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Abstract
This paper presents a novel deep learning model for real-time prediction of shield moving trajectory during tunnelling. The

proposed model incorporates a wavelet transform (WT) into Adam-optimised long short-term memory (LSTM) (WT-

Adam-LSTM). The WT is employed to remove the irrelevant noise of data in the time and frequency domains, which

allows the sequence pattern to be detected easily. The Adam algorithm is used to increase the reliability and optimise the

gradient training process of the LSTM neural network for a given time series. The developed model considers the shield

performance database, complex geological conditions, soil geometry, and operational parameters. A case study of a tunnel

section under Bao’an International Airport was employed to verify the performance of the proposed model. A comparison

with other models, i.e. recurrent neural network, LSTM, and support vector regression, was also made. The results show

that WT-Adam-LSTM provides an effective solution and can achieve better results compared with other models.
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1 Introduction

Due to the increasing demand for reliability and safety of

systems, shield tunnelling has become one of the most

popular methods for constructing tunnels and infrastructure

facilities [22]. Many subway tunnels in China have been

constructed using the shield tunnelling technique because

of its distinct advantages over other conventional methods.

However, shield tunnelling frequently encounters technical

problems such as difficult geological conditions, shield

machine malfunctions, and positional deviation during

tunnelling [5, 28, 31]. These problems can lead to

increased risks, high cost, and even damage to the machine.

Positional deviation between the shield movement tra-

jectory and designed tunnel axis has a significant effect on

the quality of tunnel construction. The designed tunnel axis

is an optimal path for the shield tunnel. Shield tunnelling

misalignment results in the shield tunnel path deviating

from the designed tunnel axis. The inaccurate control of the

shield movement trajectory is the main cause for

misalignment, and the error caused by misalignment can

lead to several operation hazards [32, 33]. Moreover,

oversized misalignment may change the excavation route,

which can cause hazards during tunnelling [11, 23]. The

complex underground geological structure, different fric-

tional resistance of shield parts, and highly complex shield

systems make it difficult to control the shield movement

trajectory. To facilitate tunnel alignment control, the

information of pose and trajectory recorded by the auto-

matic navigation system needs to be adapted in real time.

Currently, a feedback technique is used to control the

shield performance in practice. A delayed control based on
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feedback can result in unexpected hazards after the devi-

ation. Therefore, the shield operation needs to be predicted

to increase the reliability and avoid severe deviation and

snakelike motion.

Shield performance control is closely related to the

experience of the driver with a limited degree of accuracy

according to their intuition and experience. To achieve

high-precision forecasting of shield performance, some

attempts have been made to investigate the mechanism and

scientific prediction during shield tunnelling [11]. Most

existing studies employed traditional machine learning

(ML) methods to adjust tunnel performance. For instance,

Elbaz et al. [6] integrated adaptive neurofuzzy inference

system (ANFIS) with genetic algorithm to implement an

appropriate model for predicting tunnel performance.

Another study proposed a multi-objective optimisation

model for identifying soil parameters during excavation

[12]. However, network accuracy remains unsatisfactory

when dynamic and nonlinear time-series data are encoun-

tered. Owing to the development of modern computational

programs, deep learning techniques have demonstrated

outstanding performance as they can process sequence data

such as time series. However, as a prerequisite for estab-

lishing an accurate model using deep learning techniques,

two main issues regarding the data set obtained for the

tunnel control system should be solved: noisy data induced

by the shield measurement system and the large dimension

of data that includes many irrelevant information. Further,

when establishing a deep learning method to predict the

shield movement trajectory based on a well-prepared data

set, the following two challenges need to be addressed.

(1) Temporal correlation The prediction of the shield

movement trajectory is considered a time series

forecasting issue. As the direction of changes among

data is necessary for prediction, it is important to

design an effective model to manage temporal

features.

(2) Imbalance Geological conditions can be obtained

from limited borehole data, which implies that the

amount of geological data is far less than that of the

operational data. This imbalance between geological

and operational data makes it difficult for a neural

network model to produce an accurate prediction.

To tackle the challenges mentioned above, in the present

study, we proposed a novel deep learning model that

incorporates wavelet transform (WT) into the Adam-opti-

mised LSTM technique (WT-Adam-LSTM). The WT is

utilised to reduce the complexity of the forecasting model.

The long-term characteristic established in the LSTM

framework is imagined to capture the relationship between

data features measured from the recorded system, which

results in a better forecast for its future performance. The

proposed model is trained to learn the temporal correlation

among data, thereby forecasting the future shield move-

ment trajectory. To the best of our knowledge, this is the

first attempt to apply the proposed model for adjusting the

shield movement trajectory using geological data and a

data-driven technique. The kriging interpolation approach

is applied to estimate the geological conditions at unsam-

pled locations. The proposed model uses geological in situ

data and operational parameters to learn the knowledge of

the shield movement trajectory effectively and to achieve

accurate prediction with high efficiency. A tunnel case

study in Shenzhen, China, was employed to present the

performance of the proposed model in a real field. In

addition, the accuracy of the proposed model was verified

and compared with those of existing traditional models. To

confirm the significance of the results, the well-known

nonparametric Friedman test was conducted. Once the

shield movement trajectory can be predicted, the operator

can control the machine beforehand.

2 Methodology

Deep learning presents an advanced system for smart

manufacturing using a large amount of data owing to its

features of complex system configuration abilities [27, 33].

Therefore, a hybrid deep learning approach trained by

inputting in situ data is used to forecast the future shield

moving trajectory. The schematic framework for the per-

formance prediction of the shield movement based on

integrating WT with Adam-optimised LSTM neural net-

work is described (Fig. 1).

2.1 Wavelet transform

The WT is a mathematical method resulting from a typical

fusion of common analyses. The WT can develop the

localisation idea of short-time Fourier transforms, and its

coefficients reflect the local information of the signal in

both the time and frequency domains [18]. Thus, this

technique is efficient in simultaneously obtaining functions

and displaying their local information through a time–fre-

quency domain [4]. The discrete wavelet transform (DWT)

is an effective WT model; it simplifies the application of

the WT, and therefore, it is used in this study. The DWT

can decompose the signal x tð Þ to multi-resolution and time-

shifting characteristics [4, 7], and it is defined as

wx j; kð Þ ¼ x tð Þ;wj;k tð Þ
� �

¼ 1
ffiffiffiffiffiffi
aj j

p r
R

x tð Þu t � b

a

� �
dt ð1Þ

1534 Acta Geotechnica (2022) 17:1533–1549

123



where a and b are discrete, a ¼ a j
0; b ¼

ka j
0b0; a0 [ 1; b0 [ 0; j 2 z; k 2 z; j is the frequency reso-

lution, and k is the time of the transform.

The Mallat algorithm, which is an efficient tool to

establish the relation between WT and multi-resolution

analysis, is used to employ a fast DWT [17]. In the multi-

resolution analysis of wavelets, j is utilised to determine

the resolution at different scales. For the original signal, the

main contour is analysed on a large scale, while the

detailed information is analysed on a small scale. Then, the

decomposition results are analysed by the stepwise

increase in j. The time series function is decomposed as

[17]

x tð Þ ¼ An tð Þ þ Dn tð Þ þ Dn�1 tð Þ þ � � � þ D1 tð Þ ð2Þ

where An tð Þ refers to the original signal x tð Þ, and Dn tð Þ is

the elaborated portion related to the noisy data in the level

decomposition n.

2.2 Adam-optimised LSTM network

The LSTM network is an extended version of the recurrent

neural network architecture and has an extraordinary

capability to learn long-range dependencies in various

fields [14]. The LSTM network has memory blocks con-

nected by layers rather than neurones. Every block includes

gates that control the output and status of the block. Fig-

ure 2 shows the memory cell of the LSTM unit. In the

training process, the LSTM structure can efficiently handle

the problems of gradient explosion and gradient disap-

pearance. The LSTM provides a cell state (c) for main-

taining long-term data and utilises the three gates including

input gate, output gate, and forget gate to adjust it. The

calculated approaches related to the three gates of LSTM

are given below [14].

Forget gate (ft) specifies the information that needs to be

disposed from the block, and it is formulated as

ft ¼ r wf ht�1; xt½ � þ bf
� �

ð3Þ

where ht�1 is the previous output and xt and r are the input

values and sigmoid function, respectively. The input gate

(it) conditionally specifies the values entered to update the

cell state (ct); it can be formulated as

it ¼ r wi ht�1; xt½ � þ bið Þ ð4Þ

The output gate (ht) conditionally determines what to

output according to the input and block memory, and it can

be formulated as

Ot ¼ r wo ht�1; xt½ � þ boð Þ ð5Þ

At every time (t), input features are estimated by input

(xt) and the prior hidden state (ht�1), and the tanh function

refers to pushing the values between - 1 and 1, where

ct ¼ tanh wc ht�1; xt½ � þ bcð Þ ð6Þ

The memory cell is optimised using input features (ct)

and the partial forgetting of the prior memory cell (ct�1),

which yields

Denoised data
Operating and geological parameters  

A1 D1 D2 Dn

Output data
Attitude & position of shield 

parameters  

LSTM LSTM LSTM LSTMAdam

Monitoring data
Operating parameters
Geological in-situ data

soil geometry 

Input data

Wavelet transform

Magnitude

Fig. 1 Schematic framework for the dynamic prediction of shield

movement
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ct ¼ f
�

t ct�1 þ i
�

t c
�
t ð7Þ

Eventually, the hidden output state (ht) is estimated

using the output gate ( ot) and cell state (ct), where

ht ¼ o
�

t tanh ctð Þ ð8Þ

In Eqs. 3–6, the matrices wf , wi, wo, and wc are weight

matrices; vectors bf , bi, bo, and bc are the bias vectors; and

ht refers to the value of the memory cell at time t. ft, it, and

ot indicate the forget, input, and output gate values at time

t. � denotes the element-wise product [1].

The LSTM training process adjusts backpropagation

within a time algorithm, which is similar to the traditional

backpropagation algorithm. Optimisation is performed to

achieve system parameters that can frequently reduce the

cost function. To accelerate the LSTM training perfor-

mance, the gradient training algorithm uses the Adam

algorithm based on [1, 10]. A schematic of the hybrid WT-

Adam-optimised LSTM is shown in Fig. 3. We calculated

the loss function for the data sets to verify the forecasting

of our proposed model against the real values from the

tunnel. This loss function is utilised for estimating the

deviation among the predicted value of the model and the

measured value, and it can reflect the accuracy of the

prediction. The formula is defined as the mean square error.

2.3 Framework of shield movement forecasting
model

To achieve the dynamic forecasting of shield movement

trajectory during tunnelling, we present a hybrid deep

learning technique, referred to as the WT-Adam-LSTM

model. There are four steps to construct the framework of

the shield tunnelling trajectory from the utilised database.

Each step is discussed below.

Step 1 Data description. The proposed model was

applied to predict the shield movement trajectory

through a tunnel project of the Guangzhou–Shenzhen

intercity railway project. Geological and operational data

are utilised to illustrate the applicability of the model.

Step 2 Data set preparation. Appropriate data are selected

to describe the behaviour of the shield machine during

the tunnelling process. To adapt geological data with

operational parameters, the kriging interpolation tech-

nique is used to provide a rough estimation of a certain

soil parameter between the sampling locations based on

existing geological information. This interpolation tech-

nique is an advanced geostatistical procedure used to

match the deterministic output model as a realisation of a

random process for efficient prediction.

Step 3 Data decomposition. The wavelet transform

denoising method, referred to as WT, is applied to

preprocess the training data and decompose the shield

machine parameter. Then, the rebuilding process is

conducted to fuse the new denoised data sequence with

the geological data to improve model accuracy.

Step 4 LSTM with a deep network in the temporal

dimension contains a memory block to store the

historical time series information, and a multi-step-ahead

predictive variable is generated over considerable train-

ing in the supervised learning model. This model is

robust in detecting the difference pattern while lying in a

time series.

wi wc wo

σtanhσ

tanh

c

h[..]

ht-1

xt

σ

wf

[ht-1,xt]

ct-1 ct ct

ft it ottc

ht

o

h

x

Unfold

ot Ot+1Ot-1

ht ht+1ht-1

xt xt+1xt-1

Fig. 2 Working principle of LSTM neural network [30]
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Fig. 3 Overall process of the proposed WT-Adam-LSTM neural network
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3 Case study

3.1 Project description

The Guangzhou–Dongguan–Shenzhen intercity railway

project represents one of the largest infrastructure projects

located on the coast of the Pearl River Delta of Guang-

dong, China. The construction project links Guangzhou

Xintang Railway Station, Guangzhou, and Bao’an Inter-

national Airport, Shenzhen. To verify the applicability of

the proposed model, a tunnel section among Bao’an Air-

port North Station and Bao’an Airport Station, located in

the zone of airport terminal 3, was used for simulation and

analysis. The length of the studied section is approximately

3.3 km, with a buried depth ranging from 8.0 to 22.0 m.

The tunnel was excavated using an earth pressure balance

(EPB) shield machine. The boring of this section began in

April 2016 and finished in May 2017. A 1.6-m-wide and

400-mm-thick segment ring was installed using a wing-

type vacuum erector. The ring is configured as six seg-

ments and one tapered key.

3.2 Data preparation

To ensure the ability of the shield machine to drill soil

based on the designed tunnel axis, it is necessary to mea-

sure its attitude and position accurately. For describing the

attitude and position during tunnelling, six important

parameters are effectively used as output shield operational

parameters [14]. These factors are the horizontal deviation

for the shield head (HDSH), vertical deviation for the

shield head (VDSH), horizontal deviation for shield tail

(HDST), vertical deviation for shield tail (VDST), roll (R),

and pitch (P). These output parameters are required to form

a model for presenting the behaviour of the shield tun-

nelling path. Figure 4 shows the geographic coordinate

system for the shield moving trajectory.

3.2.1 Data preprocessing

Before performing the analysis, the shield tunnelling per-

formance data should be preprocessed based on dimen-

sional data. The operational parameters of the shield

machine are carefully monitored with the aid of a data

acquisition and recording system. To regulate the dimen-

sions of the monitoring data, the data should be collected

and averaged in the daily reports. The engineers refer to

these reports on a daily basis for making decisions during

the tunnelling process to analyse the shield performance.

As mentioned previously, this research focussed on the

shield movement trajectory in a heterogeneous ground. The

heterogeneous in situ data utilised geological data from the

field investigation reports and operation data from the

TBM monitoring system. Geological data were collected

from 32 boreholes drilled along the tunnel. Laboratory

tests, such as uniaxial compressive strength and plasticity

index, were performed to determine the mechanical prop-

erties and formations. The plasticity index of the soil

encountered by the shield machine varies from 11.90 to

25.10. The variation of the groundwater table along the

tunnel path was between 1.63 and 3.63 m below the ground

surface. The tunnel passes through several geological

profiles (Fig. 5), such as silty clay, schist rock, and mod-

erately to highly weathered granite.

3.2.2 Geostatistical analysis of shield tunnelling

Geological data contain geological information on the

borehole locations, while operation data contain the oper-

ational information along the tunnel alignment. Since only

32 (out of 2048) ring sections have the corresponding

geological information, there is an imbalance between the

operating data of the shield machine labelled by geological

types and unlabelled operating data. Thus, to design a good

predictor, it is essential to investigate the advanced features

relevant to geological information from the labelled data

[29]. The kriging interpolation approach is adopted here to

estimate the geological conditions based on a variogram

model obtained from the data [2]. It has been utilised to

achieve linear equitable predictions at unmeasured loca-

tions, and it relies on the spatial variance expression of the

property in terms of a semivariogram. This technique

identifies and reduces estimation uncertainties, thereby

reducing self-estimated forecast errors [8]. To apply geo-

statistical analysis, the semivariance of variables in dif-

ferent positions is calculated based on semivariogram

function that represents a function of the distance among

the two positions. The semivariance is calculated from data

in which a random parameter is a well-correlated space as a

function of separation distance. The semivariance estimates

the spatial variation in a variable as [21]

c hð Þ ¼ 1

2n

Xn

i¼1

z xið Þ � z xi þ hð Þð Þ2 ð9Þ

where c hð Þ is the semivariogram value for the data pair in

which h denotes the distance between z xið Þ and z xi þ hð Þ
locations, and n is the number of pairs z xið Þ over distance h.

Please refer to the ‘‘Appendix’’ for specific meanings of

the aforementioned parameters and the related interpola-

tion equations. In order to verify the reliability of kriging

results, root-mean-square error (RMSE) and root-mean-

square standardised prediction error (RMSSE) were used

based on comparing the known and estimated values at the

same location, as shown in (Eqs. 10–11):
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

z xið Þ � z� xið Þð Þ2

s

ð10Þ

RMSSE ¼ 1

n

Xn

i¼1

z xið Þ � z� xið Þ½ �2

r2
k xið Þ

ð11Þ

Among them, r2
k xið Þ

refers to the kriging variance for the

ith data point, z xið Þ is the measured value at location xi,

z� xið Þ is the calculated value at location xi, and i is the

sample number.

3.3 Data features

In our study, we selected the key dimensions of the

established data based on previous researchers. As listed in

Table 1, 19 input parameters are selected and used as [I1,

I2, …, I19] for the dynamic prediction of the shield

movement trajectory. In this regard, the forecasting of the

shield movement trajectory in the next time phase was

generated through the fully connected output layers. A

laser navigation system was utilised to record the real-time

position and attitude of the shield machine. In this system,

pitch and roll are used to represent the shield attitude,

(a) (b) (c)

(d) (e)

Fig. 4 Graphic and machine coordinate system of shield machine
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whereas HDST, VDST, HDSH, and VDSH are used to

represent the shield position. These parameters are selected

as output parameters of the forecasting model, which rep-

resent the most important control indexes for shield driv-

ing. Because the prediction accuracy of the shield

movement trajectory is affected by the continuity of the

data, the following two conditions are adopted. (1) The

data in each ring along the tunnel path are not missing, and

(2) the sequence of data among the current ring and the

next one is continuous. After denoising the above-men-

tioned data, they are fused into new categorical data.

Therefore, we selected the data from ring 378 to ring 1578,

each of which has a length of approximately 1.6 m. Given

these conditions, the operation and geological data are

generated for adjusting the tunnel performance along the

tunnel path. Because the shield machine status differs

based on different geological conditions, the conditions of

the shield machine can reflect these geological conditions.

Figure 6 shows the performance of some shield operational

parameters, which reflects relevant geological information.

3.4 Benchmark of existing prediction models

3.4.1 RNN model

The recurrent neural network (RNN) is a powerful deep

learning method in which nodes are linked in a loop, and

the internal state of the network can display dynamic

timing behaviour. In this model, the network memorises

the preceding data and implements it for the calculation of

the present output; the nodes are connected between the

hidden layers. In RNN, the hidden state (ht) is generated

based on the input of the current time step and the hidden

state of the prior time step, as follows [32]:

ht ¼ tanh Wxt þ Uht�1 þ bð Þ ð12Þ

where b refers to bias vector; W and U denote the weights

of input x and weight matrices of hidden state h, respec-

tively. In this study, this network is established as follows:

the input layer is established with 19 nodes and two fully

connected layers, both of which have 10 hidden nodes, and

the output layer, which has 6 nodes.

3.4.2 Support vector regression

The support vector regression (SVR) method was applied

to solve the regression and classification problems, which

improved model accuracy and avoided over-fitting. The

SVR aims to discover a function with the maximum

deviation from the real vectors of all the presented data and

present it as flat as possible. The method can be set non-

linearly in the original data x, in a feature area with high

dimensions, and it can solve the linear regression problems

in this feature space. In this study, a polynomial kernel

function was selected to adjust the model. The polynomial

Table 1 Statistical analysis of the input parameters

Parameter Symbol Unit Min Max Mean

Thrust force TF kN 18,600 47,200 31,206.4

Cutterhead torque CT kN m 1240 7800 3761.45

Cutterhead rotation speed CR r.p.m 1.3 2.0 1.671

Advance rate AR mm/min 5 69 45.1972

Penetration rate PR mm/r 2.3 48.5 27.234

Screw rate speed SR r.p.m 1 23 11.646

Soil pressure at top SPU kPa 110 240 181.555

Soil pressure at middle SPM kPa 130 260 196.138

Soil pressure at bottom SPB kPa 140 300 214.856

Foam at top FU kPa 22 889 248.696

Foam at bottom FB kPa 190 460 290.292

Foam concentration ratio C % 2.0 5 3.0535

Groundwater level GWL m 3.125 3.501 3.3384

Grouting pressure GP kPa 140 500 328.933

Grouting volume GV m3 11 22 15.5318

Clay thickness above tunnel CL m 4 13.94 7.0774

Silty clay thickness above tunnel SC m 0.067 5.8 2.90741

Uniaxial compressive strength UCS MPa 10.9 161.3 41.307

Quartz content Qc % 4.35 22 12.46
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kernel function degree was estimated by trial and error and

was set as 1.

4 Results and analysis

4.1 Data decomposition and parameter setting

The hybrid deep learning model is proposed to present the

relationships between data and selected parameters during

tunnelling. The mechanical performance of the shield

machine has two work positions: advancement state and

non-advancement state. To achieve an accurate prediction

for shield movement, the data of the non-advancement

state are first eliminated, while raw data are denoised based

on DWT. The basic functions of wavelets such as Haar,

Coiflets, Biorthogonal, and Symlets are defined as families.

Among these families, Daubechies achieved good results,

as summarised in Table 2. To determine the best wavelet

basis function, mean square error (MSE) is utilised as

indicators for calculating the denoising effect. The Dau-

bechies wavelet family (db5), which achieved the best

denoising effect, is a candidate for the mother wavelet

(Fig. 7). The evaluation criterion is defined as

MSE ¼ 1

n

Xn

i¼1

yi � yið Þ2 ð13Þ

where yi and yi refer to the predicted and desired value

corresponding to the input xi and n is the amount of data.

The simulations showed that the level 5 class can suc-

cessfully reduce noise data with minimum error. Thus, we

adopted the Daubechies wavelet as the mother wavelet and

five decomposition levels in the proposed model to denoise

the data.

4.1.1 Denoising

During the tunnelling process, the operational parameter

values vibrate to a large extend due to the unstable con-

struction conditions and the measurement errors of sensors.

Therefore, data denoising is essential to remove back-

ground noise and measurement error. To remove the noise

in the collected time series data, the shield operational

parameters including TF, CT, CR, AR, PR, SR, SPU, SPM,

SPB, FU, FB, C, GP, and GV were denoised based on

Daubechies wavelet. This method was successfully utilised
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Fig. 6 Performance of shield operational parameters during

tunnelling

Table 2 Performance of different wavelet basis functions

Name Symbol Wavelet number MSE

Daubechies Dbn Db5 8.82

Coiflets Coifn Coif5 33.91

Haar Haar 19.14

Biorthogonal Biornr.nd Bior5.5 32.61

Symlets Symn Sym5 27.14
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previously by Zhang et al. [31] for denoising the shield

operational parameter. This wavelet can overcome the

drawbacks of Fourier transform and achieve the simulta-

neous transformation of signal in time and frequency

domain. Regarding the simulation process, denoising signal

on the parameter of advance rate is performed as an

example (see Fig. 8). As shown in this figure, the noise is

reduced and the signal processing becomes smoother and

conducive for improving model accuracy. To provide a

visual sense for the wavelet basis function, the statistical

analyses for different denoising parameters are presented in

Table 3.

4.1.2 Hyperparameters

The LSTM part has a high learning ability to implement

forecasts for processing sequence data. The LSTM has the

main variables that can affect the accuracy and perfor-

mance of the proposed model; these variables are the input

size, epochs, optimisers, and batch size. To ensure the

optimal configuration of the hyperparameters, grid search

algorithm was used based on the training data set. The core

of the grid search algorithm is to utilise the control variable

approach for quantifying the effect of multiple variables on

the model prediction. This study has a total of 1200 data

sets, split into two subsets. Approximately 75% of the data

sets are the training set, and the other 25% are the testing

set. In particular, the training set is used to train the model

and update the model parameters. For the testing set, the

hyperparameters are adjusted, and the optimal model is

selected to predict data. The essence of optimisation is to

determine the parameters of system that can reduce the loss

function through iteration. Currently, the popular optimi-

sation methods are root-mean-square prop (RMSprop),

adaptive gradient (AdaGrad), stochastic gradient descent

(SGD), adaptive moment estimation (Adam), etc. Yang

et al. [26] indicated that the SGD method that is a classical

optimisation algorithm costs longer running time.

Recently, Kingma and Lei Ba [13] combined the advan-

tages of RMSProp and AdaGrad to propose Adam opti-

miser. The updated step length is estimated by considering

the mean value of the gradient (first moment estimation)

and the variance of the uncentred gradient (second moment

estimation) of the gradient. In this study, different algo-

rithms are tried to optimise the LSTM and the results are

displayed in Table 4. Considering the running time and

prediction accuracy, the Adam optimiser outperforms the

other two algorithms. Since Adam’s optimiser is easy to
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Fig. 8 Denoising signal of WT for the advance rate parameter

Table 3 Statistical analysis for different denoising parameters

Parameter R2 Parameter R2

TF 0.988 CT 0.957

CR 0.901 AR 0.936

PR 0.941 SR 0.783

SPU 0.831 SPM 0.921

SPB 0.825 FU 0.811

FB 0.812 C 0.758

GP 0.783 GV 0.799

Table 4 Forecasting results of various optimisation algorithms

Group Learning rate Optimiser Time (s) MSE

1 0.01 Adam 129.554 12.25

2 0.01 SGD 131.775 13.87

3 0.01 RMSProp 129.982 12.93
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implement and convenient for non-stationary [26], it was

applied in the LSTM as an effective algorithm for opti-

mising the weights of the neural network (Table 5). In this

work, two main functions—optimiser and loss function—

are necessary to build the neural network model. Adam and

MSE are selected to assemble the Keras model as the

optimisation algorithm and loss function, respectively. The

flow chart utilised to display how Adam works in adapting

the network is shown in Fig. 3.

4.2 Evaluation criteria for predictive
performance

To evaluate the accuracy and efficiency of the proposed

method, the correlation coefficient (R2) and mean absolute

error (MAE) were used as evaluation criteria. The simu-

lations of this work were processed using Keras running on

an Intel(R) CoreTM i7-4790 CPU at 3.60 GHz with a 8 GB

RAM. To validate the geological data of unobserved

points, the cross-validation results of the kriging interpo-

lation were used, as shown in Table 6. The lowest RMSE

and RMSSE closest to 1 indicate that the kriging interpo-

lation is effective to create spatial visualisation for various

geological data.

To fit the deep learning model, 300 epochs were set. As

shown in Fig. 9, the proposed model converged the optimal

fitness function after about 100 epochs and then converged

to the minimum with subtle local oscillations. This shows

that the proposed model reached the optimal solution with

300 epochs, and the search operation can be stopped.

4.3 Effectiveness of the proposed method

In this study, several parameters are considered to forecast

the time sequence of the position and attitude of the shield

machine during tunnelling. Herein, six parameters includ-

ing HDST, HDSH, VDST, VDSH, roll, and pitch are

considered as output parameters, as described in the pre-

vious section. To describe the effective performance of the

forecasting model, the relation between the recorded and

predicted data for the six output parameters including

HDST, HDSH, VDST, VDSH, roll, and pitch, are pre-

sented. As shown in Fig. 10, the result observed that the

forecasted values were almost consistent with the recorded

values. Regarding the classification phase, the hybrid WT-

Adam-LSTM model can effectively forecast the position

and attitude of the shield machine. To prove the effec-

tiveness of DWT used in this study, our wavelet transform-

Adam-LSTM model was compared with three state-of-the-

art models—RNN, LSTM, and SVR—for better prediction

of the shield movement trajectory. To ensure the fairness

and equality in comparison, the hybrid model and these

three classic models embrace the same evaluation index,

input model, programming environment, and data set.

The temporal line graphs of recorded versus predicted

values for the attitude and position of the shield machine

(Fig. 10) display that among the three state-of-the-art

models—RNN, LSTM, and SVR, the LSTM prediction

values are most closely to the recorded values, whereas

SVR model revealed significant variance than other mod-

els. Obviously, when dealing with the calculation of time

series data, the prediction accuracy of the hybrid deep

learning network is much higher than that of the classical

and traditional artificial intelligent models. Table 7 sum-

marises the results of the predicted data from the proposed

Table 5 Setting parameters of WT-LSTM model

Parameter Setting

Input variable 19

Output variable 6

Learning rate 0.01

Batch size 64

Time step 4

Optimiser Adam

Loss function MSE

Table 6 Reliability analysis results for various parameters

Parameter Symbol RMSE RMSSE

Clay thickness above tunnel CL 2.389 0.981

Silty clay thickness above tunnel SC 3.211 0.978

Groundwater level GWL 2.919 0.977
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Fig. 9 Convergence behaviour of the proposed WT-Adam-LSTM

model
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Fig. 10 Real-time prediction data for output variable: a HDSH, b HDST, c VDSH, d VDST, e Pitch, and f Roll
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WT-Adam-LSTM with respect to six output parameters.

The proposed model achieved the highest accuracy in the

prediction of the attitude and position compared to other

parameters. The value of correlation coefficient for all

output parameters using the proposed method is more than

0.91. These results emphasise that using the proposed

model, the prediction values follow the recorded values

well. The proposed WT-Adam-LSTM prediction model is

different from classical machine learning models. The

novelties and key characteristics of the proposed deep

learning model are the perfect integration of the following

aspects: (1) analysis of high-dimensional data; (2) DWT,

which can be used for removing the irrelevant noise of data

in the time and frequency domains; and (3) the character-

istics of long-term dependency included in the LSTM

model optimised to capture a common relationship with

time series data measured from the monitored system,

which results in high forecasting for model behaviour.

It is necessary to note that the DWT addresses extreme

values as outliers under certain conditions before imple-

menting the prediction. The WT-Adam-LSTM model is

based on the denoising data whose forecasting goal is time

series data with lower extremes, which induces the fore-

casting results processed by DWT to be sometimes inferior

to those without DWT. Therefore, the assessment perfor-

mance of the prediction model should not depend on one

index, but on the performance of multiple indicators.

Hence, the MAE was also used for the model evaluation.

The network structures and hyperparameter setting of the

WT-Adam-LSTM technique are the same as those of the

LSTM model, as previously mentioned. The main differ-

ence is that the data fed into the WT-Adam-LSTM method

were exposed to DWT to reduce noise. These four methods

were compared based on the test data set. Therefore, the

average MAE of the six output parameters with respect to

every model was calculated. The results show that the

performances of SVR, RNN, LSTM, and WT-Adam-

LSTM models optimised gradually, resulting in MAE

values of 6.921, 4.839, 3.754, and 2.512 on the test data set,

respectively. This result reflects that the WT in the LSTM

model we developed plays a key role. WT eliminates the

background noise of recorded data and makes hidden pat-

terns and trends of data sequence easily detected. In con-

trast, the results of SVR model show that the classical ML

model without considering temporal effect does not per-

form well with the time.

To provide a visual sense for the forecasting WT-Adam-

LSTM model, the scatter plot of the error between the

recorded and predicted data is analysed in Figs. 11 and 12,

respectively. For the attitude parameters of the shield

machine (Fig. 11), the error of the proposed model is lar-

gely concentrated around zero deviation line, which illus-

trates the good agreement between the recorded values

from shield machine and model outputs. Figure 12 shows

the scatter plot of the error graph for the position (roll and

pitch) parameters. As displayed in Fig. 12, the lowest

deviations of the data sets are commonly in the range

of ± 5% for pitch, indicating the precise prediction of the

WT-Adam-LSTM model. The highest deviations of the

data sets are commonly in the range of ± 40% for roll. The

possible reason of this phenomenon is due to the input

parameters we chosen have limited effect on roll. In

addition, the roll data sequences fluctuations are gentle;

therefore, the same variance patterns can be easily detected

compared to the other five out parameters.

4.3.1 Model performance and comparison

In engineering application, a data acquisition and recording

station can make auxiliary decision by using the data

processing platform embedded with WT-Adam-LSTM

prediction model for the shield moving trajectory. The time

data, automatic repetition, and daily position monitoring

first will be entered into the model. Extrapolation based on

Table 7 Performance comparison of different techniques

Parameter WT-Adam-LSTM LSTM RNN SVR

R2 R2 R2 R2

HDSH 0.972 0.926 0.910 0.787

HDST 0.984 0.931 0.916 0.764

VDSH 0.918 0.891 0.874 0.733

VDST 0.928 0.887 0.903 0.731

Pitch 0.940 0.871 0.889 0.712

Roll 0.911 0.855 0.823 0.705
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Fig. 11 Forecasting error for output variable: a HDSH, b HDST,
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the trajectory data will then be performed for the next

process. The corresponding correction measures based on

the prediction results will be produced as the outputs. The

most valuable use of this method is the implementation of

the prediction model for restraining the shield tunnelling

misalignment. Once the proposed model forecasts that the

shield position and posture will have a significant devia-

tion, the driver can adjust the shield operating parameters

beforehand to mitigate shield tunnelling misalignment by

using correction measures based on the prediction results.

To show the prediction accuracy of the developed model

compared with the existing studies, recent research on

tunnel performance is reviewed in Table 8. Many studies

utilised only shield operational data, whereas our devel-

oped model utilises not only shield operational data but

also geological mechanical data and tunnel geometry. The

developed model can consider more features from the

project; thus, the scholars can acquire more effective

results and perform further analysis based on it. The error

of the developed model is much smaller than many other

studies. Moreover, the proposed model can not only fore-

cast the shield movement trajectory but can also provide

accurate statistical characteristics of the tunnel deviation,

which helps in the tunnel design and in drilling planning.

4.3.2 Model reliability

To analyse the significant superiority of the proposed WT-

Adam-LSTM model, a Friedman test is applied [3]. Based

on Friedman test, the null hypothesis was simulated as

there are no differences among results. Ranks are ranged

from 1 (least error) to k (highest error) and represented by

r ji (1 B j B k). In this study, we have k = 4 prediction

models and the average ranking Rj

� �
obtained in all data

sets can be computed as follows:

Rj ¼
1

N

XN

i¼1

r ji ð14Þ

where r ji refers the model ranking j on data set i and N is

the total number of data sets.

The Friedman analysis compares the average ranks, Rj

of various models on the used data sets. The Friedman

analysis is estimated in Eq. 15 based on null hypothesis,

which states that all models operate similarly.

X2
r ¼ 12N

k k þ 1ð Þ
Xk

j¼1

R2
j �

k k þ 1ð Þ2

4

" #

ð15Þ

where X2
r represents the distribution of chi-squared with

k - 1 degrees of freedom and k is the number of algo-

rithms. In the event that the X2
r value is large enough, the

null hypothesis is declined. The ranks estimated based on

the Friedman test are presented in Fig. 13. In addition, The

Friedman statistical results (X2
r = 8.25) are higher than the

critical value at the 0.05 confidence level (X2
r = 7.39) based

on Sheskin [19] that shows that the null hypothesis is

declined. Hence, there are substantial differences between

the applied methods.

4.3.3 Data deficiency

To check the parameters efficiency, the geological and

geometrical parameters including GWL, CL, SC, UCS, and

Qc are supposed to be unavailable and the ability of the

WT-Adam-LSTM model is investigated. Hence, if these

parameters are missing and not utilised as inputs in the

established model, the prediction of position parameter (i.e.

pitch parameter) for the shield moving trajectory is shown

in Fig. 14. The results of pitch display that the quality of fit

abruptly decreases from R2 = 0.94 to R2 = 0.62, which

shows that the missing key parameters can notably affect

the model performance. These results agreed with Zhang

et al. [31], which demonstrated that the geological

parameters are vitally important to soil–tunnel interaction

for real-time prediction. In other words, Zhang et al. [30]

indicated that the geological conditions represent core

parameters for the prediction of ground responses to

tunnelling.

5 Conclusions

This study presents a deep learning model to predict

dynamic shield movement trajectory during tunnelling. In

the proposed technique, kriging interpolation and a key
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Fig. 12 Forecasting error for output variable; a pitch and b roll
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feature selection approach were analysed to address the

imbalance and temporal behaviour. The major conclusions

are provided below.

(1) The WT-Adam-LSTM model provides a method for

predicting the dynamic behaviour of shield move-

ment in terms of attitude and position parameters.

The proposed model uses the computation parame-

ters tailored to the studied tunnel section to predict

Table 8 A review on the predicted accuracy of LSTM on tunnel performance

References Method Input Data source Output Evaluation

Li et al.

[15]

LSTM,

RF

Shield operational

parameters

Yin-Song Diversion Project TF R2 = 0.71

R2 = 0.73

Shi et al.

[20]

SVR,

RF,

CNN,

RNN,

LSTM,

VMD-

EWT-

LSTM

Operating parameters

and status

parameters

Singapore subway tunnel

project for data set, 1 (5-

step)

CT MAPE = 9.74%

MAPE = 9.84%

MAPE = 9.80%

MAPE = 10.16%

MAPE = 9.72%

MAPE = 4.12%

Wang

et al.

[24]

Bi-LSTM,

LSTM

Operational

parameters

Sutong GIL pipe project CT RMSE = 0.045

RMSE = 0.049

Gao et al.

[9]

RNN,

LSTM,

GRU,

SVR,

RF,

Lasso

In-situ operating data Tunnel project in Shenzhen CT MAPE = 4.41%

MAPE = 3.28%

MAPE = 3.30%

MAPE = 3.96%

MAPE = 0.74%

MAPE = 0.52%

Liu et al.

[16]

Global-

attention

LSTM,

LSTM

Shield operational

parameters

Yinsong water diversion

project

Tunnel lithology Ac = 96.20%

Ac = 95.22%

Proposed

model

WT-

Adam-

LSTM

Operational,

geological, and

geometry data

Guangzhou–Shenzhen

railway project

HDSH, HDST,

VDSH, VDST,

pitch, roll

R2 = 0.972, R2 = 0.984, R2 = 0.918,

R2 = 0.928, R2 = 0.940, R2 = 0.911

RF random forest, MAPE mean absolute percentage error, VMD-EWT-LSTM variational mode decomposition-empirical wavelet transform-long

short-term memory, GRU gated recurrent unit, Ac accuracy, Bi-LSTM bidirectional LSTM, CNN convolutional neural network
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Fig. 13 Friedman ranks of the applied models
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shield movement. This approach can deal with

imbalanced and temporally correlated data, and thus,

it can help improve prediction accuracy.

(2) The proposed model showed a better prediction

accuracy than the RNN and LSTM models. The

results can facilitate decision-makers in predicting

the tunnelling path, supporting efficient construction

management, particularly in the stage of developing

construction plans.

(3) The proposed model considered both the geological

conditions and operational parameters simultane-

ously. The proposed model can help the driver adjust

the operating shield parameters in advance. In

addition, the proposed model lays the foundation

for an automatic driving system.

(4) The proposed model is verified through a case study

of the Guangzhou–Shenzhen railway project. For

more validation, the prediction results from the

proposed neural network are compared with the

results of three state-of-the-art methods: SVR,

LSTM, and RNN. The proposed method shows a

better prediction performance than the other three

methods. This is because the SVR model cannot

preserve the prior information and learn time series

data that result in limited forecasting ability for long-

term time-series prediction data.

Appendix

The interpolation equations and their explanations are

illustrated below [25]:

Having measured n data values,z x1ð Þ, z x2ð Þ, …, z xnð Þ at

x1, x2, …, xn locations, the basic principles of kriging

approach can be formulated by estimating the z� x0ð Þ at the

unknown location of x0 with the following equation:

z�ðx0Þ ¼
Xn

i¼1

kizðxiÞ ð16Þ

where z� x0ð Þ is the estimated value for the unmeasured

point x0; z xið Þ refers to the measured value of variable z at

point xi; k is the interpolation weight coefficient; n is the

total number of values required for the interpolation.

The minimum variance of error (rk) is required to

achieve the optimal estimation, where

rk ¼ var zðxoÞ � z�ðxiÞ½ � ¼ E zðx0Þ �
Xn

i¼1

kizðxiÞ
" #2

8
<

:

9
=

;

ð17Þ

For the unbiased prediction, the resulting constraint

should be specified, where

Xn

i¼1

ki ¼ 1 ð18Þ
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