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Abstract
The squeezing behavior of surrounding rock can be described as the time-dependent large deformation during tunnel

excavation, which appears in special geological conditions, such as weak rock masses and high in situ stress. Several

problems such as budget increase and construction period extension can be caused by squeezing in rock mass. It is

significant to propose a model for accurate prediction of rock squeezing. In this research, the support vector machine

(SVM) as a machine learning model was optimized by the whale optimization algorithm (WOA), WOA-SVM, to classify

the tunnel squeezing based on 114 real cases. The role of WOA in this system is to optimize the hyper-parameters of SVM

model for receiving a higher level of accuracy. In the established database, five input parameters, i.e., buried depth, support

stiffness, rock tunneling quality index, diameter and the percentage strain, were used. In the process of model classification,

different effective parameters of SVM and WOA were considered, and the optimum parameters were designed. To

examine the accuracy of the WOA-SVM, the base SVM, ANN (refers to the multilayer perceptron) and GP (refers to the

Gaussian process classification) were also constructed. Evaluation of these models showed that the optimized WOA-SVM

is the best model among all proposed models in classifying the tunnel squeezing. It has the highest accuracy (approxi-

mately 0.9565) than other un-optimized individual classifiers (SVM, ANN, and GP). This was obtained based on results of

different performance indexes. In addition, according to sensitivity analysis, the percentage strain is highly sensitive to the

model, followed by buried depth and support stiffness. That means, e, H and K are the best combination of parameters for

the WOA–SVM model.
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1 Introduction

Tunnel squeezing refers to the occurrence of large amount

of deformation in surrounding rock mass rock, which is

normally more than the designed deformation. This phe-

nomenon, which takes a long time to form, causes many

difficulties during and after construction of tunnels

[6, 11, 69]. The squeezing behavior of surrounding rock

can be described as the time-dependent large deformation

during tunnel excavation, which is essentially related to

creep created by exceeding the ultimate shear stress

[8, 19, 25, 59, 69]. Different studies showed that the

compressive surrounding rock has the deformation features

of large deformation amount, long deformation duration,

high deformation speed, large destruction range of

surrounding rock and various forms of supporting structure

failures [19]. There are objective and subjective factors for

the occurrence of tunnel squeezing, where the objective

conditions involve rock properties, tectonic stress, tunnel

dimensions, rock type, high in situ stress and large radius

or span [8]. On the other hand, the typical subjective fac-

tors are associated with support installation, in which the

deformation can be restrained if the support is installed on

time [27, 42, 62]. Tunnel squeezing may cause several

unwanted issues, e.g., budget increase, construction period

extension and construction safety [8, 22]. In order to

overcome these issues, many attempts have been done by

various scholars, and they suggested several approaches for

predicting tunnel squeezing, including empirical, semiem-

pirical and theoretical methods [4, 24, 32, 33, 61, 68]. With

the development of the computer science and various

available technologies, numerical simulation and classical
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statistics methods have been widely used in tunnel

squeezing prediction [13, 23, 37–39, 65].

In recent years, the successful applications of machine

learning (ML) methods in solving regression, classification

and time-series problems in science and engineering have

been reported by many researchers all around the world

[2, 3, 30, 31, 40, 41, 52, 76–78, 80, 81, 84–88,

91, 92, 94, 96–101]. These methods have been used by

researchers in the areas of geotechnical [15, 55, 66, 98] and

tunnel engineering [75, 81, 83] and also to solve problem

related to tunnel squeezing [50, 65]. To estimate tunnel

squeezing, ML techniques like artificial neural network

(ANN), decision tree (DT), naive Bayes (NB) and support

vector machine (SVM) have been used in the literature. As

an example, Shafiei et al. [65] used and introduced a SVM

classifier model, which was trained and tested based on 198

samples, in particular having two predictor variables

(buried depth, H, and rock tunneling quality index, Q). The

accuracy of their proposed model is 84.1%. In another

interesting investigation, Sun et al. [71] constructed a

multi-class SVM prediction model based on 117 samples.

There were four predictor variables (H, Q, diameter, D, and

support stiffness, K,) in the multi-class SVM model, and it

was able to receive an accuracy of 88.1%. Zhang et al.

[86, 87] established a classifier ensemble based on 166

cases, which includes five different ML classifiers: ANN,

SVM, DT, k-nearest neighbor (KNN), and NB. The five

variables, i.e., H, D, Q, K and strength stress ratio (SSR),

were selected as input parameters for the classifier

ensemble, and the final accuracy was obtained as 96%.

Huang et al. [35] proposed a hybrid model of SVM mixed

by back-propagation (BP) for identifying squeezing and

non-squeezing problem based on a total of 180 data sam-

ples. In the SVM-BP model, the four indicators including

H, K, D and Q were considered as model inputs. The

accuracy of the SVM-BP model was obtained as 92.11%.

In addition, other methods and accuracy comparison results

are shown in Table1. In light of above discussion, the

performance of the combined classifiers/models is higher

than the single classifier. However, in most of the cases, the

combined classifier models are complex with the lowest

level of practicality, when the number of classifiers

increases. To solve this problem, this article only uses a

single classifier SVM. SVM has high generalization per-

formance and can solve problems like small samples and

high dimensionality [63]. According to the existing

research, we can also found that support vector machines

have become popular in engineering. Many researchers

have applied support vector machines to tunnel extrusion

prediction. It can be roughly divided into two applications.

On the one hand, it uses SVM regression to predict the

deformation of the tunnel [39, 72, 90]. On the other hand, it

uses SVM classification to determine whether the tunnel

will be squeezed. So far, most of the existing forecasting

methods can be used to distinguish between squeezing and

non-squeezing. However this article refers to the multi-

class SVM proposed by Sun et al. [71] and introduces a

SVM-based prediction model to predict the severity of

tunnel squeezing. However, the difference is that we con-

sider the effects of the percentage strain (e). There are

several commonly considered predictor variables in this

field, which are H, K, D, K and SSR. It seems that there is a

need to consider effects of other important parameters on

tunnel squeezing like the percentage strain (e). The men-

tioned parameters were rarely used as input parameter in

the proposed ML classifier models. Table 2 is the list of

commonly used predictors.

Additionally, with the deepening of research, opti-

mization algorithms are gradually introduced into machine

learning methods to optimize hyper-parameters, such as

whale optimization algorithm (WOA), gray wolf opti-

mization (GWO), Harris Hawks optimizer (HHO) and

moth-flame optimization (MFO). Therefore, various hybrid

models have gradually formed such as GWO-SVM

[79, 82], WOA-SVM [94], MFO-SVM, GS-SVM [46],

HHO-SVM [91], WOA-XGBoost, GWO-XGBoost, BO-

XGBoost [64, 101, 100] and SCA-RF [91]. The above

research shows that the hybrid model has better perfor-

mance than a single machine learning method. Therefore,

the whale optimization algorithm is introduced to improve

the prediction performance of multi-class SVM. Whale

optimization algorithm (WOA) has simple structure, few

parameters, strong search ability and easy to implement

[7].

Finally, an optimized classifier model (WOA-SVM) is

proposed to predict the severity of tunnel squeezing based

on five parameters, that is, buried depth (H), support

stiffness (K), rock tunneling quality index (Q), diameter

(D), and the percentage strain (e). Firstly, we establish a

database containing above five surrounding rock indicators

based on the existing literature and then preprocessing

these data. Then, the WOA-SVM model was trained and

tested of tunnel squeezing. This study copes with not only

the development of the WOA-SVM model used for the

anticipating of squeezing problems, but also the sensitivity

analysis of predictor variables. Finally, in order to verify

the advantage of the model proposed, an evaluation and

comparison on the performance of different classifier

models (WOA-SVM, ANN, SVM, and genetic program-

ming, GP) based on the same database were implemented.

The performance and accuracy of the mentioned models

will be assessed and discussed to select the best model in

predicting tunnel squeezing.
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2 Predictor selection and database
description

According to the published literatures, the research group

collected 114 historical cases of tunnel squeezing from

various locations like Greece, Bhutan, India, Austria,

China, Nepal and Venezuela [1, 6, 18, 20, 32, 51,

62, 67, 71]. There are six parameters in each case where

five of them (K, H, Q, D and e) were set as input variables
to predict tunnel squeezing. Among these six parameters,

H, Q and D are often appeared in empirical formulas, such

as H ¼ 350Q0:33 and H ¼ 275N0:33B�0:1, which are pro-

posed by Goel and Singh [27, 68]. The three parameters

reflect the influence of in situ stress, surrounding rock

properties and tunnel size on squeezing. The support

stiffness is selected as the input parameter. The reason is

that the support stiffness plays an important role in con-

trolling the excessive deformation caused by the interaction

between the support pressure and the rock mass deforma-

tion response [13]. SSR and e are usually used as grading

indicators such as in the research conducted by Jethwa

et al. (1984), Barla [8] and Aydan et al. [4, 5].

In this study, we adopt the classification standard pro-

posed by Hoek and Marinos [33]. Therefore, non-squeez-

ing (NS) (with e\ 1%), minor squeezing (MS) (with

1% B e\ 2.5%) and severe-to-extreme squeezing (SES)

(with e C 2.5%) were represented by class 0, class 1 and

class 2, respectively. A correlation scatter matrix was

performed to know more about the used parameters, as

shown in Fig. 1. The diagonal of the matrix presents

probability distributions for each squeezing class, the lower

panels show pairwise scatter plots of three classes of

squeezing data along the axis and the upper triangle pre-

sents the Pearson’s correlation coefficients. It can be

clearly seen that all indicators have no relatively mean-

ingful correlation with each other, and there is no clear

Table 1 Classification comparison of existing prediction models

Author Classifiers Predictors Number of samples Accuracy Number of

classes

Shafiei et al. [65] SVM H, Q 198 84.1% 2

Sun et al. [71] M-SVM H, Q, D, K 117 88.13% 3

Feng &

Jimenez [21]

BNs H, Q, D, K,

SSR

166 86.65% 2

Azizi et al. [6] BNs H, Q, D, K,

SSR

4(Kerman Water

Conveyance Tunnel)

2

Ghasemi &

Gholizadeh [23]

K-NN H, Q, D 115 95% 2

Ghasemi &

Gholizadeh [23]

C5.0 H, Q, D 115 94% 2

Chen et al. [13] DT H, D, K,

SSR, GC

154 93.5% 3

Zhang et al. [86, 87] the classifier ensemble (BPNN, SVM, DT,

KNN, LR, MLR, NB)

H, Q, D, K,

SSR

166 96% 2

Huang et al. [35] SVM-BP H, Q, D, K 178 92.11% 2

Table 2 List of commonly used predictors [9, 13, 21]

Parameters Name Formula

H Buried depth /

Q Rock tunneling quality index Q ¼ ðRQD=JnÞ � ðJr=JaÞ � ðJw=SRFÞ
D Diameter D ¼

ffiffiffiffiffiffiffiffiffiffiffi

4A=p
p

K Support stiffness K ¼ Kc þ Ksb þ Kb

SSR Strength stress ratio SSR ¼ rcm=cH

e Percentage strain e¼u=D

RQD = Rock quality designation, Jn = joint set number, Jr = joint roughness number, Ja = joint alteration number, Jw = joint water reduction

factor, SRF = stress reduction factor. A = the cross-sectional area of tunnel. Kc = the stiffness of shotcrete linings, Ksb = the stiffness of steel

sets, Kb = the stiffness of rock bolts. rcm = Rock mass uniaxial compressive strength. u = tunnel closure.
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separation among NS, MS and SES. The mentioned input

and output parameters will be used in the next stage for

classification modeling of tunnel squeezing.

3 Concepts of predictive models

3.1 Support vector machine (SVM)

The SVM has high generalization performance and does

not require prior knowledge of specific models; therefore, it

is widely used to solve problems in different fields, for

example, finance [47], energy [34], hydrological research

[58], mechanical engineering [16, 48], civil engineering

[63, 84] and other fields. Of course, SVM is also widely

used for tunnel extrusion prediction [38, 65]. The initial

concept of SVM is to input the training data set and output

the separating classification decision function with the

largest geometric interval [12, 16, 34, 47–49, 74]. The

SVM has been widely used to solve multivariate classifi-

cation and regression problems [45, 54, 58], although it is a

binary classification model on nature. The advantage of the

SVM model lies in the ability to transform nonlinear

problems into linear problems in high-dimensional feature

spaces with the help of kernel functions [54].

In practical problems, it is difficult to find a hyperplane

that can separate different categories of samples when the

training sets are nonlinearly separable in the sample space.

To solve this problem, there is a need to allow SVM for

making mistakes on some datasets. Therefore, the sense of

‘‘soft margin’’ was introduced into the SVM model. In this

way, the optimization objective functions of SVM can be

expressed in the following [45, 46, 73, 91, 94]:

min
w;b

1

2
wk k2þC

X

m

i¼1

l0=1ðyiðwTxi þ bÞ � 1Þ ð1Þ

where l0=1 is 0/1 loss function, which can measure the

deviation degree and can be defined as follows:

l0=1ðZÞ ¼
1; if Z\0

0; otherwise

(

ð2Þ

With the introduction of slack variables ni and penalty

factors C (the regularization constant), the original opti-

mization problem can be rewritten as follows:

min
w;b

1

2
wk k2þC

X

m

i¼1

ni

s:t:yiðwTxiÞ� 1� ni
ni � 0; i ¼ 1; 2; . . .;m

ð3Þ

By introducing the Lagrangian multipliers

(ai � 0; ui � 0), the Lagrangian function is constructed to

solve problems with constraints:

Lðw; b; a; n; uÞ ¼ 1

2
wk k2þC

X

m

i¼1

ni þ
X

m

i¼1

aið1� ni

� yiðwTxþ bÞÞ �
X

m

i¼1

uini ð4Þ

Fig. 1 Correlation scatter matrix of cumulative distributions and statistical evaluations for the squeezing database
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When the partial derivative of the above formula to W,

b, ni is zero, the Lagrange dual problem can be described as

follows:

max
a

X

m

i¼1

ai �
1

2

X

m

i¼1

X

m

j¼1

aiajyiyjx
T
i xj

s:t:
X

m

i¼1

aiyi ¼ 0

0� ai �C; i ¼ 1; 2; . . .;m

ð5Þ

Optimization problems with inequality constraints need

to meet the following conditions.

ai � 0; ui � 0

yiðwTxþ bÞ � 1þ n0 � 0

aiðyiðwTxþ bÞ � 1þ niÞ ¼ 0

ni � 0; uini ¼ 0

ð6Þ

To overcome nonlinear classification and clustering

issues, it is essential to choose the appropriate kernel

function UKðx; zÞ as a substitute for inner product to con-

struct and solve the convex quadratic programming issue

[16, 34, 47]. That means Eq. (5) becomes Eq. (7). In this

way, the input data can be mapped into a high-dimensional

feature spaces [47], as shown in Fig. 2.

min
a

1

2

X

m

i¼1

X

m

j¼1

aiajyiyjUKðxi; xjÞ �
X

m

i¼1

ai

s:t:
X

m

i¼1

aiyi ¼ 0

0� ai �C; i ¼ 1; 2; . . .;m

ð7Þ

Then, we will obtain w and b after calculation of the

optimal solution a� a�¼ a�1; a
�
2; :::; a

�
m

� �T
� �

by the SMO

(sequential minimal optimization) algorithm [73]. Finally,

the classification decision function can be described as:

f ðxÞ ¼
X

m

i¼1

a�i yiUKðx; xiÞ þ b� ð8Þ

b� ¼ yi �
X

m

i¼1

a�i yiUKðxi; xiÞ ð9Þ

3.2 Whale optimization algorithm (WOA)

Inspired by the bubble-net attacking technique which is

humpback whale’s unique predation method, Mirjalili [53]

suggested the WOA algorithm for solving and optimizing

problems. Therefore, the WOA is widely used in energy,

image processing and machine vision, structural opti-

mization, management and other fields [53]. Humpback

whales like to hunt a group of krill or small fish near the

water surface. They are gradually evolved a special hunting

method called foam feeding, that’s because they move

slowly. Whale can construct a spiral path with a decreasing

radius by creating bubbles for enforcing fish schools to

approach the surface and then catching them [43, 57].

WOA concept can be described as (1) encircling prey, (2)

bubble-net attacking method and (3) search for prey, which

are discussed in detail as follows (in order to distinguish,

the bold letters in the following formula represent vectors):

Encircling prey

The exact position of prey cannot be easily identified;

therefore, the system considers the solution of the current

candidate for the target prey [57]. In the next step, after

recognizing the best search agent ðX�; Y�Þ, there is a need

for the other search agents ðX; YÞ to upgrade their locations

Simple in high-dimensional feature spaces

Map

Feature

Complex in two dimensions

Separating 

Hyperplane 

Fig. 2 Mapping data from two dimensional to three dimensional
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using Eqs. 10 and 11. The nearby solutions around the best

or optimized solution can be according to Eqs. 12 and 13

(Fig. 3).

R ¼ C � X�
tð Þ � X tð Þ

�

�

�

�

�

�
ð10Þ

X tþ1ð Þ ¼ X�
tð Þ � A � R ð11Þ

A ¼ 2a � r1 � a ð12Þ
C ¼ 2r2 ð13Þ

where A and C represent the coefficient vectors, and the

value of A is restricted to [1]. Parameter of a can be

decreased from 2 to 0 in the search process, and it can be

calculated by a¼2�2t=Tmax (t and Tmax represent the cur-

rent number and the maximum number of iterations,

respectively). Factors r1 and r2 are random vectors in the

range of [1]; X tð Þ and X�
tð Þ denote the current whale position

vector and the best whale solution vector (the possible

location of the prey) in the tth iteration, respectively.

Bubble-net attacking method

The humpback whales and their bubble-net attacking

behavior can be mathematically simulated by designing

two procedures, which are shrinking encircling and spiral

updating. The spiral equation is described in the following

equation:

Xðtþ1Þ ¼ R0 � ebl � cosð2plÞX�
ðtÞ ð14Þ

where the shape of the logarithmic spiral depends on b

which is a constant, l is a random vector which distributed

uniformly within [-1,1]. The distances between the ith

search agent and the target prey are presented by

R0¼ jX�
ðtÞ � XðtÞj.

The shrinking encompassing mechanism and the spiral

updating location have an equivalent probability to be

selected by the humpback whale in the process of position

updating. The process of simulation can be demonstrated as

follows:

Xðtþ1Þ ¼
Xðtþ1Þ ¼ X�

ðtÞ � A � R; if p\0:5

R0 � ebl � cosð2plÞX�
ðtÞ; if p� 0:5

(

ð15Þ

where p is an arbitrary number in the range of [1].

(3) Search for prey

In order to update the whale places during the explo-

ration phase, the equation of the model is presented as

follows:

R ¼ jC � Xrand � XðtÞj
Xðtþ1Þ ¼ Xrand � A � R

ð16Þ

where Xrand denotes the whale location vector which is

selected randomly.

3.3 Multilayer perceptron (MLP)

In this paper, ANN refers to multilayer perceptron (MLP).

Multilayer perceptron (MLP) is promoted from a single-

layer perceptron. The main feature is that it has multiple

neuron layers. Generally, the first layer of MLP is called

the input layer, the middle layer is the hidden layer and the

last layer is the output layer. MLP does not specify the

number of hidden layers, so the appropriate number of

hidden layers can be selected according to actual process-

ing requirements. These hidden layers have different

numbers of hidden neurons. The neurons in each hidden

(X, Y, Z*)

(X, Y, Z)

(X, Y*, Z*-Z)

(X*, Y*,Z*)

(X, Y, Z*-Z)

(X*, Y, Z*-Z)

(X, Y*,Z)

(X, Y*-Y,Z)

(X, Y, Z*)

(X, Y*-Y, Z*-Z)(X*, Y*-Y, Z*-Z)(X*-X, Y*-Y, Z-Z*)

(X*-X, Y*, Z*-Z)

(X*-X, Y, Z*-Z)

(X*-X, Y, Z*)

(X*-X, Y, Z)
(X*, Y, Z)

(X*, Y, Z*)

(X*, Y, Z*-Z)

(X, Y*, Z*)

(X, Y)

(X, Y*)

(X, Y*-Y)

(X*, Y)

(X*, Y)

(X*, Y*-Y)

(X*-X, Y)

(X*-X, Y*)

(X*-X, Y*-Y)

Y*-Y

X*-X

Fig. 3 Different vector positions highlighting the best solutions
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layer have the same activation function, and there is no

limit to the number of neurons in each layer in the hidden

layer and the output layer.

3.4 The Gaussian process (GP)

GP means Gaussian process classification. The Gaussian

process is a general supervised learning method for solving

regression and probability classification problems. The

advantages are: (1) predictions can explain observations.

(2) The prediction is probabilistic, so that the empirical

confidence interval can be calculated. (3) Versatility.

4 Modeling results and discussion

4.1 Evaluation criteria

The ROC (receiver operating characteristic) curve is very

popular in the performance evaluation phase of ML clas-

sifiers [86, 93, 95]. The ROC curve can be presented in a

form of Cartesian coordinate system, in which FPR (false-

positive rate) and TPR (true-positive rate) represent as the

horizontal axis and the vertical axis, respectively. The key

indicator of performance evaluation in the ROC curve is

the AUC value that is defined as the area under the ROC

curve. The larger AUC values, the higher the classification

accuracy of the model or the better performance. On the

other hand, accuracy and Cohen’s kappa can be also con-

sidered as performance indicators. The Kappa coefficient

measures the effect of classification by evaluating the

consistency between the prediction results of the model and

the actual classification results. A normal range for results

of kappa is in the range of 0–1. If this range is divided into

five different classes, there are: 1) slight consistency

(0 * 0.20), 2) fair consistency (0.21 * 0.40), 3) moderate

consistency (0.41 * 0.60), 4) substantial consistency

(0.61 * 0.80) and 5) almost perfect consistency

(0.81 * 1.00). In addition to accuracy and Kappa, preci-

sion, recall and F1 can also be considered as performance

indicators [86, 92]. The mentioned performance indicators

(accuracy, Kappa, precision, recall and F1-score) can be

computed based on the confusion matrix, as shown in

Fig. 4. Based on the confusion matrix, MCC also was

introduced as performance indicators. Matthews correla-

tion coefficient is an index used in machine learning to

measure the classification performance. This indicator

considers true positives, true negatives, false positives and

false negatives. It is generally considered to be a relatively

Fig. 4 Confusion matrix and performance indicators

(a)

(b)

Fig. 5 Model decision boundary before and after optimization:

(a) SVM; (b) WOA-SVM
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balanced indicator, and it can be applied even when the

sample content of the two categories differs greatly. MCC

is essentially a correlation coefficient that describes the

actual classification and the predicted classification. Its

value range is [-1,1], 1 indicates a perfect prediction of the

subject, and a value of 0 indicates that the predicted result

is not as good as a random prediction, -1 means that the

predicted classification is completely inconsistent with the

actual classification. The calculation formula is as follows:

MCC ¼ TP� TN � FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ
p

ð17Þ

4.2 WOA-SVM model development
and validation

Main steps for constructing WOA-SVM model in pre-

dicting tunnel squeezing are as follows:

Step 1: Data preparation: The database collected from

the existing literature has a total number of 114 cases.

The source of the cited cases and the necessary

information are listed in appendix. A. According to the

most commonly used division ratio of 80%/20%, based

on the Pareto principle [64, 99, 102], we randomly divide

dataset into 80% training set and 20% testing set for

model development and model validation, respectively

[71].

Step 2: Initializing parameters of the SVM model. There

are several main parameters in the SVM model, includ-

ing the penalty parameter of the objective function

(‘‘C’’), the kernel function and the coefficient of the

kernel function (‘‘g’’). The hyper-parameters ‘‘C’’ and

‘‘g’’ need to be optimized by WOA algorithm. In this

research, the kernel function is determined with the help

of the model decision boundary diagram. The SVM

Fig. 6 The whole analysis process of WOA-SVM classifier model

Fig. 7 Optimization of WOA-SVM with different population values
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Table 3 The performance of the SVM model optimized with WOA

Type Swarm Accuracy Rank Kappa Rank MCC Rank Total

Training 50 0.9890 5 0.9820 5 0.9823 5 15

Training 80 0.9890 5 0.8606 4 0.9823 5 14

Training 100 0.9890 5 0.9820 5 0.9823 5 15

Training 150 0.9890 5 0.9820 5 0.9823 5 15

Training 200 0.9890 5 0.9820 5 0.9823 5 15

Testing 50 0.9565 5 0.9288 5 0.9316 4 14

Testing 80 0.9130 4 0.8606 4 0.8633 3 11

Testing 100 0.9565 5 0.9288 5 0.9317 5 15

Testing 150 0.9565 5 0.9288 5 0.9317 5 15

Testing 200 0.9130 4 0.8606 4 0.8633 3 11
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Fig. 8 Confusion matrix different prediction methods: a WOA-SVM; b ANN; c SVM; and d GP
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model transforms the linearly inseparable problem into

linearly separable with the help of the kernel functions

like linear, polynomial, radial basis function (RBF), and

sigmoid. According to the model decision boundary

diagram in Fig. 5, it is easy and feasible to detect that the

database in this article is close to linearly separable.

Therefore, the linear kernel was applied to input

parameter mapping for the SVM model.

Step 3: The relevant parameters of the WOA and their

ranges are the constant b, two random number l 2 ½�1; 1�
and r 2 ½0; 1�½0; 1�. It is necessary to determine and

design the optimal hyper-parameters (C and g) of SVM

using the WOA. Therefore, a WOA-SVM hybrid model

can optimize the ability of the SVM classifier in

predicting tunnel squeezing through WOA algorithm.

The specific optimization process of the proposed WOA-

SVM is shown in Fig. 6.

(a) WOA-SVM (b) ANN

(c) GP (d) SVM

Fig. 9 Actual and predicted classification results on test datasets

Table 4 Performance of different classifiers for the non-squeezing

problems, minor squeezing problems and high squeezing problem

Precision Recall F1-score Precision Recall F1-score

WOA-SVM ANN

NS 0.86 1.00 0.92 0.86 1.00 0.92

MS 1.00 0.80 0.89 0.80 0.80 0.80

SES 1.00 1.00 1.00 1.00 0.92 0.96

SVM GP

NS 1.00 0.67 0.80 1.00 0.33 0.50

MS 0.00 0.00 0.00 0.00 0.00 0.00

SES 0.63 1.00 0.77 0.55 0.92 0.69
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Step 4: Fitness evaluation of WOA-SVM model and

determination of the optimal population size. It is

necessary for developing a reliable WOA-SVM model

with the best performance to fix the optimal population

number. This is because swarm size has a significant

impact on the performance of the WOA model. To

search the optimal population number, five different

swarm sizes (i.e., 50, 80, 100, 150 and 200) were

selected and used in the process of model development.

The fitness curve presented in Fig. 7 shows that the

adaptation value changes with the number of iterations.

When the number of iterations is greater than or equal to

80, the fitness values of the five fitness curves generated

by the WOA-SVM model will tend to be stable. Table 3

presents the results of performance evaluation (accuracy

and Kappa) for the optimization WOA-SVM model

based on the training and testing sets. Based on this

table and considering all performance indexes, the

optimal population or swarm size was selected as 150

with accuracy = 0.9565 and Kappa = 0.9288.

(a)

(b)

(c)

Fig. 10 ROC curves and AUC values for different individual

classifiers: a non-squeezing problems; b minor squeezing problems;

c severe-to-extreme squeezing problems

(a)

(b) 

Fig. 11 Taylor graph a test sets, b train sets
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4.3 Analysis and comparison of classification
performance

The optimized classifier model based on the training set

needs to be validated based on testing datasets. The test

datasets were randomly selected from the database pre-

pared, i.e., 20% of the total cases (23 test samples). It is

important to mention that they have not participated in the

training process of the model. We will analyze and com-

pare classification performance from different perspectives

such as confusion matrix, performance evaluation indica-

tors, violin graphs and so on. From the confusion matrix,

we can get the accuracy, Kappa, MCC and other perfor-

mance evaluation indicators and use then analyzing and

comparing the classification performance of different

models on the basis of these evaluation indicators. To

examine the accuracy of the WOA-SVM model, the

methods of GP, ANN and SVM were built for classification

purpose of the same samples. The results of the verification

are shown in Fig. 8, which represents the confusion matrix

of four classification models (WOA-SVM, SVM, ANN and

GP) for testing datasets. It is not difficult to observe that the

WOA-SVM classifier demonstrates better performance

than the other built models. Compared with the other un-

optimized classifier models, the WOA-SVM classification

model has the highest accuracy (approximately 0.9565). In

addition, the Kappa values obtained for different classifiers

from high to low are: 0.929 (WOA-SVM), 0.913 (ANN),

0.696 (SVM) and 0.565 (GP). In addition to accuracy and

Kappa mentioned above, the number of cases classified

correctly can be obtained from the main diagonal of the

confusion matrix.

The above analysis has shown that the WOA-SVM

model has certain advantages. In order to present the dif-

ference between measured tunnel squeezing results and the

predicted ones obtained from different classifiers, the

resultant classification results are demonstrated in Fig. 9.

We can see the 23 samples of the test dataset on the hor-

izontal axis and the class of the sample on the vertical axis

(class0: non-squeezing; class1: minor squeezing; class2:

severe-to-extreme squeezing). There is a sample with the

actual class: class 1 in Fig. 9a, which was misclassified as

class 0, and this sample was defined as case No. 20.

However, there are more than one sample in Fig. 9 (b, c

and d), which was misclassified. The WOA-SVM model is

more accurate and safer in predicting the level of tunnel

squeezing.

The above analysis aims to evaluate the classification

performance of the model as a whole. However, imbal-

anced dataset may have a great impact on the prediction

results of the model, but it is not enough to detect this

influence based on the accuracy rate alone. Therefore,

precision, recall, F1 and ROC curves were also applied and

calculated to assess the prediction performance of WOA-

SVM, SVM, ANN and GP models. Table 4 tabulates pre-

cision, recall and F1-score of different classification mod-

els based on non-squeezing (NS), minor squeezing (MS)

and severe-to-extreme squeezing(SES). According to this

table, the WOA-SVM model was able to receive a better

Fig. 12 The violin chart presented for different classifier models
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Fig. 13 Variable contribution analysis: a overall analysis; b analysis

of variables for non-squeezing problems, minor squeezing problems,

and high squeezing problem
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performance and higher level of accuracy. Based on the

above analysis, for the optimized ML classifier, the clas-

sification performance of the optimized SVM model was

significantly improved compared to the base model which

is SVM.

ROC curves and AUC values of different individual

classifiers for different classes are shown in Fig. 10.

According to Fig. 10a, the AUC values based on the class 0

were calculated as 1, 0.99, 0.78, 0.93 and 0.94 for WOA-

SVM, ANN, GP and SVM approaches, respectively.

Figure 10b and c demonstrates AUC values of different

classifiers based on class 1 and class 2, respectively. The

specific values can be obtained from the figure. In Fig. 10,

the AUC values obtained from the WOA-SVM model

based on class 0, class 1 and class 2 are 1, 0.93 and 1,

respectively. Obviously, the WOA-SVM model is the

preferred ML classifier for squeezing degree prediction.

In order to understand the capability of our proposed

model better, we have drawn Taylor graph for train and test

sets separately, as shown in Fig. 11. Taylor chart is often

Prediction probabilities

0.69class 0
0.24class 1

0.07class 2

NOT class 0 class 0
ε <= 0.79

0.74
227.50 < H <= 3...
0.01

4.60 < D <= 5.80
0.01

0.05 < Q <= 0.32
0.00

K > 480.50
0.00

Feature Value
ε 0.77
H 276.00
D 5.00
Q 0.25
K 940.00

Fig. 14 Probabilistic interpretation of the non-squeezing category

Prediction probabilities

0.09class 0
0.52class 1

0.39class 2

NOT class 1 class 1
0.79 < ε <= 2.66

0.49
H > 562.50
0.04

9.80 < K <= 26.19
0.03

Q > 0.32
0.02

4.60 < D <= 5.80
0.00

Feature Value
ε 2.33
H 635.00
K 9.81
Q 4.00
D 5.80

Fig. 15 Probabilistic interpretation of the minor squeezing category
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used to evaluate the accuracy of a model. Commonly used

accuracy indicators are MCC, standard deviation and root-

mean-square error (RMSE). Generally speaking, the scat-

tered points in the Taylor diagram represent the model, the

radial line represents the MCC, the horizontal and vertical

axis represents the standard deviation and the dashed line

represents the root-mean-square error. The Taylor chart is a

change from the previous scatter chart, which can only

show two indicators to express the accuracy of the model.

Similarly, we still can see that the WOA-SVM model is the

preferred ML classifier for squeezing degree prediction.

The above analysis is based on the test set. Below we

will analyze and compare the performance of the model

based on all the sample data in this article. The violin

chart includes a combined specifications of the box plot

and the kernel density plot. The main application of this

chart is to present the probability density and distribution

of datasets. Figure 12 shows the distribution and proba-

bility density of prediction accuracy for different classifier

models considering all 114 samples. The prediction accu-

racy of WOA-SVM model is higher than the other classi-

fication models, and the distribution of accuracy is more

concentrated, which sufficiently illustrates that the hybrid

model (WOA-SVM) has visible advantages in squeezing

prediction.

4.4 Sensitivity analysis of predictor variables

The key to predicting tunnel squeezing is the selection of

appropriate input parameters. The research of Huang et al.

[35] showed that the coupling effect of different parameters

has different effects on tunnel squeezing prediction.

Therefore, it is particularly important to evaluate the con-

tribution of input parameters to the developed model. The

Shapley Additive Explanations was used to obtain the

importance of predictive variables to WOA-SVM classifi-

cation model. The calculation formula is shown as [99]:

Ui ¼
X

S	N=ðiÞ

Sj j!ð Nj j � Sj j � 1Þ!
Nj j! qs[iðxs[iÞ � qsðxsÞ½ � ð18Þ

where N represents the set of all features in the data set, S is

the set after index i is removed, the importance of feature i

to the model output is represented by Ui, xs represents the

vector of input features in set S, and the contribution of

features is calculated with the corresponding function q.

In practical applications, the prediction results based on

the predictor variables with high contribution rates to

model are more reliable and accurate. There are five fea-

tures in this work, and the importance of predictor vari-

ables to the WOA-SVM classification model was

calculated (Fig. 13). It can be intuitively seen that the

percentage strain (e) is the most important parameter in

predicting tunnel squeezing, followed by K and H param-

eters. Due to the imbalance dataset of this article, the

contribution of the parameters to model based on different

types of data (class0, class1 and class2) was assessed

(Fig. 13b) According to Fig. 13, e is still the most influ-

ential parameter on the model for all classes. However, for

class 1 and class 2, the parameter K ranks second only to e
in the contribution rate rankings, followed by H. For class

0, the parameter H ranks second only to e, followed by K.

In summary, the parameters that have important contribu-

tion to the WOA-SVM model are: e, K, H and D.

Prediction probabilities

0.05class 0
0.28class 1

0.67class 2

NOT class 2 class 2
2.66 < ε <= 4.87

0.35
9.80 < K <= 26.19
0.03

Q <= 0.02
0.02

5.80 < D <= 8.70
0.01

227.50 < H <= 3...
0.01

Feature Value
ε 3.10
K 22.58
Q 0.01
D 6.80
H 337.00

Fig. 16 Probabilistic interpretation of the high squeezing category
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In order to verify the above conclusions, we randomly

selected a sample from three different classes, and the

probabilistic interpretation of the sample is given in

Figs. 14–16. That means that Figs. 14, 15 and 16 demon-

strate that the five parameters (e, K, D, Q and H) have

different contributions to the prediction of class0, class1

and class2. Figure 14 presents the process of the sample

selected was considered class0 by WOA-SVM model

according to input parameters. According to the informa-

tion in Fig. 14, it can be easily observed that the proba-

bilities of the sample to class0, class1 and class2 are 0.69,

0.24 and 0.07, respectively. Therefore, the final prediction

result is class0 (light squeezing problem), and parameters

e, H and K are decisive predictor variables, where e plays a
decisive role in the prediction results.

Similarly, Fig. 15 displays the process of the sample

selected was judged to be class1. The sample will be

judged to be class0, class1 and class2 with corresponding

probability of 0.09, 0.52 and 0.39, respectively. Finally,

this sample is considered as class1 (moderate squeezing

problem). The decisive predictor variables are differ-

ent from that presented in Fig. 14, and they are e, H and D.

Nevertheless, parameters e still has the deepest effect on

the proposed model. Figure 16 demonstrates that the

sample will be regarded as class0, class1 and class2 with

corresponding probability of 0.05, 0.28 and 0.67, respec-

tively. Obviously, this sample is ultimately considered as

class2 (high squeezing problem), and the percentage strain

(e) is the most important parameter for predicting tunnel

squeezing, followed by the parameters K and H. In other

words, Figs. 14, 15 and 16 illustrate that the parameters e,
K, H and D have a considerable impact on the WOA-SVM

model, while e is the most important input parameter

among them.

5 Conclusion

We proposed an optimized classifier model (WOA-SVM)

to estimate the potential of tunnel squeezing according to

114 cases. There were five input parameters (H, K, D, Q

and e) considered in the modeling of all ML models in this

study (WOA-SVM, ANN, SVM and GP). In order to assess

the performance of different classifier models based on the

same database, accuracy, kappa, precision, recall, F1-score

and the AUC were calculated. The aim of the sensitivity

analysis of predictor variables is to evaluate the contribu-

tion of input parameters to the model. The main results of

this study are summarized as follows.

(1) The WOA algorithm can effectively optimize the

hyper-parameters of the SVM classifier and improve

its classification performance. The WOA-SVM clas-

sification model has the highest accuracy (approxi-

mately 0.9565) than other un-optimized individual

classifiers (SVM, ANN and GP). However, the

model has a good classification effect, even if the

data are unbalanced.

(2) The results of the sensitivity analysis indicate that e,
H and K are the best combination of parameters for

WOA-SVM model, where the percentage strain (e) is
the most influential factor on the WOA-SVM model,

the parameter K ranks second only to e in the

contribution rate rankings, followed by H.

So far, most of the existing forecasting methods can

distinguish between squeezing and non-squeezing. This

article refers to the multi-class SVM proposed by Sun et al.

[71] and introduces the whale optimization algorithm to

optimize the prediction performance of the multi-class

SVM. Therefore, the WOA-SVM model has higher pre-

diction accuracy than empirical methods, ordinary binary

SVM and multi-class SVM and can predict the severity of

tunnel squeezing. However, compared with numerical

simulation, the influencing factors considered by this paper

are obviously limited. In addition, in the actual construc-

tion process, it is difficult to obtain more accurate input

parameter values. According to the research of Zhang et al.

[73,74], the prediction performance of the classifier

ensemble model is higher than that of the individual clas-

sifier. In future, other advanced single classifiers can be

introduced to construct a classifier ensemble. On this basis,

the introduction of suitable optimization algorithms can

greatly improve the prediction accuracy of the model. In

addition, expanding the existing database can improve the

generalization ability of the integrated model.

Appendix

See Table 5.
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Table 5 Performance of different classifiers at many problems in minor change

No Tunnel Location Rock type H (m) Q D (m) K (MPa) e (%) Reference Class

1 Bhutan Bhutan AGO (adverse

geological)

337.000 0.007 6.800 44.760 2.100 Sripad et al. [70] MS

2 Chameliya

hydroelectric

project

headrace tunnel

3 ? 172

Nepal Dolomite 199.700 0.020 5.400 1217.160 4.580 Basnet [10] SES

3 Chameliya

hydroelectric

project

Headrace tunnel

3 ? 190

Nepal Dolomite 217.500 0.013 5.400 1217.160 25.540 Basnet [10] SES

4 Chameliya

hydroelectric

project

Headrace tunnel

3 ? 296

Nepal Brownish 252.200 0.010 5.400 1523.070 12.500 Basnet [10] SES

5 Chameliya

hydroelectric

project

Headrace tunnel

3 ? 314

Nepal Foliated phyllite 246.300 0.010 5.400 1523.070 3.800 Kumar [10] SES

6 Chameliya

hydroelectric

project

headrace tunnel

3 ? 404

Nepal Talcose phyllite 283.900 0.008 5.400 1645.380 36.730 Basnet [10] SES

7 Chameliya

hydroelectric

project

Headrace tunnel

3 ? 420

Nepal Talcose phyllite 284.500 0.008 5.400 1828.980 30.190 Basnet [10] SES

8 Chameliya

hydroelectric

project

Headrace tunnel

3 ? 681

Nepal Talcose phyllite 210.800 0.010 5.400 1575.720 18.300 Kumar [44] SES

9 Chameliya

hydroelectric

project

Headrace tunnel

3 ? 733

Nepal Talcose phyllite 237.700 0.010 5.400 1575.720 10.960 Basnet [10] SES

10 Chameliya

hydroelectric

project

Headrace tunnel

3 ? 764

Nepal Foliated phyllite 230.000 0.015 5.400 1217.160 9.800 Basnet [10] SES

11 Chameliya

hydroelectric

project

Headrace tunnel

3 ? 795

Nepal Foliated phyllite 222.600 0.015 5.400 1217.160 1.200 Basnet [10] MS

12 Chenani–Nashri

escape tunnel

India Siltstone, silty

claystone

727.000 2.287 6.000 5.880 1.700 Kumar [44] MS

13 Chenani–Nashri

escape tunnel

India Siltstone, silty

claystone

733.000 2.903 6.000 6.250 1.600 Kumar [44] MS
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Table 5 (continued)

No Tunnel Location Rock type H (m) Q D (m) K (MPa) e (%) Reference Class

14 Chenani–Nashri

escape tunnel

India Siltstone, silty

claystone

736.000 2.426 6.000 7.690 1.300 Kumar [44] MS

15 Chenani–Nashri

escape tunnel

India Siltstone, silty

claystone

690.000 1.650 6.000 9.380 1.600 Kumar [44] MS

16 Chenani–Nashri

escape tunnel

India Siltstone 577.000 1.517 13.000 11.110 1.800 Kumar [44] MS

17 Chibro-Khodri India Soft and plastic

black clays

280.000 0.022 3.000 5.960 4.500 Goel et al. [29] SES

18 Chibro-Khodri India Crushed red shales 280.000 0.050 3.000 9.800 2.800 Hoek [32],

Goel et al [28]

SES

19 Chibro-Khodri India Seamy crushed red 680.000 0.050 9.000 9.900 6.000 Goel et al. [29] SES

20 Chibro-Khodri India Soft and plastic

black clays

280.000 0.022 9.000 48.560 2.000 Goel et al. [29] MS

21 Giri-Bata tunnel India Crushed phyllites 200.000 0.020 4.600 2.980 6.200 Goel [26]; Choudhari

[14]; Dube [17]

SES

22 Giri-Bata tunnel India Crushed phyllites 325.000 0.030 4.600 2.980 8.750 Goel [26]; Choudhari

[14]; Dube [17]

SES

23 Giri-Bata tunnel India Crushed slates 400.000 0.512 4.600 2.980 0.670 Goel [26]; Choudhari

[14]; Dube [17]

NS

24 Giri-Bata tunnel India Crushed phyllites 440.000 0.050 4.600 3.970 10.040 Goel [26]; Choudhari

[14]; Dube [17]

SES

25 Giri-Bata tunnel India Crushed phyllites 450.000 0.060 4.600 3.970 10.300 Goel [26] Choudhari

[14]; Dube [17]

SES

26 Giri-Bata tunnel India Crushed phyllites 240.000 0.120 4.600 3.970 4.500 Goel [26]; Choudhari

[14]; Dube [17]

SES

27 Giri-Bata tunnel India Crushed phyllites 400.000 0.030 4.600 3.980 10.430 Goel [26]; Choudhari

[14]; Dube [17]

SES

28 Giri-Bata tunnel India Crushed phyllites 400.000 0.050 4.600 3.980 7.610 Goel [26]; Choudhari

[14]; Dube [17]

SES

29 Kaligandaki ‘‘A’’

HRT

Nepal Graphitic phyllite 620.000 0.008 8.700 14.670 8.500 NEA [56]; Panthi et al.

[62]

SES

30 Kaligandaki ‘‘A’’

HRT

Nepal Graphitic phyllite 620.000 0.009 8.700 14.670 7.700 NEA [56]; Panthi et al.

[62]

SES

31 Kaligandaki ‘‘A’’

HRT

Nepal Graphitic phyllite 620.000 0.009 8.700 14.670 8.200 NEA [56];

Panthi et al. [62]

SES

32 Kaligandaki ‘‘A’’

HRT

Nepal Graphitic phyllite 575.000 0.007 8.700 21.170 6.000 NEA [56]; Panthi et al.

[62]

SES

33 Kaligandaki ‘‘A’’

HRT

Nepal Graphitic phyllite 620.000 0.020 8.700 26.100 4.100 NEA [56]; Panthi et al.

[62]

SES

34 Kaligandaki ‘‘A’’

HRT

Nepal Siliceous phyllites 620.000 0.016 8.700 26.200 4.400 NEA [56];

Panthi et al. [62]

SES

35 Kaligandaki ‘‘A’’

HRT

Nepal Graphitic phyllite 600.000 0.018 8.700 26.200 3.900 NEA [56];

Panthi et al. [62]

SES

36 Kaligandaki ‘‘A’’

HRT

Nepal Graphitic phyllite 620.000 0.020 8.700 26.200 4.900 NEA [56]; Panthi et al.

[62]

SES

37 Kaligandaki ‘‘A’’

HRT

Nepal Graphitic phyllite 580.000 0.023 8.700 26.200 3.700 NEA [56];

Panthi et al. [62]

SES

38 Kaligandaki ‘‘A’’

HRT

Nepal Graphitic phyllite 600.000 0.023 8.700 28.480 3.200 NEA [56];

Panthi et al. [62]

SES

39 Kaligandaki ‘‘A’’

HRT

Nepal Graphitic phyllite 600.000 0.030 8.700 34.480 2.900 NEA [56];

Panthi et al. [62]

SES

40 Kaligandaki ‘‘A’’

HRT

Nepal Graphitic phyllite 550.000 0.029 8.700 39.130 2.300 NEA [56]; Panthi et al.

[62]

MS
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Table 5 (continued)

No Tunnel Location Rock type H (m) Q D (m) K (MPa) e (%) Reference Class

41 Kaligandaki ‘‘A’’

HRT

Nepal Graphitic phyllite 550.000 0.025 8.700 39.870 2.400 NEA [56];

Panthi et al. [62]

MS

42 Kaligandaki ‘‘A’’

HRT

Nepal Graphitic phyllite 620.000 0.025 8.700 50.800 2.500 NEA [56];

Panthi et al. [62]

SES

43 Kaligandaki ‘‘A’’

HRT

Nepal Graphitic phyllite 580.000 0.025 8.700 74.660 1.700 NEA [56];

Panthi et al. [62]

MS

44 Kaligandaki ‘‘A’’

HRT

Nepal Graphitic phyllite 600.000 0.023 8.700 90.710 1.400 NEA [56];

Panthi et al. [62]

MS

45 Khara hydroproject India Clay conglomerate 200.000 0.400 6.000 20.000 0.750 Goel et al. [28]; Singh

et al. [69]

NS

46 Khara hydroproject India Clay conglomerate 150.000 0.400 6.000 26.190 0.420 Goel et al. [28];

Singh et al. [69]

NS

47 Khimti 1

hydroproject A1

ch475

Nepal Gneiss and sericite

schists

98.000 0.080 4.000 933.000 0.770 Shrestha [67] NS

48 Khimti 1

hydroproject A1

ch500

Nepal Sheared schists 100.000 0.010 4.200 31.720 3.810 Shrestha [67] SES

49 Khimti 1

hydroproject A1

ch515

Nepal Sheared schists 100.000 0.005 4.200 88.960 2.620 Shrestha[67] SES

50 Khimti 1

hydroproject A1

ch580

Nepal Sheared schists 111.000 0.008 4.300 1936.000 0.750 Shrestha [67] NS

51 Khimti 1

hydroproject A1

ch665

Nepal Gneiss and schists 112.000 0.060 4.000 458.000 0.300 Shrestha [67] NS

52 Khimti 1

hydroproject A2

ch1283

Nepal schists 212.000 0.040 4.400 5324.000 0.020 Shrestha [67] NS

53 Khimti 1

hydroproject A2

ch1357

Nepal Banded gneiss and

chlorite schists

261.000 0.095 4.000 931.000 0.150 Shrestha [67] NS

54 Khimti 1

hydroproject A2

ch1730

Nepal Gneiss 95.000 0.065 4.000 933.000 0.290 Shrestha [67] NS

55 Khimti 1

hydroproject A2

ch441

Nepal Gneiss 126.000 0.300 4.000 461.000 0.030 Shrestha [67] NS

56 Khimti 1

hydroproject A2

ch601

Nepal Sericite schists 138.000 0.013 4.000 1934.000 0.190 Shrestha [67] NS

57 Khimti 1

hydroproject A2

ch895

Nepal Gneiss and

chlorite schists

198.000 0.140 4.000 934.000 0.290 Shrestha [67] NS

58 Khimti 1

hydroproject A3

ch15

Nepal Gneiss and schists 130.000 0.200 5.000 936.000 0.340 Shrestha [67] NS

59 Khimti 1

hydroproject A3

ch200

Nepal Gneiss and schists 276.000 0.250 5.000 940.000 0.770 Shrestha [67] NS

60 Khimti 1

hydroproject A3

ch210

Nepal Gneiss and schists 276.000 0.280 5.000 652.000 0.560 Shrestha [67] NS
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Table 5 (continued)

No Tunnel Location Rock type H (m) Q D (m) K (MPa) e (%) Reference Class

61 Khimti 1

hydroproject A3

ch220

Nepal Schists 140.000 0.009 4.000 430.000 0.800 Shrestha [67] NS

62 Khimti 1

hydroproject A3

ch235

Nepal Gneiss and schist 284.000 0.090 5.000 68.550 1.240 Shrestha [67],

Panthi [60]

MS

63 Khimti 1

hydroproject A3

ch340

Nepal Gneiss and sericite

schists

300.000 0.090 5.000 664.290 0.280 Shrestha [67] NS

64 Khimti 1

hydroproject A3

ch345

Nepal schists 300.000 0.050 5.000 1430.000 0.180 Shrestha [67] NS

65 Khimti 1

hydroproject A3

ch59

Nepal Gneiss and schists 158.000 0.230 4.100 650.000 0.320 Shrestha [67] NS

66 Khimti 1

hydroproject A4

ch1013

Nepal Sericite schists 112.000 0.006 4.000 71.280 1.190 Shrestha [67] MS

67 Khimti 1

hydroproject A4

ch1045

Nepal Clay-filled sheared 112.000 0.008 4.000 651.000 0.100 Shrestha [67] NS

68 Khimti 1

hydroproject A4

ch503

Nepal Gneiss and sericite

schists

225.000 0.140 4.000 1430.000 0.240 Shrestha [67] NS

69 Khimti 1

hydroproject A4

ch550

Nepal Chlorite sericite

gneiss

218.000 0.070 4.000 739.000 0.140 Shrestha [67] NS

70 Khimti 1

hydroproject A4

ch852

Nepal Banded gneiss 114.000 0.470 4.000 648.000 0.030 Shrestha [67] NS

71 Khimti 1

hydroproject A4

ch876

Nepal Banded gneiss 114.000 0.600 4.000 556.000 0.240 Shrestha [67] NS

72 Khimti 1

hydroproject A4

ch974

Nepal Gneiss 112.000 0.008 4.000 936.000 0.200 Shrestha [67] NS

73 Loktak hydro India — 300.000 0.023 4.600 7.710 7.000 Goel et al. [28] SES

74 Maneri stage I India — 350.000 0.500 5.800 2.530 7.900 Goel et al. [28] SES

75 Maneri stage I tunnel India Sheared

metabasics

450.000 0.310 5.800 5.100 4.830 Goel [26]; Jethwa [36] SES

76 Maneri stage I tunnel India Crushed quartzite 750.000 0.500 5.800 8.100 4.140 Goel [26]; Jethwa [36] SES

77 Maneri stage I tunnel India Sheared

metabasics

700.000 0.300 5.800 9.810 4.830 Goel [26]; Jethwa [36] SES

78 Maneri stage I tunnel India Siliceous phyllites 550.000 1.700 5.800 9.810 2.660 Goel [26]; Jethwa [36] SES

79 Maneri stage I tunnel India Foliated

metabasics

635.000 4.000 5.800 9.810 2.330 Goel [26]; Jethwa [14] MS

80 Maneri stage I tunnel India Siliceous phyllites 650.000 4.120 5.800 9.810 2.070 Goel [26]; Jethwa [14] MS

81 Maneri stage II

tunnel

India Sheared

metabasics

285.000 0.100 7.000 9.790 2.870 Goel [26]; Choudhari

[14]

SES

82 Maneri stage II

tunnel

India Sheared

metabasics

410.000 0.300 7.000 9.790 2.800 Goel [26];

Choudhari [14]

SES

83 Maneri stage II

tunnel

India Metavolcanic 415.000 0.880 7.000 9.790 2.190 Goel [26]; Choudhari

[14]

MS

84 Maneri stage II

tunnel

India Metavolcanic 500.000 1.000 7.000 9.790 2.640 Goel [26];

Choudhari [14]

SES
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No Tunnel Location Rock type H (m) Q D (m) K (MPa) e (%) Reference Class

85 Maneri stage II

tunnel

India Metavolcanic 480.000 0.800 2.500 9.840 2.880 Goel [26]; Choudhari

[14]

SES

86 Maneri stage II

tunnel

India Metavolcanic 510.000 0.880 2.500 9.840 2.420 Goel [26]; Choudhari

[14]

MS

87 Maneri-Bhali

hydroproject

India Fractured quartzite 225.000 3.600 4.800 1000.000 0.060 Singh et al. [69]; Goel

et al. [29]

NS

88 Maneri-Bhali stage I India Fractured quartzite 350.000 0.500 4.800 25.320 7.900 Hoek [32],

Goel et al. [29]

SES

89 Maneri-Uttarkashi

power

India Laminated

metabasics

800.000 2.500 4.800 48.990 8.900 Hoek [32],

Goel et al. [29]

SES

90 Maneri-Uttarkashi

power

India Sheared

metabasics

340.000 1.800 4.800 500.000 0.400 Goel et al. [29] NS

91 Maneri-Uttarkashi

power

India Foliated

metabasics

550.000 5.100 4.800 1600.000 0.050 Goel et al. [29] NS

92 Nathpa Jhakri-HRT India Quartz mica

schist, schistose

quartzites and

amphibolites

700.000 0.417 11.000 7.430 3.500 Kumar [44] SES

93 Nathpa Jhakri-HRT India Quartz mica

schist, schistose

quartzites and

amphibolites

600.000 0.250 11.000 9.140 3.500 Kumar [44] SES

94 Nathpa Jhakri-HRT India Quartz mica

schist, schistose

quartzites and

amphibolites

700.000 0.333 11.000 9.140 3.500 Kumar [44] SES

95 Nathpa Jhakri-HRT India Quartz mica

schist, schistose

quartzites, and

amphibolites

750.000 0.333 11.000 9.140 3.500 Kumar [44] SES

96 Nathpa Jhakri-HRT India Quartz mica

schist, schistose

quartzites and

amphibolites

300.000 0.001 11.000 16.500 6.000 Kumar [44] SES

97 Nathpa Jhakri-HRT India Quartz mica

schist, schistose

quartzites and

amphibolites

400.000 0.003 11.000 17.000 6.000 Kumar [44] SES

98 Nathpa Jhakri-HRT India Quartz mica

schist, schistose

quartzites and

amphibolites

800.000 0.194 11.000 17.140 3.500 Kumar [44] SES

99 Nathpa Jhakri-HRT India Quartz mica

schist, schistose

quartzites and

amphibolites

850.000 0.056 11.000 20.400 5.000 Kumar [44] SES

100 Nathpa Jhakri-HRT India Quartz mica

schist, schistose

quartzites and

amphibolites

600.000 0.033 11.000 33.330 3.000 Kumar [44] SES

101 Noonidih colliery

Tala hydro-HRT

India Weak coal 450.000 0.590 7.000 9.670 3.000 Jethwa [36] SES
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