behaviour of soils with l = 0.5. The pro-

cedure adopted in this study is the following: spheres are

sparsely generated in a cubic regime according to the

designated grain size distribution (Fig. 1) with l0 selected
between 0 and 0.5; the periodic boundaries are moved

inwards to isotropically consolidate the particles to

p = 5 kPa which is far less than the consolidation stresses
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Fig. 1 Grain size distribution of the DEM specimen used in this study
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pc = 50–2000 kPa studied in this work; l0 is then updated

to l = 0.5 and the remaining consolidation and triaxial

shearing are conducted following the ordinary procedure.

2.2 Experiment design

Three series of DEM experiments are performed in this

study. In the first series, l0 = 0.3 is used to create an ini-

tially medium-dense packing e0 = 0.6437. Note that,

throughout this paper, notation e0 refers to the void ratio of

the specimen at isotropic p = 50 kPa. The medium-dense

samples are isotropically or anisotropically consolidated

under various stress ratios g0 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6

and 0.7, as shown in Fig. 2. This is to probe the fabric–void

ratio relation of granular packings during consolidation.

For isotropically consolidated specimens, undrained (CIU)

and drained (CID) triaxial tests are performed at various

confining stresses pc to allow the stress ratio g evolve from

0 to critical value. These are designed to cover a wide

range of intermediate states in the fabric–void ratio space.

Various intermediate principal strain and stress ratios with

be = 0, 0.25, 0.5, 0.75, 1 and b = 0, 0.25, 0.5, 0.75, 1 are

used in the CIU and CID tests to check the potential Lode-

angle dependency of the fabric–void ratio relation. Here,

be = (e2 - e3)/(e1 - e3) and b = (r2 - r3)/(r1 - r3),
where (e1, e2, e3) and (r1, r2, r3) are the major, interme-

diate, and minor principal strains and stresses, respectively.

The testing details of the consolidation, CIU and CID tests

are summarized in Table 1.

To examine the effect of initial void ratio e0 on the

fabric–void ratio relation, another series of consolidation

and triaxial tests on specimens prepared at different l0
values are performed. They are named C_e0, CIU_e0, and

CID_e0 tests, respectively (Table 2). These sample are

prepared with l0 = 0.2 or 0.5 to obtain an initially dense

(e0 = 0.6174) or loose (e0 = 0.6701) state, respectively.

Finally, an isotropically consolidated undrained cyclic

triaxial (CIUC) test is performed to probe the fabric–void

ratio relation under complex stress paths involving loading

reversals. The CIUC test is conducted on the dense speci-

men (l0 = 0.2 and e0 = 0.6174). Cyclic loading is applied

after consolidation (pc = 300 kPa) in a stress-controlled

manner with maximum deviatoric stress qmax = 150 kPa.

After cyclic loading for N = 20 cycles, the specimen is

monotonically sheared until reaching critical state.

A total of 137 simulations are conducted in this study,

including eight consolidation tests, 40 CIU tests, 40 CID

tests, 16 C_e0 tests, 16 CIU_e0 tests, 16 CID_e0 tests, and 1

CIUC tests.

2.3 Fabric tensor definition

We focus on contact-based characterization of soil fabric.

For a given granular assembly, the directional distribution

of contacts is given by

q nð Þ ¼ 2Nc

Np

q nð Þ; ð1Þ

where n is the unit contact normal vector; q nð Þ is the

distribution density; Np the number of particles, and Nc the

number of contacts. The integration of q(n) overall direc-
tion gives the coordination number, Z
Z

4p

q nð ÞdX ¼ 2Nc

Np

¼ Z; ð2Þ

where X [ [0, 4p] is the solid angle. Kanatani [18] defined

three kinds of fabric tensors, with the first kind expressed

as

Gij ¼
Z

4p

q nð ÞninjdX; ð3Þ

where ni with i = 1, 2, 3 is the component of the contact

Fig. 2 Stress paths of consolidation tests
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normal. It is straightforward to see that the trace of Gij is

exactly the coordination number, i.e., Gkk = Z and the

discretized form of Gij is

Gij ¼
2

Np

X

Nc

a¼1

n
ðaÞ
i n

ðaÞ
j : ð4Þ

On the other hand, it is useful to approximate q(n) by a

2nd-order tensor

q nð Þ � 1

4p
Eijninj; ð5Þ

where the Eij is the fabric tensor of the second kind [18]. It

can be shown that the mean spherical part of Eij is Z (i.e.,

Z = Ekk/3) by integrating Eq. (5) over all directions. By

multiplying Eq. (5) with nknl and integrating over X [ [0,

4p], the relation between Eij and Gij is obtained as

Eij ¼
15

2
Gij �

1

5
Gkkdij

� �

: ð6Þ

Finally, the fabric tensor of the third kind is simply the

deviatoric part of Eij which also has a linear relationship

with the deviatoric part of Gij

Fij ¼ Eij �
1

3
Ekkdij ¼

15

2
Gij �

1

3
Gkkdij

� �

¼ 15

2
G0

ij; ð7Þ

where the superscript’ means the deviatoric part. Substi-

tuting Eq. (7) into Eq. (5) gives

q nð Þ � 1

4p
Z þ Fijninj
� �

; ð8Þ

which can be viewed as the spherical harmonic expansion

of q(n) truncated to the second order. The normalized

fabric tensors of the first, second, and third kind can be

obtained with the same mathematical procedure with

respect to qðnÞ instead of qðnÞ. Most of the previous DEM

studies [11, 38, 63] have reported their fabric data in terms

of normalized fabric tensors to focus on fabric anisotropy.

However, the information of Z is lost in this representation,

which thus cannot reveal the full picture of fabric evolution

for granular materials undergoing deformation. In analo-

gous to using p and q where p = rkk/3 and q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3=2Þr0ijr0ij
q

to represent the stress state of soil specimens,

here we use the first two invariants of the non-normalized

contact fabric tensor Eij, namely Z = Ekk/3 and

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3=2ð ÞFijFij

p

, to monitor the fabric evolution and to

correlate with void ratio in each test.

3 Fabric–void ratio surface

3.1 Consolidation tests

The consolidation lines in the e–p plane are plotted in

Fig. 3a. The normal consolidation line (NCL) is best fitted

by e ¼ C� k p=pað Þn with pa = 101.3 kPa (the atmosphere

pressure), C = 0.6555, k = 0.01832, and n = 0.7628. The

consolidation lines of g0 = 0.1–0.3 tests almost coincide

with the NCL, and the lines of g0 C 0.4 tests become lower

when g0 increases. The observation that the consolidation

Table 1 Summary of consolidation, CIU, and CID tests

Test series Consolidation CIU CID

pc (kPa) 50–2000 50, 100, 300, 500, 700, 1000, 1500, 2000 50, 100, 300, 500, 700, 1000, 1500, 2000

l0 0.3 0.3 0.3

g0 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 0 0

b or be N/A be = 0, 0.25, 0.5, 0.75, 1 b = 0, 0.25, 0.5, 0.75, 1

Test number 8 40 40

Table 2 Summary of C_e0, CIU_e0, and CID_e0 tests

Test series C_e0 CIU_e0 CID_e0

pc (kPa) 50–2000 50, 100, 300, 500, 700, 1000, 1500, 2000 50, 100, 300, 500, 700, 1000, 1500, 2000

l0 0.2, 0.5 0.2, 0.5 0.2, 0.5

g0 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 0 0

b or be N/A 0 0

Tests number 16 16 16

Acta Geotechnica (2022) 17:4297–4312 4301

123



line locates lower for specimens consolidated at higher g0
is consistent with previous findings [6, 19, 34]. The con-

solidation lines are plotted in the e–Z plane in Fig. 3b. Data

from different g0 tests deviate with each other at the

beginning of consolidation, but converges as Z increases.

This proves that the e–Z relation is non-unique for fric-

tional granular materials, as speculated in the Introduction

session. Figure 3c shows the fabric paths of consolidation

tests in the Z–F plane. It is evident that higher g0 lead to

overall stronger fabric anisotropy during consolidation.

Another observation is that F decreases with the increase of

Z for g0 C 0.4 tests, indicating reduced fabric anisotropy

under high confining stresses. This is expected, as higher

confining stress creates stronger and more connected force

networks to support the same stress anisotropy with a

weaker contact anisotropy. By combining Fig. 3a–c, the

fabric–void ratio relation of consolidation tests in e–Z–F

space is shown in Fig. 3d. More data are needed to probe

the fabric–void ratio states in between the consolidation

lines to tell whether a unique surface can be constructed.

3.2 Undrained (CIU) tests

The stress paths and stress–strain curves of CIU test under

triaxial compression (be = 0) and extension (be = 1) con-

ditions are presented in Fig. 4. It is observed that several

tests under small pc are liquefied, while others reach critical

state at around axial strain of 20–30%. The slopes of the

critical state line (CSL) in p–q space for compression and

extension tests are Mc = 0.77 and Me = 0.61, respectively.

Figure 5a, b shows the fabric paths of triaxial com-

pression and extension tests, respectively. The initial states

of all samples are nearly isotropic with F & 0 and a

Z value of 3.5–6. Upon shearing, fabric anisotropy F starts

to develop accompanied by the decrease of Z. For liquefied

specimens, their fabric paths quickly evolve towards the

origin at the onset of liquefaction as marked by the dash

lines. As axial strain keeps increasing, the stresses of liq-

uefied specimens remain nearly zero (i.e.,

p & q & 0 kPa), while their fabric structures start to

rebuild as manifested by the development of a fabric path

in the low Z regime, which appears to be independent of

the initial condition of the specimen. The fabrics of liq-

uefied samples finally reach steady state somewhere along

this unique curve. Regarding the minimum value of Z

(a) (b)

(c)
(d)

Fig. 3 a Consolidation lines in e–p plane, b consolidation lines in e–Z plane, c fabric paths in Z–F plane, and d fabric–void ratio paths in e–Z–
F space
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during liquefaction, Nguyen et al. [29] found that the Z of

liquefied samples directly evolve to a steady-state value

3.91 instead of dropping to 0 first, which is different from

the observations of Gu et al. [10], Wang and Wei [47],

Wen and Zhang [52], and the current paper. Wang et al.

[48] showed that the value of Z drops to * 1 instead of 0

upon liquefaction. More studies on the fabric structure and

coordination number of liquefied frictional granular mate-

rials are needed to clarify these inconsistencies.

The fabric paths of non-liquefied specimens never drop

below a threshold coordination number (Zth) and reached to

some critical-state fabric (Zc, Fc) when sheared to large

strain levels. Connecting the liquefied fabric path with the

series of critical-state fabric data, it is possible to construct

a critical-state line in the Z–F plane that attracts the fabric

states of both liquefied and non-liquefied specimens when

sheared to large strain levels (Fig. 5a, b). This line can be

mathematically represented by the Gunary equation F ¼
Z= a1 þ a2

ffiffiffi

Z
p

þ a3Z
� �

where (a1 = 1.05, a2 = - 1.17,

a3 = 0.755) for be = 0 tests and (a1 = 0.82, a2 = - 0.58,

a3 = 0.49) for be = 1 tests. These envelopes are in fact

projections of the more general critical fabric surface

(CFS) in the principal fabric (E1–E2–E3) space, as recently

proposed by Wen and Zhang [52].

Figure 5c plots all the fabric and void ratio data

obtained from CIU tests in e–Z–F space. Starting from the

NCL shown in Fig. 3d, specimens with different pc and be
are sheared under undrained condition which enforces a

constant void ratio during shearing. The tests with pc = 50

and 100 kPa are liquefied, while other tests with higher pc
are not. It is observed that the fabric–void ratio data seem

to fall in two apparent regimes separated by Zth. Data in

Z\ Zth belong to liquefied specimens and Z[ Zth for non-

liquefied tests. It is also observed that for tests with pc-
C 300 kPa, their fabric–void ratio relations are almost

independent of the shear mode be, despite that the values of

Z and F at critical state are be-dependent (see Fig. 5a, b).

For liquefied specimens with pc = 50–100 kPa, the fabric–

void ratio data under different be condition also coincide

with each other prior to liquefaction and roughly collapse

into one line in the Z\ Zth regime after liquefaction.

3.3 Drained (CID) tests

The CID tests results for b = 0 and b = 1 are shown in

Fig. 6a–b and Fig. 6c–d, respectively. It is observed from

(a) (b)

(c) (d)

Fig. 4 Stress and strain evolution of CIU tests: a stress of be = 0 tests, b stress–strain of be = 0 tests, c stress of be = 1 tests, and d stress–strain of

be = 1 tests
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Fig. 6a, c that the critical state stress ratio is Mc = 0.77 for

compression tests and Me = 0.61 for extension tests, which

is consistent with the CIU tests results shown in Fig. 4a, c.

For the drained fabric paths in Fig. 6b, d, anisotropy

F evolves from near zero to a peak and then drops to the

critical state value. These critical fabric values again fall on

the same CFS identified previously in the undrained tests

(Fig. 5a, b). This again proves that CFS is independent of

liquefaction or drainage conditions and can serve as a

universal attractor for fabric state upon continuous shearing

[52]. Figure 6e plots the fabric data against the evolving

void ratios obtained from CID tests. Similar to Fig. 5c, it is

found that the fabric path in CID tests is independent of the

shear mode b except near the critical-state values.

Figure 7 combines the fabric–void ratio data obtained

from consolidation, CIU, and CID tests presented in

Figs. 3d, 5c, and 6e. An astonishing finding is that all the

fabric–void ratio data for non-liquefied specimens visually

collapse into one single surface which shall be referred to

as the non-liquefied (NL) fabric–void ratio surface (FVS).

The ‘‘state’’ of the sample (characterized by fabric and void

ratio) simply travels along this surface via different paths

when subjected to monotonic shearing. It is also noted that

the post-liquefaction data from CIU tests collapse into

another surface (or line) in the low Z (\ Zth) regime and

exhibits certain degree of scattering. Based on the obser-

vations in Fig. 5a, b, this surface can be regarded as the

CFS for liquefied soils extended vertically along the void

ratio axis, which will be referred to as the liquefied

(L) FVS. The L-FVS data only expand within a small range

of e near the upper bound of NL-FVS in the e–Z–F space,

since only very loose packing is liquefied in this series of

CIU tests.

Note that the current fabric–void ratio relation is

investigated in the e–Z–F space and the effect of the third

invariant of Eij or the fabric Lode angle hE is omitted. This

appears to be a reasonable assumption, since the shear

mode be or b is observed to have little effect on the evo-

lution of fabric–void ratio data in CIU and CID tests prior

to reaching the critical state (see Figs. 5c and 6e), and there

is not much data scattering around the FVS (see the next

section for a quantitative evaluation) identified in the e–Z–

F space including the near critical state regime (see Fig. 7).

Therefore, hE will not be considered when we construct a

model of the fabric–void ratio relation in the following.

4 Mathematical description and validation

We shall pursue a mathematical description of the FVS to

evaluate the quality of the data correlation and to facilitate

the integration of such surface in constitutive models for

sands such as the critical fabric theory proposed by Zhang

et al. [59]. In addition, the uniqueness of FVS will be

validated using data from samples prepared to different

initial densities (i.e., different e0).

4.1 Mathematical description

For the non-liquefied portion of the FVS, a good starting

point is the Z–n equation proposed by O’hern et al. [31] for

isotropically or oedometrically compressed granular

assemblies

Z � Zr ¼ h n� nrð Þu; ð9Þ

where n is the porosity; h and u are material parameters; Zr
is the coordination number at a reference porosity nr which

is usually taken at the jamming point. Taking Eq. (9) as a

(a)

(b)

(c)

Fig. 5 Fabric evolution of CIU tests: a Z–F relation of be = 0 tests,

b Z–F relation of be = 1 tests, and c fabric–void ratio paths of

be = 0–1 tests
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reference for e ¼ f Z;Fð Þ at F = 0, the mathematical

expression of the NL-FVS is proposed as

e ¼ er þ hr Z � Zrð ÞfþA1F þ A2F
2; ð10Þ

where a second-order polynomial in terms of F is added to

consider the effect of fabric anisotropy; er and Zr are,

respectively, the void ratio and coordination number taken

at the reference point; hr, f, A1 and A2 are material

parameters. Equation (10) is best fitted to the NL-FVS data

with parameters er = 0.6641, Zr = 3.258, hr = - 0.02898,

f = 2.0, A1 = - 0.02627, and A2 = 0.004352 with the

accuracy quantified by R2 = 0.9852 (Fig. 8).

For the liquefied portion (i.e., Z B Zth) of the FVS, we

first examine the data on the Z–F plane, as shown in

Fig. 9a, given all data in this portion come from CIU tests

conducted at similar void ratios. The fitted CFS curves for

be = 0 and 1 in Fig. 5a, b are also plotted here in Fig. 9a. It

is clear that the CFS is dependent on the shear mode, which

(a) (b)

(c)

(e)

(d)

Fig. 6 Evolution of CID tests: a stress–strain of b = 0 tests, b fabric paths of b = 0 tests, c stress–strain of b = 1 tests, d fabric paths of b = 1

tests, and e fabric–void ratio paths of b = 0–1 tests
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is consistent with the observation of Wen and Zhang [52]

who inspected the shape of CFS in the principal fabric

space. For simplicity, here, we adopt an averaged critical

fabric curve with expression

F ¼ Z
.

0:9937� 1:044
ffiffiffi

Z
p

þ 0:7070Z
� 	

ð11Þ

to represent this data cluster in the fabric–void ratio space

(Fig. 9b). By doing so, we have hypothesized that averaged

critical fabric curve or the L-FVS is independent of void

ratio as long as the sample is fully liquefied. This

assumption shall be further tested with more CIU tests

conducted at a wider range of void ratios in the next sec-

tion. For now, the L-FVS fitting gives a R2 value of 0.9568,

as shown in Fig. 9b.

The small scattering (R2 = 0.9852 for NL-FVS and

R2 = 0.9568 for L-FVS) supports the existence of a unique

FVS linking the void ratio and the first two invariants of

contact fabric tensor for samples subjected to monotonic

consolidation, undrained, and drained triaxial shearing.

This surface exhibits weak dependency on the shear mode

in both liquefied and non-liquefied regimes. Comparing to

the many e–Z models developed for gravity-filled granular

packings in powder technology [1, 9, 45, 58], our proposed

FVS depicts a more complete picture by incorporating the

effect of fabric anisotropy on the density of granular

assemblies. The new FVS concept is therefore applicable

for conditions involving anisotropic consolidation and tri-

axial shearing which are relevant for soil mechanics

applications, providing a new perspective to analyse the

internal structure of granular soils.

4.2 Validation

The FVS in Figs. 8 and 9 is developed exclusively based

on medium-dense samples prepared with l0 = 0.3. To

validate the uniqueness and the robustness of the FVS,

additional tests including C_e0, CIU_e0 and CID_e0 tests

using relatively dense (prepared with l0 = 0.2) and loose

(prepared with l0 = 0.5) samples are conducted, as sum-

marized in Table 2.

Figure 10 present the critical state data of CIU, CID,

CIU_e0, and CID_e0 tests on the e–p and the Z–p planes.

Fig. 7 Compiled fabric–void ratio data from consolidation, CIU, and

CID tests

Fig. 8 Mathematical description of the non-liquefied fabric–void ratio

surface

(a) (b)

Fig. 9 Mathematical description of the liquefied fabric–void ratio surface in a Z–F plane and b e–Z–F space
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The conventional CSL in the e–p plane can be well rep-

resented by the power-law function of Li and Wang [25] as

ec ¼ 0:630� 0:00365 p=pað Þ1:202 where pa = 101.3 kPa.

The critical-state Z–p data also collapse into a single curve

fitted by Zc ¼ 2:779þ 0:679ðp=paÞ0:441. These results

confirm that the CSL in the e–Z–p space is independent of

the sample’s initial void ratio, shear mode, and drainage

conditions, which is consistent with the previous findings

[10, 30, 52]. Figure 11a compares the NCLs for the dense,

medium dense, and loose samples in the e–p plane. Fig-

ure 11b plots the corresponding NCLs in e–Z plane, or in

other words, the fabric–void ratio relation for isotropically

consolidated samples (F & 0). It is observed that the e–Z

curves are closely located in a narrow band (despite some

slight variations in the dense and loose regime) in contrast

to the distinct curves in the e–p plane.

The previously constructed NL-FVS (Eq. (10)) and the

fabric–void ratio data from the new C_e0, CIU_e0 and

CID_e0 tests are plotted together in Fig. 12a. It can be

observed that the new data qualitatively falls on the same

surface. For a specific fabric–void ratio data (Zdata, Fdata,

edata), its corresponding e on the FVS can be calculated by

e(Zdata, Fdata) using Eq. (10) and is denoted as eFVS. The

comparison of edata and eFVS is then shown in Fig. 12b. The

small scattering (R2 = 0.9700) quantitatively validates the

uniqueness of the NL-FVS with respect to the initial den-

sities of the specimens. It is noted that the eFVS deviates

slightly from the edata in the very dense regime (around

edata = 0.45). This deviation could be due to several limi-

tations of this study. First, the contact model is linear

elastic which might be reasonable for low confining pres-

sures, but cannot represent real contacts (nonlinear, pres-

sure-dependent) at high-pressure levels. The error due to

this idealization therefore shows up at dense packing

regime where high confining stress is applied. Second, the

present study uses the first two invariants of Eij (repre-

sented by Z and F) to correlate with void ratio. This

approach neglects the information represented by hE, as

(a) (b)

Fig. 10 Critical-state lines of CIU, CID, CIU_e0, and CID_e0 tests in a e–p plane and b Z–p plane

(a) (b)

Fig. 11 NCLs of specimens with different initial density in a e–p plane and b e–Z plane
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well as the higher order information contained in the full

contact distribution function. Future enrichments of FVS

considering the above may remove the deviations between

edata and eFVS.

The data from liquefied specimens in CIU_e0 test and

the mathematical L-FVS (Fig. 9b) are plotted together in

the Z–F plane (Fig. 13a) and in the fabric–void ratio space

(Fig. 13b). The agreement between the data and the

mathematical L-FVS (Eq. (11)) is quite well as evidenced

by R2 = 0.9806. The observation that the liquefied fabric

data of all undrained tests with different e0 can be repre-

sented by the same Z–F curve confirms our earlier

hypothesis that the critical fabric curve is independent of

void ratio in the liquefied regime, and thus validated the

L-FVS proposed in Fig. 9b and Eq. (11). It is also observed

in Fig. 13b that Z and F for denser soils evolve to larger

values in the liquefied regime. This feature can be utilized

to precisely locate the threshold Z (Zth) that separates the

liquefied and the non-liquefied states, i.e., by observing the

maximum Z (Zmax) of the specimen with the minimum void

ratio among all liquefied tests. The Zmax of all liquefied

undrained tests presented in Figs. 9 and 13 is Zmax = 2.73

from the CIU_e0 test with e = 0.6171 and pc = 50 kPa.

This means that the value of Zth must be C 2.73. On the

other hand, it is interesting to note that the critical state Zc
at p = 0 calculated by the CSL equation in Fig. 10b is

Zc(p = 0) = 2.779, which is quite close to Zth. It is there-

fore reasonable to infer that the intersection Zc(p = 0) in

the power-law equation that fits the critical state Z–p data is

not just a fitting parameter but has the physical meaning of

the threshold Z that distinguishes the liquefied and non-

liquefied soils.

5 Undrained cyclic (CIUC) test

We have demonstrated that the states (fabric, void ratio) of

granular material travel along a single FVS during mono-

tonic loading including consolidation, CIU, and CID tests.

There are two aspects remain to be addressed: (1) it is

(a) (b)

Fig. 12 Validation of NL-FVS by C_e0, CIU_e0, and CID_e0 tests: a FVS and fabric–void ratio data; b comparison between the void ratio data

and those calculated by the FVS equation

(a) (b)

Fig. 13 Validation of L-FVS by CIU_e0 test data in a Z–F plane and b e–Z–F space
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unclear whether the same FVS works for stress paths

involving loading reversals; (2) at the moment of static

liquefaction, the fabric–void ratio data jump from the NL-

FVS to the L-FVS and then stays on it, but it is not clear

whether this sudden transition happens during cyclic liq-

uefaction and whether liquefied states can evolve from the

L-FVS back to the NL-FVS as shear strain accumulates. To

answer these questions, a CIUC test is conducted on a

dense sample with pc = 300 kPa, qmax = 150 kPa, and

e = 0.5911. The specimen is subjected to a two-stage

loading. The first stage is cyclic triaxial loading which

stops when the number of cycles N reaches 20. After this,

the specimen is monotonically sheared through triaxial

compression to the critical state.

Figure 14a–d shows the stress–strain curve, the stress

path, the fabric path, and the fabric–void ratio path from

CIUC tests, respectively. It is observed from Fig. 14a, b

that the specimen exhibits the typical cyclic liquefac-

tion/mobility behaviour. In Fig. 14c, the fabric evolution

path drifts to lower Z values during cyclic loading and

jumps to the origin as soon as the sample liquefies. As

shear continues, the fabric path evolves partially along the

L-FVS and re-enters the non-liquefied regime (Z[ Zth-
= 2.73 regime) where the sample regains some shear

strength. The same phenomenon can be better visualized in

the fabric–void ratio space in Fig. 14d. It is clear that the

‘‘butterfly’’ stress loop in Fig. 14b corresponds to a closed

fabric path circulating between the L-FVS and the non-

liquefied regime.

Figure 14c, d confirms that the fabric–void ratio data

during cyclic loading approximately stay on the L-FVS

after liquefaction, but does not stay on the NL-FVS before

liquefaction. If the descriptor of soil’s inner structure is

sufficient, it should fully quantify the ‘‘memory’’ of the soil

and exhibit a one-to-one relation with the macroscopic

properties of the soil. We suspect that the non-uniqueness

of FVS for monotonically and cyclically loaded specimens

can be removed by considering higher order fabric infor-

mation which is not reflected in the 2nd-rank fabric tensor.

Along this line, examining the full directional distribution

function of contact normal may reveal some unique

microstructural features of cyclically loaded granular

materials.

The monotonic loading after the cyclic stage takes the

specimen to its critical state and is marked by blue dot lines

and red stars in Fig. 14. It is observed that the monotonic

shearing eventually brings the cyclically loaded specimens

back to the NL-FVS with the squared error

(a) (b)

(c) (d)

Fig. 14 Evolution of CIUC test in: a stress–strain plane, b stress plane, c fabric plane, and d fabric–void ratio space
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(SE) = 3.73 9 10–5, confirming again the FVS identified

in Fig. 8 could serve as a reference surface for granular

materials under monotonic shearing, although it does not

uniquely relate void ratio and fabric for cyclically loaded

specimens.

6 Significance of FVS

With the FVS identified, a ‘‘so what’’ question naturally

follows. We would like to make the case here that FVS can

change how we conceive the constitutive theories and

models of granular soils. Specifically, the fabric–void ratio

relation proposed here connects two important state vari-

ables (void ratio and fabric), implying that the previously

observed critical state line in the conventional e–p–q space

[36] and fabric space [61] is not independent to each other.

Indeed, the authors have recently proposed a constitutive

framework, namely the critical fabric theory [59], where

fabric is treated as the single internal state variable of gran-

ular soils. In this framework, the only criterion that judges

whether a soil has reached critical state is to see if its fabric

state converged to the critical fabric surface [52]. As the

fabric evolves towards this CFS, the other state variables (e–

p–q) approach their apparent critical state because of some

geometrical or microstructural relations that link fabric with

the void ratio and stress state of granular soils. To exercise

this logic, let us combine the CFS (i.e., F(Z) relation) under

an arbitrary shear mode (e.g., compression or extension as

shown in Fig. 5 or Fig. 6), a fabric–void ratio relation (FVS

shown in Fig. 8), and a critical state Z–p relation (shown in

Fig. 10b).Amathematical expression between e and p can be

derived by

e ¼ er þ hr ZðpÞ � Zr½ �fþA1F ZðpÞð Þ þ A2F
2 ZðpÞð Þ; ð12Þ

where parameters er, Zr, hr, f, A1, and A2 are already cal-

ibrated in Fig. 8 and presented after Eq. (10). The obtained

equation is plotted against the DEM critical-state data

(Fig. 10a) in e–p plane in Fig. 15. It is apparent that the

derived CSL coincides with the CSL data, supporting that

the classical critical-state theory can be equivalently

framed in terms of a critical fabric relation and a fabric–

void ratio relation. It is worth to note that, in the original

model [59], the fabric–void ratio relation is taken from

O’hern et al. [31] which only depends on the coordination

number drawn from isotropic or oedometric compression

tests (shown as Eq. (9)). The current study shows that this

relation needs to be updated by the new FVS shown in

Fig. 8 for general stress paths involving shear and

compression.

In a more general context, many elastoplastic/hy-

poplastic models start to acknowledge soil fabric

[14, 23, 26, 35, 43, 50, 56] and are often formulated within

the framework of anisotropic critical state theory (ACST)

[23, 26, 35, 50, 56]. In these models, the CSL in e–p–

q space and the critical fabric are treated as separate con-

ditions for attaining critical state, and thus, the stress-di-

latancy relation and fabric evolution laws are often

proposed separately. The new FVS identified in this study,

however, suggests that the evolution of fabric and void

ratio (or dilatancy) are intrinsically coupled especially

under monotonic loading. This finding should inspire more

sensible and realistic stress–dilatancy–fabric relations in

future elastoplastic models based on ACST.

It should be noted that the current FVS expressed in void

ratio e and the first two invariants of second-order fabric

tensor Z and F can only be used in modelling monotonic

triaxial tests. The fabric–void ratio paths for cyclically

loaded specimens do not collapse on the same FVS, but are

only attracted by it when monotonically sheared after the

cyclic loading. We speculate that higher order fabric ten-

sors may contain some extra structural information for

cyclically loaded specimens that are not captured by the

second-order tensor studied in the current work. Estab-

lishing enriched descriptions of soil fabric based on con-

tact, particle, and void vectors could be the first step in the

follow-up studies along this line. In addition, further vali-

dation and investigation of FVS needs not only DEM

simulations [10, 29, 46, 47, 51] but also advanced labora-

tory tests equipped with in-situ X-ray microtomography

and other advanced imaging techniques

[5, 7, 13, 16, 22, 53].

7 Concluding remarks

The relationship between the contact fabric tensor Eij and

the void ratio of granular soils is studied by investigating

the e–Z–F data of 137 DEM numerical tests. Among them,

8 consolidation and 80 true triaxial tests data are used for

identifying a fabric–void ratio surface, and the rest 49 tests

100 1000
0.45

0.50

0.55

0.60

0.65

 Eq. (12), b=be=0, R2 = 0.9857
 Eq. (12), b=be=1, R2 = 0.9878

e

p (kPa)

CIU be=0     CID b=0
CIU be=0.25  CID b=0.25
CIU be=0.5   CID b=0.5
CIU be=0.75  CID b=0.75
CIU be=1     CID b=1
CIU_e0 be=0 CID_e0 b=0

Fig. 15 Comparison between the derived CSL in e–p plane and the

DEM critical-state data in Fig. 10a
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are used to verify the uniqueness of the FVS. A cyclic

triaxial test is employed to check whether the FVS

observed from monotonic shearing is applicable when

stress reversal is included.

The results of the monotonic tests show that the usual e–

Z relation of granular packings is significantly influenced

by the fabric anisotropy F. Such dependency can be con-

veniently represented by a parametric surface, namely the

fabric–void ratio surface, in the e–Z–F space. The FVS

consists of two separate parts with each describing the

fabric–void ratio relation for liquefied and non-liquefied

soils. When static liquefaction happens, the fabric path

suddenly jumps from the non-liquefied portion of the FVS

to the liquefied portion of the FVS. The threshold coordi-

nation number (Zth) that separates the liquefied and non-

liquefied specimens is found to be Zth = 2.73. The pro-

posed FVS is validated through an independent series of

consolidation and triaxial tests with different initial void

ratios.

The fabric path of cyclically loaded specimen does not

travel along the NL-FVS established on the monotonic test

results. This suggests that the two invariants of the 2nd-rank

fabric tensor cannot completely tell the differences of soil

structures induced by recent stress reversals. After cyclic

loading, sufficient monotonic loading can remove the effect

of recent stress history and thus recover the fabric–void

ratio relation depicted by the FVS.

Revealing connections between the microstructural

attributes and the macroscale behaviours of granular is an

ongoing endeavour for years. This study identifies an

important reference surface for correlating the void ratio

with the fabric structure of granular materials and helps

better understand the structural evolution of granular soils

during compaction and liquefaction. Future extensions of

this work include: (1) incorporating higher order fabric

information to seek for a unique fabric–void ratio relation

for both monotonically and cyclically loaded specimens;

(2) investigating the fabric state of liquefied soils and

understand its transition near the jamming point; (3)

implementing the concept of FVS in fabric-centred con-

stitutive theories of granular soils to unify the descriptions

of critical state in terms of void ratio and fabric tensors.
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Dyck N, Eliáš J, Er B, Eulitz A, Gladky A, Guo N, Jakob C,

Kneib F, Kozicki J, Marzougui D, Maurin R, Modenese C,
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63(8):695–704

62. Zhao S, Zhao J, Guo N (2020) Universality of internal structure

characteristics in granular media under shear. Phys Rev E

101(1):012906

63. Zhou W, Liu J, Ma G, Chang X (2017) Three-dimensional DEM

investigation of critical state and dilatancy behaviors of granular

materials. Acta Geotech 12(3):527–540

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

4312 Acta Geotechnica (2022) 17:4297–4312

123

https://doi.org/10.1007/s11440-021-01410-7
https://doi.org/10.5281/zenodo.34073
http://yade-dem.org/doc/
http://yade-dem.org/doc/
https://doi.org/10.1680/jgeot.21.00126
https://doi.org/10.1680/jgeot.21.00126

	Relation between void ratio and contact fabric of granular soils
	Abstract
	Introduction
	Methodology
	DEM configuration
	Experiment design
	Fabric tensor definition

	Fabric--void ratio surface
	Consolidation tests
	Undrained (CIU) tests
	Drained (CID) tests

	Mathematical description and validation
	Mathematical description
	Validation

	Undrained cyclic (CIUC) test
	Significance of FVS
	Concluding remarks
	Data availability statement
	References




