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Abstract
Slope engineering is a complex nonlinear system. It is difficult to respond with a high level of precision and efficiency

requirements for stability assessment using conventional theoretical analysis and numerical computation. An ensemble

learning algorithm for solving highly nonlinear problems is introduced in this paper to study the stability of 444 slope

cases. Different ensemble learning methods [AdaBoost, gradient boosting machine (GBM), bagging, extra trees (ET),

random forest (RF), hist gradient boosting, voting and stacking] for slope stability assessment are studied and compared to

make the best use of the large variety of existing statistical and ensemble learning methods collected. Six potential relevant

indicators, c, C, u, b, H and ru, are chosen as the prediction indicators. The tenfold CV method is used to improve the

generalization ability of the classification models. By analysing the evaluation indicators AUC, accuracy, kappa value and

log loss, the stacking model shows the best performance with the highest AUC (0.9452), accuracy (84.74%), kappa value

(0.6910) and lowest log loss (0.3282), followed by ET, RF, GBM and bagging models. The analysis of engineering

examples shows that the ensemble learning algorithm can deal with this relationship well and give accurate and reliable

prediction results, which has good applicability for slope stability evaluation. Additionally, geotechnical material variables

are found to be the most influential variables for slope stability prediction.
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1 Introduction

Due to the needs of economic development and the

expansion of the scope of geotechnical engineering, as an

essential environment for human survival, slopes are a

crucial part of engineering construction, and research on

their stability is constantly developing and advancing.

Slope stability evaluation is a crucial research aspect in

slope engineering. However, the slope deformation and

failure process is a very complex geological process. The

factors that affect the slope stability are uncertain [27], so it

is not easy to accurately evaluate slope stability with tra-

ditional theoretical analysis [13] and numerical calcula-

tions (such as the finite element method [20], discontinuous

deformation analysis [60, 61, 70], virtual element method

[33, 48] and phase-field [65–67]). Slope engineering is an

uncertain, nonlinear, dynamic and open complex system.

Its stability is comprehensively affected by geological and

engineering factors with randomness, fuzziness, variability

and other uncertain characteristics. There is a highly non-

linear relationship between slope stability and influencing

factors. Therefore, the inevitable slope stability research

trend is to break through traditional deterministic thoughts

and fully consider the uncertainty caused by various slope

factors. Slope stability analysis can be regarded as a pattern

recognition task [59]. Based on the slope information

database [51], some scholars use machine learning (ML)

[35, 38, 50] to judge slope stability. Lu et al. [36] used an

artificial neural network (ANN) [2] to predict the failure of
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circular slopes, which showed that the ANN has obvious

advantages compared with the maximum likelihood esti-

mation (MLE) technique. Samui [44] studied the applica-

tion of a support vector machine (SVM) to predict slope

stability. Sakellariou et al. [43] established a series of

ANNs to predict the safety factor of the slope wedge failure

mechanism and circular failure mechanism and evaluate

their stability. Dickson et al. [9] introduced three ML

algorithms to analyse the control of coastal cliff landslides.

Yan et al. [57] studied the application of the Bayes dis-

criminant analysis method in the stability prediction of

open pit slopes. Zhou et al. [63] introduced six supervised

learning methods to predict the stability of hard rock pil-

lars, and the performance of these algorithms was com-

pared and analysed. Cheng and Hoang [8] used a novel bee

colony optimized support vector classifier to evaluate the

slope collapse caused by a typhoon. Lee et al. [29] and Lin

et al. [32] established a slope stability prediction model

using an ANN. Based on ML, Hoang et al. [23] used the

least squares support vector classification (LS-SVC) and

firefly algorithm (FA) methods to study 168 slope cases.

All the above artificial intelligence models can help us

better understand the slope status, but each model has

advantages and disadvantages. Due to the complexity of

the problem, there are still some imperfections in these

methods. Different algorithms have different sensitivities

to the same type of data, and the classification accuracy of

the same category under different algorithms will also vary.

Each classifier has its limitations. The focus of slope sta-

bility evaluation research is the ML algorithm, which

constantly looks for newer and more robust ML algorithms

to establish slope stability evaluation models to achieve

better prediction results. Therefore, it is necessary to find

intelligent algorithms with high accuracy and strong

applicability. Ensemble learning trains multiple algorithms

to achieve complementary advantages and obtain better

slope stability prediction results than the single algorithm.

Ensemble learning forms a more comprehensive ’strong

learner’ through the combination of multiple models.

Ensemble learning can obtain more accurate prediction

results, with better generalization performance and broader

applications [10, 11]. Ensemble learning has been suc-

cessfully applied to character recognition [12], medical

diagnosis [62], facial recognition [21] and seismic wave

classification [46]. Lin et al. [34] applied four supervised

learning algorithms (random forest (RF), gravitational

search algorithm (GSA), SVM and naive Bayesian) to

slope stability evaluation. They carried out a comparative

analysis to prove that the performance of RF and GSA is

better than other algorithms. Based on an updated database

of case histories, Zhou et al. [64] proposed a prediction

method for slope stability analysis using the gradient

boosting machine (GBM) method. Qi and Tang [42] used

FA to adjust the superparameters and verified and dis-

cussed the feasibility of six comprehensive methods (lo-

gistic regression (LR), RF, decision trees (DT), GBM,

multilayer perceptron neural network and SVM) in slope

stability prediction. Qi and Tang [41] proposed a slope

stability evaluation algorithm, adaptive boosted decision

trees (ABDT), quadratic discriminant analysis (QDA),

SVM, ANN, Gaussian process classification (GPC) and K-

nearest neighbours (KNN) as individual classifiers and a

weighted majority voting method as the combined classi-

fier. The results show that the hybrid ensemble method

greatly improves slope stability prediction performance.

Previous studies have shown that ensemble learning can

provide a feasible tool for constructing a slope stability

discrimination system, which allows the classification of

slope stability. However, there is no comprehensive com-

parison of classifier ensemble algorithms over the predic-

tion of slope stability. To improve the prediction accuracy

of nonlinear slope behaviour and establish a simple model

that can be widely promoted, it is necessary to continue

exploring an ensemble algorithm that is more suitable for

analysing nonlinear slope behaviour.

Because of this, the primary purpose of this paper is to

compare the applicability of different classifier ensemble

algorithms in slope stability analysis. To achieve this goal,

we developed a research method for comparing the per-

formance of different classifier ensemble algorithms in

Scikit-learn [40], including bagging, RF, AdaBoost, GBM,

stacking, voting and extra trees (ET) and hist gradient

boosting classifier (HGB). These ensemble learning algo-

rithms are specifically selected because they are increas-

ingly used in engineering, but they have not been

thoroughly compared with each other. In Sect. 2, the

ensemble learning algorithm is briefly introduced, and

Sect. 3 analyses the slope dataset. In Sect. 4, these methods

are applied to classify slope stability, and the results are

discussed according to performance criteria. The conclu-

sion of this study is presented in the final section.

2 Ensemble learning methods

Ensemble learning [10] is a process of effective fusion to

form a strong classifier based on individual learners (as

shown in Fig. 1). According to the difference of the com-

bination methods of base learners, ensemble learning can

be divided into parallel topology structure (representing

algorithm is bagging), serial topology structure (repre-

senting algorithm is boosting) and hybrid topology struc-

ture (representing algorithm is stacking). In this study, we

consider several common ensemble learning algorithms in

Scikit-learn. All these methods are increasingly being used

and have efficient implementations; some of these methods
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have been used in slope classification [58, 64] with good

results; the resulting model allows rapid slope stability

prediction. The following is only a brief introduction to

each ensemble classification algorithm. For a more in-

depth discussion, please refer to the relevant literature

[23, 24].

2.1 Bagging

Bagging [4] is one of the simplest and most efficient

ensemble learning algorithms. Figure 2 shows the structure

diagram of bagging. First, m training samples are extracted

from the original training samples. After the T-round

extraction, T training sets can be obtained, and then the T

training sets are used to train each ’weak learner’. Finally,

each ’weak learner’ result is combined according to the

average or voting method. Each time the training set is

extracted, all the features can be used for training, or some

features can be randomly selected. There is no dependency

among the ’weak learners’, and they are all connected in

parallel. Bagging can not only uniformly sample datasets

but also realize parallel computing. For this reason, learn-

ers based on the bagging framework have better general-

ization ability and higher computing speed.

2.2 Random forest

Random forest (RF) is a method based on bagging and

decision trees (DTs) [19]. Unlike the traditional decision

tree, RF randomly extracts n subsamples containing k

attributes from the K attributes contained in N samples and

then selects an optimal attribute from n subsamples for

partitioning. RF combines the final prediction results based

on the performance of multiple decision trees. RF can

process high-dimensional data without feature selection

and has strong adaptability to the dataset.

2.3 Boosting

Boosting [45] trains each ’weak learner’ in an iterative

manner. As shown in Fig. 3, ’weak learner 1’ is trained on

the original training set 1 and adjusts the training sample

distribution according to its prediction results to obtain

training set 2. Train on training set 2 to obtain ’weak

learner 2’. The above process is repeated until the termi-

nation condition is satisfied, and the final prediction result

is the weighted sum of the results of each base learner.

Fig. 1 Schematic diagram of ensemble learning

Fig. 2 Schematic diagram of bagging
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Boosting is a forward distributed boosting algorithm. Each

calculation step is affected by the previous step, and the

weight of the miscalculated samples increases to improve

the overall predictive ability of the algorithm model.

Adaptive boosting [17] (AdaBoost) is the most typical.

AdaBoost can combine several low-precision classifiers

and automatically adjust the sample weights according to

the classification effect to synthesize a strong classifier

with higher precision. AdaBoost is sensitive to outliers and

noisy data.

2.4 Gradient boosting machine

The gradient boosting machine (GBM) [18] is a boosting

algorithm. The GBM algorithm searches for weak classi-

fiers along the gradient descent direction and trains an

additive model to combine all weak classifiers. The loss

function is used to express the fitting degree between the

test set and training set. The lower the loss function is, the

higher the prediction accuracy and the more reliable the

result. GBM includes GBDT (gradient boosting decision

tree), XGBoost (extreme gradient boosting), LightGBM

(light gradient boosting machine) and CatBoost (categori-

cal boosting).

Hist gradient boosting (HGB) [1], or histogram-based

gradient boosting, is a boosting ensemble that uses feature

histograms for fast and accurate selection of best splits.

Light GBM inspires its implementation. HGB is more

efficient than GBM in terms of memory consumption and

processing speed.

2.5 Stacking

The stacking algorithm [53] has the advantages of simple

structure, high performance and strong classification abil-

ity. The stacking structure diagram is shown in Fig. 4. The

model of the first layer is called the base model, and the

model of the second layer is called the meta-model. Using

the predicted values of each model in the first layer as the

input characteristics of the next layer, stacking has a

stronger nonlinear expression ability than a single predic-

tion model and can further reduce the generalization error.

Based on the stacking algorithm, this paper uses GBM, RF,

KNN, DT, SVC, LR, ET, bagging and Gaussian naive

Bayes (GaussianNB) as the primary learners. LR is the

secondary learner, and 10 times fivefold cross-training is

used to avoid overfitting between the primary and second

training models.

Stacking is a general method for achieving higher pre-

diction accuracy by combining high-level models with

low-level models. However, stacking generalization does

not consider the data distribution and is suitable for stan-

dard datasets other than unbalanced data.

Bagging, boosting and stacking algorithms improve

machine learning performance by merging multiple mod-

els. Bagging reduces model variance, boosting reduces

Fig. 3 Schematic diagram of boosting
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model deviation and stacking improves model prediction

results.

2.6 Voting

The voting ensemble (majority vote set) is a machine

learning model set that combines the predictions of several

other models. Voting prediction classification methods

include hard voting and soft voting. The hard vote set

summarizes the votes from the clear class labels of other

models and predicts the class with the most votes. A soft

voting set includes the sum of predicted probabilities of the

class labels and predicting the class label with a greater

probability addition. Regardless of the machine learning

model, the voting ensemble can be used and considered a

meta-model. The voting method is fast and straightforward.

It only requires the prediction results of the established

model on the test dataset without retraining.

2.7 Extra trees

Extra trees (ET) [47] and RF have a similar structure.

Unlike RF, ET uses the entire dataset to train each decision

tree to utilize all samples fully. In addition, when ET trains

T decision trees, N input features are randomly selected to

form T subdatasets. In node partitioning, the subdataset is

selected at random by the partition threshold of each

characteristic, and the feature with the best partition effect

is selected as the optimal partition attribute according to

the specified threshold. According to the theory of ’error-

ambiguity decomposition’, the greater the difference

between ’weak learners’ and the higher the prediction

accuracy of each ’weak learner’, the better the integration

effect. The size of the ET decision tree is generally larger

than that of RF, but the variance in the model is minor.

3 Database and variables

3.1 Parameter analysis

When establishing the classification model, the factors

affecting slope stability are selected first. The principles of

feature selection are as follows: (a) the meaningful features

are selected from the given feature set to train the model to

reduce the dimension disaster problem; (b) the complexity

of the learning process is simplified by removing some

features that are not related to the subsequent learning

process. At present, gravity c, cohesion C, internal friction

angle u, slope angle b, slope height H and pore water ratio

ru have extensive use in slope stability prediction.

According to the training, the results are good, and the data

can easily be obtained [58]. It should be noted that

according to engineering experience, the stability of the

slope is also affected by other factors, such as the structure

type of rock and soil, joints and the relationship between

Fig. 4 Stacking schematic diagram
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the joint surface and slope angle. However, it is difficult to

obtain the values of these indicators accurately. The results

indicated that slope stability could be well predicted

without considering these indices [64].

3.2 Case data and preliminary analysis

From a performance point of view, measurements and

comparisons have been made for the ensemble learning

algorithm, 444 engineering examples of slopes were col-

lected directly from the literature [5–7, 14–16, 22, 26,

30, 31, 36, 37, 49, 51, 54–56, 68, 69], and all the data are

from these studies without any processing. A detailed

description of the data is provided in Appendix. As shown

in Fig. 5, the box diagram describes all the input features

used in the slope stability prediction model. From these

figures, the range and average distribution of all input

features can be found directly. Except for b, most variables

have noncentre medians to the boxes. This indicates an

asymmetric distribution of these variables. Additionally,

except for u and b, there are several outliers in all input

features.

There are two types of slope stability in the dataset:

stable (S, 224 cases) and unstable (F, 220 cases). The

variable correlation matrix is shown in Fig. 6. There is a

pairwise relationship between the correlation coefficients

of the variables related to slope stability. The red lines

outside the diagonal are regression lines, which reflect the

degree of linear correlation between variables. The

diagonal of the figure is the marginal frequency distribution

of each parameter. The red lines on the diagonal represent

the empirical probability density curves. The numbers in

the upper panels indicate the correlation between the two

variables. The red stars (‘***’, ‘**’, ‘*;, ‘.’, ‘ ’)\ = [ p

values (0, 0.001, 0.01, 0.05, 0.1, 1). As shown in Fig. 6, the

correlation is rather poor with most variables (R\ 0.5).

There is a significant correlation between c and u
(R = 0.73), b (R = 0.74), a significant correlation between

b and u (R = 0.70), and a moderate correlation between c
and H (R = 0.49). ru is negatively correlated with c
(R = - 0.20) and u (R = - 0.24).

Furthermore, it is evident that the dataset is widely

distributed and that the distribution of the variable is

nonsymmetrical. Principal component analysis (PCA)

summarizes and visualizes the collected slope data and

explains its variance–covariance structure. As shown in

Table 1, the contribution rate of PC1 is the highest,

52.26%, and the contribution rate of PC6 is the lowest, only

3.65%. PCA allows us to visualize the classification

capabilities of the slope dataset on a two-dimensional

plane. According to the PCA results (as shown in Fig. 7a),

the components of the first and second dimensions were

visualized (Fig. 7b). As shown in Fig. 7b, the data distri-

bution regions of the two types of slope states on the first

two components are relatively close, with overlapping

areas. In addition, some indicators with significant skew-

ness will affect the classification results of slope stability,

as shown in Fig. 1. To avoid the interference of large

Fig. 5 Box plot of each variable for slope cases
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fluctuation data on the model performance, when the dif-

ference in the order of magnitude of each control factor is

too large or the same control factor is discrete, it is nec-

essary to standardize the sample data. This article uses the

Quantile Transformer function for data normalization.

Ideally, for the sake of precise classification, each

value of all features can only have one class label

(stable or failure) in the diagram. Slope stability is

classified according to different indicators as shown in

Fig. 8. It can be observed from this figure that, in some

events, the same indicator’s value corresponds to both

types of slope states. The possible reason is that the data

are not linearly separable and it is difficult to define

boundaries of feature values.

4 Development of slope stability
assessment model

4.1 Data pre-processing

To form and control the performance of the classifiers, as

shown in Fig. 9, a stratified and random sampling method

is used to split the dataset into training datasets (90%) and

test datasets (10%). The tenfold cross-validation (CV) and

grid search method are adopted to obtain optimal param-

eters of the ensemble learning models. In the process of

tenfold CV, the training is divided into random tenfold

training, nine of which are trained by the ensemble learning

model, and the remaining training is used as the

Fig. 6 Scatter matrix of the six variables of slope stability

Table 1 PCA model for illustration of the slope data: component matrix and scores

Principal component

(PC)

Variable Variance Variance ratio

(%)

Cumulative ratio

(%)
c(kN/m3) C (kPa) u(�) b(�) H (m) ru

PC1 0.5098 0.3462 0.4888 0.4787 0.3498 - 0.1723 3.1430 52.26 52.26

PC2 0.0609 0.0459 - 0.0232 0.1310 0.1968 0.9684 0.9517 15.82 68.08

PC3 - 0.1933 0.6583 - 0.3151 - 0.3700 0.5346 - 0.0852 0.7262 12.07 80.15

PC4 - 0.0440 0.6645 - 0.0079 0.1405 - 0.7258 0.0996 0.6976 11.60 91.75

PC5 0.1132 - 0.0507 - 0.7675 0.6150 0.0579 - 0.1181 0.2767 4.60 96.35

PC6 - 0.8272 0.0207 0.2685 0.4677 0.1518 - 0.0367 0.2193 3.65 100
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verification set to verify the model’s performance. The

training and testing process is repeated 10 times, and 10

different subsets are used as testing sets. Therefore, the

overall performance of the ensemble learning algorithm on

Fig. 7 Visualization of PCA results

1484 Acta Geotechnica (2022) 17:1477–1502

123



the training set is calculated by simply averaging the 10

training results.

4.2 Model performance evaluation

For slope stability classification problems, receiver oper-

ating characteristic (ROC) curves [3], log loss, accuracy

and kappa coefficients [28] are the main indicators for

evaluating the performance of classifiers. The ROC curve

is a good comprehensive evaluation index without con-

sidering the sample distribution, making a credible

performance evaluation of the algorithm results. The area

under the curve (AUC) is enclosed by the ROC curve and

the coordinate axis. AUC represents the probability that a

positive sample is more likely to be predicted as a positive

class than a negative sample to be a positive sample, which

is often used to measure the classification performance of a

classifier on unbalanced data. Different AUC values reflect

different classification effects [3, 25]: 0.900–1.00 repre-

sents outstanding discrimination, 0.800–0.900 represents

excellent discrimination, and 0.700–0.800 represents

acceptable discrimination.

Fig. 8 Slope stability concerning each indicator
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Log loss is a performance metric used to evaluate the

probability of members of a given class. The log loss can

be given using Eq. 1.

log loss ¼ � 1

n

Xn

i¼1

Xm

j¼1

yij logðpijÞ ð1Þ

where n represents the total number of samples and m is

the number of types of slope stability. When sample i

belongs to class j, yij is 1; otherwise, yij is 0. Furthermore,

pij represents the probability of sample i belonging to class

j. For a binary classification problem, the log loss function

is as follows:

�log loss ¼ �
Xn

i¼1

ðyi logðpiÞ þ ð1� yiÞ logð1� piÞÞ ð2Þ

Accuracy is defined as the percentage of the number of

samples correctly classified relative to the total number of

samples selected for validation, and Eq. 3 calculates the

precision. The accuracy can reflect the overall classifica-

tion accuracy to a certain extent but cannot directly reflect

the different classes’ prediction results. The kappa coeffi-

cient is a comprehensive classifier evaluation index [63]

mainly used to reflect the proportion of error reduction

compared with random classification. Equation 4 is the

expression of kappa.

Accuracy ¼ 1

n

Xr

i¼1

zii

 !
� 100% ð3Þ

Kappa ¼ n
Xr

i

zii �
X

ðziþzþiÞ
" #,

n2 �
X

ðziþzþiÞ

ð4Þ

where r represents the number of categories to be classified

by the confusion matrix. zii is the value of row i and column

i of the confusion matrix, the number of samples correctly

classified; zi? and z?i represent the sums of row i and

column i, respectively, of the confusion matrix.

The distribution range of the kappa coefficient is

[- 1,1], where - 1 represents the worst classification

effect, 0 represents the classification performance of the

classifier equal to the random classifier and 1 represents the

best classification performance. Different kappa coeffi-

cients reflect different classification effects: 0.810–1.000

(perfect), 0.610–0.800 (substantial), 0.410–0.600 (moder-

ate), 0.210–0.400 (poor), 0.000–0.200 (slight) and

- 1.000–0.000 (total disagreement). Generally, 0.4 is

taken as the threshold of the kappa coefficient [63].

Fig. 9 Ensemble learning model for predicting slope stability
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4.3 Model development and parameter
optimization

This paper studies the applicability of eight common

ensemble learning algorithms (GBM, AdaBoost, bagging,

ET, RF, HGB, voting and stacking) in slope stability

classification. Most classifiers (GBM, AdaBoost, bagging,

ET and RF) contain parameters that need to be adjusted.

The ‘gridsearchcv’ function in sklearn performs a tuning

parameter grid for many classification problems, which

allows a single consistent environment to train each

ensemble learning method and tune their related parame-

ters. After evaluating the optimal parameters, the final

slope stability prediction models are established using the

entire training dataset. To optimize the critical parameters

of each integrated training model and obtain the best dis-

crimination performance, a tenfold reputation of CV is

used to select the ‘optimal’ value of the adjustment

parameter. As a binary classification problem, slope sta-

bility is a trade-off between sensitivity and specificity.

AUC represents the model’s ability to distinguish between

positive (stable) and negative (failure) categories. There-

fore, the AUC is used to evaluate the performance of the

parameters in the repeated tenfold CV process. Table 2

shows the hyperparameter settings and prediction results of

the ensemble learning algorithms in the current research.

5 Results and discussion

5.1 Discriminant results and performance
analysis

To compare the performance of different classification

algorithms, the KNN, LR, GaussianNB, MLPClassifier

(MLPC) and SVM methods are also used for slope stability

classification. The prediction results of the model are

shown in Fig. 10. The AUC of SVM is 0.898, LR is 0.752,

KNN is 0.934, GaussianNB is 0.695, MLPC is 0.839, RF is

0.967, GBM is 0.961, ET is 0.966, AdaBoost is 0.961,

bagging is 0.965 and HGBC is 0.959. It is worth noting that

the AUC determines the classifier’s performance greatly,

and 1.0 represents the ideal performance. The ROC curves

of ensemble learning (RF, GBM, ET, AdaBoost, bagging

and HGB) are slightly more approximated to the left and

upper axes than the other models. Their AUC values were

above 0.90, slightly higher than those of KNN, and sig-

nificantly higher than those of SVM, LR and MLPC. It also

shows that ensemble learning is more suitable for slope

stability prediction, and GaussianNB has the lowest pre-

diction performance. The AUC value of the ensemble

learning model constructed by the average predicted value

of SVM, LR, KNN, GaussianNB, MLPC, RF, GBM, ET,

AdaBoost, bagging and HGB is 0.961. These facts con-

vincingly demonstrate that ensemble learning has a good

ability to predict slope stability.

Table 2 Tuning parameters of each model for an optimal classification

Method Turning parameters Optimal value AUC Sensitivity Specificity

GBM n_estimators = [10, 50, 100, 500]

learning_rate = [0.0001, 0.001, 0.01, 0.1, 1.0]

subsample = [0.5, 0.7, 1.0]

max_depth = [20, 33, 65]

100

0.1

1.0

7

0.9199 0.8421 0.9130

Bagging n_trees = [10, 50, 100, 500, 1000, 5000]

max_samples = [0.1, 0.3, 0.5, 0.7, 0.9,1]

max_features = 2,3,4,5

100

1

3

0.9291 0.7895 0.8696

AdaBoost n_estimators = [10, 50, 100, 500]

learning_rate = [0.0001, 0.001, 0.01, 0.1, 1.0]

500

1.0

0.9199 0.8421 0.8261

ET min_samples_split = [13, 35, 38, 48, 59, 60, 67, 70]

max_features = [13, 20, 60, 61]

n_trees = [10, 50, 100, 500, 1000, 5000]

6

3

100

0.9519 0.8947 0.9565

RFC max_samples = [0.2, 0.4, 0.6, 0.8, 1]

max_features = [13, 20, 60, 61]

n_trees = [10, 50, 100, 500, 1000]

1

3

100

0.9268 0.7894 0.8696

HGB None None 0.8970 0.7368 0.9130

Voting None None 0.9588 0.8421 0.9565

Stacking None None 0.9382 0.8421 0.9565
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According to the visual comparison, one can easily

observe the performance of all the ensemble learning

classification methods, as shown in Figs. 11 and 12. The

boxplots in Fig. 11 report the performance of eight clas-

sifiers on a repeated tenfold CV procedure with average

AUC, accuracy, log loss and kappa. Since these models use

the same dataset, it is meaningful to analyse the differences

between the calculated results. The distinction of the upper

and lower quartiles in the stacking classifier is smaller than

that of the other methods, indicating that the accuracy

variance is relatively low in different iterations (see

Fig. 11). Figure 12 shows that the average AUC of each

ensemble classifier in slope stability prediction is between

[0.8992–0.9452]. The stacking model has the highest AUC,

with an AUC of 0.9452, followed by the GBM method

(AUC = 0.9293), RF method (AUC = 0.9210) and ET

method (AUC = 0.9180). According to the consistency

scale, the AUCs of all modelling techniques used in the

model evaluation test set are excellent. As shown in

Fig. 11, the accuracy and kappa value of stacking have the

closest quartile range. The quartile range of the ROC value

of GBM is the closest, but there are some outliers. The

average value of log loss of each ensemble classifier in

slope stability prediction falls into [0.3282–0.6860]. The

lowest log loss is the stacking model, and the log loss is

0.3282, followed by the RF method (log loss = 0.3776) and

ET method (log loss = 0.3894). Smaller log loss is better,

with 0 representing a perfect log loss. AdaBoost performed

relatively worse, with a log loss of 0.6860.

The average accuracy of the ensemble classifiers in

slope stability prediction falls into the range of

[82.07–84.74%]. Obviously, the accuracy of the stacking

model is the highest (accuracy = 84.74%), and then the ET

(accuracy = 83.53%), bagging (accuracy = 83.07%) and

GBM (accuracy = 82.81%) models rank successively.

Voting achieves the lowest average accuracy (82.07%). For

the eight ensemble learning techniques, the performance

(in terms of average kappa) falls into the range of

(0.6377–0.8474). The kappa values of all ensemble learn-

ing models are above 0.4. The stacking predictor achieves

the highest kappa (0.6910), followed by ET, bagging and

Fig. 10 ROC curves of the thirteen classifiers on the testing set
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Fig. 11 Boxplot distributions of the training set in terms of ‘AUC’, ‘log loss’, ‘accuracy’ and ‘kappa’ for eight ensemble methods resulting from

repeated tenfold CV procedure
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GBM, with average kappa rates of 0.6703, 0.6590 and

0.6545, respectively.

According to the concordance scale, the kappa of the

training set and test set of eight ensemble learning classi-

fication techniques in model calibration data is medium to

substantial. It is clear that the kappa and accuracy of each

ensemble learning classification algorithm are basically the

same, but kappa is usually smaller than accuracy. The

reason is that kappa can more comprehensively reflect the

error information of the model, while accuracy only con-

siders the diagonal element error in the confusion matrix

and ignores the element error on the nondiagonal line.

The results show that ensemble learning models have

good performance in predicting slope stability, which is

feasible and reliable. We can observe the following facts.

Compared with a single classifier, the stacking ensemble

classifier has a relatively higher average AUC (0.9452),

average accuracy (84.74%) and kappa average (0.6910)

and a relatively lower average log loss (0.3282) on the

testing set, indicating that its prediction performance is

relatively higher, but the calculation intensity is high, and it

takes the longest time to train; stacking has better gener-

alization performance than voting. This research indicates

that using a classifier ensemble, rather than searching for

the ideal single classifier, may be more helpful for slope

stability prediction.

5.2 Relative variable impact

Determining the sensitivity of the factors affecting slope

stability is very important for evaluating slope stability and

the design of support structures. A relative importance

score is used in this study, and this is based on optimal

ensemble learning (GBM, ET and RF) to study the sensi-

tivity. The methods are selected according to their excel-

lent performance on the test set. The variable importance

ranking is obtained by averaging the tenfold CV feature

selection results of RF, ET and GBM. Figure 13 shows the

normalized score of variable importance. c (score =

0.2309), C (score = 0.2007) and u (score = 0.2003) are

the most sensitive factors to slope stability, which indicates

the importance of slope material variables. The correlation

matrix of the variables is consistent with these results

(Fig. 6), the component matrix and scores, and the litera-

ture results [52]. Therefore, the values of the material c, C
and u in artificial slopes must be reasonably and accurately

selected based on specific indoor and field tests. In treating

landslides, geomaterials’ cohesive force and internal fric-

tion angle should be improved [39]. The importance scores

of b and H are 0.1449 and 0.1395, respectively, indicating

that geometric variables also affect slope stability. Opti-

mizing these two variables in practical design is a feasible

method for ensuring slope stability. It can also be found

that the sensitivity of ru (0.0837) is not as good as that of

the first five features.

6 Conclusions

Ensemble learning algorithms (GBM, AdaBoost, bagging,

ET, RF, HGB, voting and stacking) are introduced in this

study to study the stability of 444 slope cases. Six potential

relevant indicators, c, C, u, b, H and ru, serve as indicators

for prediction, and the generalization ability of the classi-

fication models is improved using the tenfold CV method.

According to the analyses, the following conclusions are

presented:

1. The ROC curves of ensemble learning algorithms are

closer to the left and top axes than other algorithms.

The AUC of ensemble learning models is more than

0.900, slightly higher than KNN, SVM, LR and MLPC.

The AUC value of the ensemble learning model

constructed by the average predicted value of SVM,

LR, KNN, GaussianNB, MLPC, RF, GBM, ET,

AdaBoost, bagging and HGBC is 0.961. Ensemble

learning algorithms have an excellent ability to predict

slope stability.

2. The stacking model has a higher AUC, higher accuracy

and kappa value, and lower log loss. It can be used as a

Fig. 13 Variable importance plot generated by the GBM, ET and RF

classifiers
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Table 3 Slope stability prediction database

NO r (kN/m3) C (kPa) u (�) b (�) H (m) ru Status Location

1 18.68 26.34 15 35 8.23 0 Failure Congress street, open cut slope, Chicago, USA

2 16.5 11.49 0 30 3.66 0 Failure Brightlingsea slide, UK

3 18.84 14.36 25 20 30.5 0 Stable Unknown

4 18.84 57.46 20 20 30.5 0 Stable Unknown

5 28.44 29.42 35 35 100 0 Stable Case 1: open-pit iron ore mine, India

6 28.44 39.23 38 35 100 0 Stable Case 2: open-pit iron ore mine, India

7 20.6 16.28 26.5 30 40 0 Failure open-pit chromite mine, Orissa, India

8 14.8 0 17 20 50 0 Failure Sarukuygi landslide, Japan

9 14 11.97 26 30 88 0 Failure Case 1: open-pit iron ore mine, Goa, India

10 25 120 45 53 120 0 Stable Mercoirol open-pit coal mine, France

11 26 150.05 45 50 200 0 Stable Marquesade open-pit iron ore mine, Spain

12 18.5 25 0 30 6 0 Failure Unknown

13 18.5 12 0 30 6 0 Failure Unknown

14 22.4 10 35 30 10 0 Stable Case 1: Highvale coal mine, Alberta, Canada

15 21.4 10 30.34 30 20 0 Stable Case 2: Highvale coal mine, Alberta, Canada

16 22 20 36 45 50 0 Failure Case 1: open-pit coal mine, Newcastle coalfield, Australia

17 22 0 36 45 50 0 Failure Case 2: open-pit coal mine, Newcastle coalfield, Australia

18 12 0 30 35 4 0 Stable Unknown

19 12 0 30 45 8 0 Failure Unknown

20 12 0 30 45 4 0 Stable Unknown

21 12 0 30 45 8 0 failure Unknown

22 23.47 0 32 37 214 0 Stable Pima open-pit mine, Arizona, USA

23 16 70 20 40 115 0 Failure Case 1: Wyoming, USA

24 20.41 33.52 11 16 10.67 0.35 Stable Seven Sisters Landslide, UK

25 19.63 11.97 20 22 12.19 0.405 Failure Case 1: The Northolt slide, UK

26 21.82 8.62 32 28 12.8 0.49 Failure Selset Landslide, Yorkshire, UK

27 20.41 33.52 11 16 45.72 0.2 Failure Saskatchewan dam, Canada

28 18.84 15.32 30 25 10.67 0.38 Stable Case 2: The Northolt slide, UK

29 18.84 0 20 20 7.62 0.45 Failure Sudbury slide, UK

30 21.43 0 20 20 61 0.5 Failure Folkestone Warren slide, Kent, UK

31 19.06 11.71 28 35 21 0.11 Failure River bank side, Alberta, Canada

32 18.84 14.36 25 20 30.5 0.45 Failure Unknown

33 21.51 6.94 30 31 76.81 0.38 Failure Unknown

34 14 11.97 26 30 88 0.45 Failure Case 2: open-pit iron ore mine, Goa, India

35 18 24 30.15 45 20 0.12 Failure Athens slope, Greece

36 23 0 20 20 100 0.3 Failure Open-pit coal mine Allori coalfield, Italy

37 22.4 100 45 45 15 0.25 Stable Case 1: open-pit coal mine, Alberta, Canada

38 22.4 10 35 45 10 0.4 Failure Case 2: open-pit coal mine, Alberta, Canada

39 20 20 36 45 50 0.25 Failure Case 3: open-pit coal mine, Newcastle coalfield, Australia

40 20 20 36 45 50 0.5 Failure Case 4: open-pit coal mine, Newcastle coalfield, Australia

41 20 0 36 45 50 0.25 Failure Case 5: open-pit coal mine, Newcastle coalfield, Australia

42 20 0 36 45 50 0.5 Failure Case 6: open-pit coal mine, Newcastle coalfield, Australia

43 22 0 40 33 8 0.35 Stable Case 1: Harbour slope, Newcastle, Australia

44 24 0 40 33 8 0.3 Stable Case 2: Harbour slope, Newcastle, Australia

45 20 0 24.5 20 8 0.35 Stable Case 3: Harbour slope, Newcastle, Australia

46 18 5 30 20 8 0.3 Stable Case 4: Harbour slope, Newcastle, Australia

47 22 29 15 18 400 0 Failure Qing River area landslide, China

48 23 24 19.8 23 380 0 Failure Qing River area landslide, China

49 22 40 30 30 196 0 Stable Qing River area landslide, China

50 22.54 29.4 20 24 210 0 Stable Qing River area landslide, China

51 22 21 23 30 257 0 Failure Qing River area landslide, China

52 23.5 10 27 26 190 0 Failure Qing River area landslide, China

53 22.5 18 20 20 290 0 Stable Qing River area landslide, China
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Table 3 (continued)

NO r (kN/m3) C (kPa) u (�) b (�) H (m) ru Status Location

54 22.5 20 16 25 220 0 Stable Qing River area landslide, China

55 18.68 26.34 15 35 8.23 0 Failure Qing River area landslide, China

56 16.05 11.49 0 30 3.66 0 Failure Qing River area landslide, China

57 18.84 14.36 25 20 30.5 0 Stable Qing River area landslide, China

58 28.44 29.42 35 35 100 0 Stable Qing River area landslide, China

59 28.44 39.23 38 35 100 0 Stable Qing River area landslide, China

60 20.6 16.28 26.5 30 40 0 Failure Qing River area landslide, China

61 14.8 0 17 20 50 0 Failure Qing River area landslide, China

62 14 11.97 26 30 88 0 Failure Qing River area landslide, China

63 25 12 45 53 120 0 Stable Qing River area landslide, China

64 26 15 45 50 200 0 Stable Qing River area landslide, China

65 16 7 20 40 115 0 Failure Qing River area landslide, China

66 20.41 24.9 13 22 10.67 0 Stable Qing River area landslide, China

67 19.63 11.98 20 22 12.19 0 Failure Qing River area landslide, China

68 21.83 8.62 32 28 12.8 0 Failure Qing River area landslide, China

69 20.41 33.52 11 16 45.72 0 Failure Qing River area landslide, China

70 18.84 15.32 30 25 10.67 0 Stable Qing River area landslide, China

71 18.84 0 20 20 7.62 0 Failure Qing River area landslide, China

72 21.43 0 20 20 61 0 Failure Qing River area landslide, China

73 20 8 20 10 10 0 Failure Slope in Tailie elementary school

74 27.3 37.3 31 30 30 0 Stable Slope on the right of Circle E of Tailie Overpass

75 20.6 26.31 22 25 35 0 Failure Landslide on the left of K71 ? 625 * K71 ? 700

76 21.6 6.5 19 40 50 0 Failure Slope of Pingxite Bridge

77 22.4 28.9 24 28 35 0 Failure Slope on the right of K76 ? 085 * K76 ? 200

78 23.2 31.2 23 30 33 0 Failure Slope on the left of K77 ? 920 * K78 ? 100

79 26.8 37.5 32 30 26 0 Stable Slope on the left of K79 ? 165 * K79 ? 300

80 27.4 38.1 31 25 42 0 Stable Slope on the right of K79 ? 920 * K80 ? 035

81 21.8 32.7 27 50 50 0 Failure Landslide on the right of ZAK0 ? 315 * ZAK0 ? 407

82 21.8 27.6 25 35 60 0 Failure Slope on the left of K83 ? 260 * K83 ? 360

83 26.5 35.4 32 30 21 0 Stable Slope on the right of K88 ? 300 * K88 ? 420

84 26.5 36.1 31 35 39 0 Stable Slope on the right of K88 ? 700 * K88 ? 876

85 27 35.8 32 30 69 0 Stable Slope on the right of K89 ? 730 * K89 ? 841

86 27 38.4 33 25 22 0 Stable Slope on the right of K90 ? 225 * K90 ? 345

87 21.4 28.8 20 50 52 0 Failure Slope on the left of K98 ? 520 * K98 ? 710

88 26 42.4 37 38 55 0 Stable Slope on the left of K99 ? 120 * K99 ? 260

89 26 39.4 36 25 30 0 Stable Slope on the left of K100 ? 280 * K100 ? 410

90 25.6 38.8 36 25 26 0 Stable Slope on the left of K100 ? 615 * K100 ? 915

91 20 30.3 25 45 53 0 Failure Landslide on the left of K103 ? 330 * K103 ? 450

92 25.8 34.7 33 30 50 0 Stable Slope on the left of K104 ? 610 * K104 ? 805

93 21.8 28.8 26 35 99 0 Failure Landslide on the left of K104 ? 892 * K105 ? 052

94 21.8 31.2 25 30 60 0 Failure Landslide on the left of K105 ? 260 * K105 ? 330

95 24 41.5 36 30 51 0 Stable Slope on the left of K106 ? 268 * K106 ? 577

96 24 40.8 35 35 50 0 Stable Slope on the left of K106 ? 992 * K107 ? 085

97 20.6 27.8 27 35 70 0 Failure Landslide on the left of K107 ? 856 * K107 ? 968

98 20.6 32.4 26 35 55 0 Failure Landslide on the left of K108 ? 960 * K109 ? 010

99 25.8 38.2 33 27 40 0 Stable Slope on the left of K109 ? 841 * K109 ? 900

100 25.8 39.4 33 25 45 0 Stable Slope on the left of K110 ? 200 * K110 ? 274

101 21.1 33.5 28 40 31 0 Failure Landslide on the left of K110 ? 421 * K110 ? 500

102 21.1 34.2 26 30 75 0 Failure Landslide on the left of K110 ? 980 * K110 ? 240

103 26.6 42.4 37 25 52 0 Stable Slope on the right of K112 ? 720 * K112 ? 815

104 26.6 44.1 38 35 42 0 Stable Slope on the left of K113 ? 500 * K113 ? 580

105 26.6 40.7 35 35 60 0 Stable Slope on the left of K114 ? 060 * K114 ? 167

106 25.8 41.2 35 30 40 0 Stable Slope on the left of K114 ? 224 * K114 ? 258
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Table 3 (continued)

NO r (kN/m3) C (kPa) u (�) b (�) H (m) ru Status Location

107 25.8 43.3 37 30 33 0 Stable Slope on the left of K117 ? 200 * K117 ? 412

108 21.7 32 27 45 60 0 Failure Front slope of tunnel in SongjieyaK122 ? 310

109 20.6 28.5 27 40 65 0 Failure Landslide on the right of K122 ? 350 * K122 ? 455

110 21.5 29.8 26 40 70 0 Failure Landslide on the left of K127 ? 440 * K127 ? 590

111 26.5 42.9 38 34 36 0 Stable Slope on the left of K127 ? 761 * K127 ? 882

112 20.8 15.6 20 30 45 0 Failure Landslide on the left of K137 ? 650 * K137 ? 730

113 20.8 14.8 21 30 40 0 Failure Landslide on the left of K138 ? 624 * K138 ? 797

114 19.6 29.6 23 40 58 0 Failure Landslide on the right of K75 ? 760 * K76 ? 000

115 25.4 33 33 20 35 0 Stable Slope on the right of ZBK0 ? 000 * ZBK0 ? 185

116 22.4 29.3 26 50 50 0 Failure Landslide on the left of K84 ? 602 * K85 ? 185

117 26.2 41.5 36 35 30 0 Stable Slope on the right of K91 ? 614 * K91 ? 660

118 26.2 42.3 36 23 36 0 Stable Slope on the right of K91 ? 720 * K91 ? 771

119 25.6 39.8 36 30 32 0 Stable Slope on the left of K100 ? 950 * K101 ? 300

120 25.6 36.8 34 35 60 0 Stable Slope on the left of K102 ? 691 * K102 ? 880

121 26.2 42.8 37 30 37 0 Stable Slope on the right of K118 ? 360 * K118 ? 549

122 26.2 43.8 38 35 68 0 Stable Slope on the right of K119 ? 823 * K119 ? 951

123 20.6 32.4 26 30 42 0 Failure Landslide on the right of K124 ? 340 * K124 ? 562

124 26.5 41.8 36 42 54 0 Stable Slope on the right of K131 ? 280 * K131 ? 380

125 20.8 15.4 21 30 53 0 Failure Landslide on the left of K138 ? 840 * K138 ? 930

126 27.3 14 31 41 110 0.25 Stable Circular critical failure mechanism

127 27.3 31.5 30 41 135 0.25 Stable Circular critical failure mechanism

128 27.3 16.8 28 50 90.5 0.25 Stable Circular critical failure mechanism

129 27.3 26 31 50 92 0.25 Stable Circular critical failure mechanism

130 18.5 25 0 30 6 0.25 Failure Circular critical failure mechanism

131 18.5 12 0 30 6 0.25 Failure Circular critical failure mechanism

132 22.4 10 35 30 10 0.25 Stable Circular critical failure mechanism

133 21.4 10 30 30 20 0.25 Stable Circular critical failure mechanism

134 22 0 36 45 50 0.25 Stable Circular critical failure mechanism

135 12 0 30 45 4 0.25 Stable Circular critical failure mechanism

136 12 0 30 45 8 0.25 Failure Circular critical failure mechanism

137 12 0 30 45 4 0.25 Stable Circular critical failure mechanism

138 18.66 8.8 15 35 8.2 0 Failure Circular critical failure mechanism

139 28.4 9.8 35 35 100 0 Stable Circular critical failure mechanism

140 25.96 50 45 50 200 0 Stable Circular critical failure mechanism

141 18.46 8.35 0 30 6 0 Failure Circular critical failure mechanism

142 21.36 3.35 30 30 20 0 Stable Circular critical failure mechanism

143 15.99 23.35 20 40 115 0 Failure Circular critical failure mechanism

144 20.39 8.3 13 22 10.6 0.35 Stable Circular critical failure mechanism

145 19.6 4 20 22 12.2 0.41 Failure Circular critical failure mechanism

146 20.39 11.15 11 16 45.8 0.2 Failure Circular critical failure mechanism

147 19.03 3.9 28 35 21 0.11 Failure Circular critical failure mechanism

148 17.98 1.65 30 20 8 0.3 Stable Circular critical failure mechanism

149 20.96 6.65 40 40 12 0 Stable Circular critical failure mechanism

150 20.96 11.65 28 40 12 0.5 Stable Circular critical failure mechanism

151 19.97 3.35 29 34 6 0.3 Stable Circular critical failure mechanism

152 18.77 10 10 25 50 0.1 Stable Circular critical failure mechanism

153 18.77 10 20 30 50 0.1 Stable Circular critical failure mechanism

154 18.77 8.35 20 30 50 0.2 Failure Circular critical failure mechanism

155 20.56 5.4 27 30 40 0 Failure Circular critical failure mechanism

156 16.47 3.85 0 30 3.6 0 Failure Circular critical failure mechanism

157 18.8 4.8 25 20 30.6 0 Stable Circular critical failure mechanism

158 18.8 19.15 20 20 30.6 0 Stable Circular critical failure mechanism

159 28.4 13.05 38 35 100 0 Stable Circular critical failure mechanism
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Table 3 (continued)

NO r (kN/m3) C (kPa) u (�) b (�) H (m) ru Status Location

160 24.96 40 45 53 120 0 Stable Circular critical failure mechanism

161 18.46 4 0 30 6 0 Failure Circular critical failure mechanism

162 22.38 3.35 35 30 10 0 Stable Circular critical failure mechanism

163 21.98 6.65 36 45 50 0 Failure Circular critical failure mechanism

164 18.8 5.1 30 25 10.6 0.38 Stable Circular critical failure mechanism

165 18.8 4.8 25 31 76.8 0.38 Failure Circular critical failure mechanism

166 21.47 2.3 30 30 88 0.45 Failure Circular critical failure mechanism

167 13.97 4 26 45 20 0.12 Failure Circular critical failure mechanism

168 17.98 8 30 45 15 0.25 Failure Circular critical failure mechanism

169 22.38 33.3 45 45 10 0.4 Stable Circular critical failure mechanism

170 22.38 3.35 35 45 50 0.25 Failure Circular critical failure mechanism

171 19.97 6.65 36 45 50 0.25 Failure Circular critical failure mechanism

172 19.97 6.65 36 45 50 0.5 Failure Circular critical failure mechanism

173 20.96 15 25 49 12 0.3 Stable Circular critical failure mechanism

174 20.96 10 35 40 12 0.4 Stable Circular critical failure mechanism

175 19.97 13.35 30 30 15 0.3 Stable Circular critical failure mechanism

176 17.98 15 25 25 14 0.3 Stable Circular critical failure mechanism

177 18.97 10 35 35 11 0.2 Stable Circular critical failure mechanism

178 19.97 13.35 40 40 10 0.2 Stable Circular critical failure mechanism

179 18.83 8.25 21 21 37 0.5 Stable Circular critical failure mechanism

180 18.83 3.45 21 34 37 0.3 Failure Circular critical failure mechanism

181 18.77 8.35 10 25 50 0.2 Failure Circular critical failure mechanism

182 18.77 6.65 10 25 50 0.3 Failure Circular critical failure mechanism

183 19.08 3.35 10 25 50 0.4 Failure Circular critical failure mechanism

184 18.77 6.65 20 30 50 0.3 Failure Circular critical failure mechanism

185 19.08 3.35 20 30 50 0.4 Failure Circular critical failure mechanism

186 21.98 6.65 22 20 180 0 Failure Circular critical failure mechanism

187 21.98 6.65 22 20 180 0.1 Failure Circular critical failure mechanism

188 22 10 35 45 10 0.403 Failure Left bank accumulation body of Xiaodongjiang hydropower station, China

189 20 20 36 45 30 0.503 Failure Longxi landslide of Longyangxia hydropower station, China

190 20 0.1 36 45 50 0.29 Failure Chana landslide of Longyangxia hydropower station, China

191 20 0.1 36 45 50 0.503 Failure Canal slope of Baoji gorge with Wei River diversion project, China

192 22 0 40 33 8 0.393 Stable Yellowstone landslide in the Three Gorges of the Yangtze River, China

193 24 0 40 33 8 0.303 Stable Baiyian landslide in the Three Gorges reservoir area, China

194 20 0 24.5 20 8 0.35 Stable Baihuanping landslide in the Three Gorges reservoir area, China

195 18 0 30 33 8 0.303 Stable Gaojiazui landslide in the Three Gorges reservoir area, China

196 27 43 35 43 420 0.29 Failure Songshan ancient landslide at Lechangxia hydropower station, China

197 27 50 40 42 407 0.29 Stable Back channel landslide in the Three Gorges reservoir area, China

198 27 35 35 42 359 0.29 Stable Jipazi landslide in the Three Gorges reservoir area, China

199 27 37.5 35 37.8 320 0.29 Stable Jiuxianping Landslide in the Three Gorges reservoir area, China

200 27 32 33 42.6 301 0.29 Failure Heishe landslide, China

201 27 32 33 42.2 239 0.29 Stable Liujiawuchang landslide in the Three Gorges reservoir area, China

202 27.3 14 31 41 110 0.29 Stable Majiaba landslide in the Three Gorges Reservoir Area, China

203 27.3 31.5 29.703 41 135 0.293 Stable Sandengzi landslide in the Three Gorges Reservoir Area, China

204 27.3 16.2 28 50 90.5 0.29 Stable Yaqianwan landslide in the Three Gorges Reservoir Area, China

205 27.3 36 1 50 92 0.29 Stable No.3 landslide of Sanbanxi hydropower station, China

206 27.3 10 39 41 511 0.29 Stable Shijiapo landslide, China

207 27.3 10 39 40 470 0.29 Stable Tanggudong landslide, China

208 25 46 35 47 443 0.29 Stable Tianbao landslide, China

209 25 46 35 44 435 0.29 Stable Shipingtai landslide of Xiaoxi hydropower station, China

210 25 46 35 46 432 0.29 Stable Dongyemiao landslide, China

211 26 150 45 30 230 0.29 Stable Hongtupo landslide, China

212 18.5 25 0 30 6.003 0.29 Failure Lianziya landslide in the Three Gorges reservoir area, China
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Table 3 (continued)

NO r (kN/m3) C (kPa) u (�) b (�) H (m) ru Status Location

213 18.5 12 0 30 6.003 0.29 Failure No. 6 landslide of Jishixia hydropower station, China

214 22 10 35 30 10 0.29 Stable No.7 landslide of Tianshengqiao second cascade hydropower station, China

215 21 10 30.343 30 30 0.29 Stable Kualiangzi landslide, China

216 22 10 36 45 50 0.29 Failure No.1 landslide of Jishixia hydropower station, China

217 22 20 36 45 30 0.29 Failure Daxi landslide, China

218 12 0.03 30 35 4 0.29 Failure Right Bank landslide of Zihong reservoir, China

219 12 0 30 45 8 0.29 Failure Zhongyangcun landslide, China

220 12 0 30 35 4 0.29 Stable Zhaojiatang landslide, China

221 31.3 68 37 49 200.5 0.29 Failure Yangdagou landslide of Xunyang hydropower station, China

222 20 30 36 45 50 0.29 Failure Sujiaping Landslide, China

223 19.6 21.8 29.5 37.8 40.3 0.25 Stable Maidipo Landslide, China

224 23.1 25.2 29.2 36.5 61.9 0.4 Stable Maoping Landslide, China

225 23.8 31 38.7 47.5 23.5 0.31 Stable Shaling Landslide, China

226 22.3 20.1 31 40.2 88 0.19 Stable Niugunhan Landslide, China

227 23.5 25 20 49.1 115 0.41 Stable Xieliupo Landslide, China

228 23 20 20.3 46.2 40.3 0.25 Stable Zhaojiatang Landslide, China

229 21.5 15 29 41.5 123.6 0.36 Stable Touzhaigou Landslide, China

230 23.4 15 38.5 30.3 45.2 0.28 Failure Shenzhen reservoir diversion tunnel landslide, China

231 19.6 17.8 29.2 46.8 201.2 0.37 Stable Taipingyi hydropower station diversion tunnel landslide, China

232 22.1 45.8 49.5 45.8 49.5 0.21 Stable Bawangshan Landslide, China

233 18.82 25 14.6 20.32 50 0.4 Failure Jiangxi Qiyi Reservoir, China

234 20 20 36 45 50 0 Failure Unknown

235 27 40 35 47.1 292 0 Failure Unknown

236 25 46 35 50 284 0 Stable Unknown

237 31.3 68 37 46 366 0 Failure Unknown

238 25 46 36 44.5 299 0 Stable Unknown

239 27.3 10 39 40 480 0 Stable Unknown

240 25 46 35 46 393 0 Stable Unknown

241 25 48 40 49 330 0 Stable Unknown

242 31.3 68.6 37 47 305 0 Failure Unknown

243 25 55 36 45.5 299 0 Stable Unknown

244 31.3 68 37 47 213 0 Failure Unknown

245 26.49 150 33 45 73 0.15 Stable Three Gorges hydropower project, China

246 26.7 150 33 50 130 0.25 Stable Three Gorges hydropower project, China

247 26.89 150 33 52 120 0.25 Stable Three Gorges hydropower project, China

248 26.57 300 38.7 45.3 80 0.15 Failure Three Gorges hydropower project, China

249 26.78 300 38.7 54 155 0.25 Failure Three Gorges hydropower project, China

250 26.81 200 35 58 138 0.25 Stable Three Gorges hydropower project, China

251 26.43 50 26.6 40 92.2 0.15 Stable Three Gorges hydropower project, China

252 26.69 50 26.6 50 170 0.25 Stable Three Gorges hydropower project, China

253 26.81 60 28.8 59 108 0.25 Stable Three Gorges hydropower project, China

254 27.8 27.8 27 41 236 0.1 Stable Dingjiahe phosphorus mine, China

255 27.1 22 18.6 25.6 100 0.19 Failure Guilin-Liuzhou highway, China

256 21.2 0 35 23.75 150 0.25 Failure Xiaolangdi reservoir, China

257 21.2 0 35 23.75 150 0.25 Failure Xiaolangdi reservoir, China

258 21.2 0 35 23.75 150 0.25 Stable Xiaolangdi reservoir, China

259 21.2 0 35 23.75 150 0.25 Stable Xiaolangdi reservoir, China

260 22.3 0 40 26.5 78 0.25 Stable Xiaolangdi reservoir, China

261 18.6 0 32 26.5 46 0.25 Stable Jingzhumiao reservoir, China

262 18.6 0 32 21.8 46 0.25 Stable Jingzhumiao reservoir, China

263 18.8 9.8 21 19.29 39 0.25 Failure Yuecheng reservoir, China

264 21.2 0 35 18.43 73 0.25 Stable Yuecheng reservoir, China

265 17.2 10 24.25 17.07 38 0.4 Stable Gushan reservoir, China
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Table 3 (continued)

NO r (kN/m3) C (kPa) u (�) b (�) H (m) ru Status Location

266 19 11.9 20.4 21.04 54 0.75 Stable Laobu reservoir, China

267 18 5 26.5 15.52 53 0.4 Failure Wenyuhe reservoir, China

268 18 5 22 15.52 53 0.4 Failure Wenyuhe reservoir, China

269 17.4 20 24 18.43 51 0.4 Failure Hongwuyi reservoir, China

270 17.8 21.2 13.92 18.43 51 0.4 Stable Hongwuyi reservoir, China

271 18.8 8 26 21.8 40 0.4 Failure Lingli reservoir, China

272 18.8 8 26 21.8 40 0.4 Failure Lingli reservoir, China

273 18 21 21.33 21.8 40 0.4 Failure Lingli reservoir, China

274 17.6 10 16 21.8 9 0.4 Stable Zhejiang sea wall, China

275 17.6 10 8 21.8 9 0.4 Stable Zhejiang sea wall, China

276 17.4 14.95 21.2 45 15 0.4 Failure Hunan anxiang reservoir, China

277 27 27.3 29.1 21 565 0.26 Failure Guzhang gaofeng slope, China

278 27 27.3 29.1 35 150 0.22 Failure Guzhang gaofeng slope, China

279 27 27.3 29.1 37 184 0.3 Failure Guzhang gaofeng slope, China

280 25 46 35 50 285 0.25 Stable Chengmenshan open pit copper mine, China

281 20.45 16 15 30 36 0.25 Stable Baijiagou earth slope, China

282 27 70 22.8 45 60 0.32 Stable Jingping first stage hydropower station, China

283 22.4 10 35 45 10 0.4 Failure Rockfill slope

284 20 20 36 45 50 0.5 Failure Rockfill slope

285 20 0 36 45 50 0.25 Failure Rockfill slope

286 20 0 36 45 50 0.5 Failure Rockfill slope

287 22 0 40 33 8 0.35 Failure Rockfill slope

288 24 0 40 33 8 0.3 Failure Rockfill slope

289 20 0 24.5 20 8 0.35 Stable Rockfill slope

290 18 5 30 20 8 0.3 Stable Rockfill slope

291 27 40 35 43 420 0.25 Failure Rockfill slope

292 27 50 40 42 407 0.25 Stable Rockfill slope

293 27 35 35 42 359 0.25 Stable Rockfill slope

294 27 37.5 35 37.8 320 0.25 Stable Rockfill slope

295 27 32 33 42.6 301 0.25 Failure Rockfill slope

296 27 32 33 42.4 289 0.25 Stable Rockfill slope

297 27.3 14 31 41 110 0.25 Stable Rockfill slope

298 27.3 31.5 29.7 41 135 0.25 Stable Rockfill slope

299 27.3 16.8 28 50 90.5 0.25 Stable Rockfill slope

300 27.3 26 31 50 92 0.25 Stable Rockfill slope

301 27.3 10 39 41 511 0.25 Stable Rockfill slope

302 27.3 10 39 40 470 0.25 Stable Rockfill slope

303 25 46 35 47 443 0.25 Stable Rockfill slope

304 25 46 35 44 435 0.25 Stable Rockfill slope

305 25 46 35 46 432 0.25 Stable Rockfill slope

306 26 150 45 30 200 0.25 Stable Rockfill slope

307 18.5 25 0 30 6 0.25 Failure Rockfill slope

308 18.5 12 0 30 6 0.25 Failure Rockfill slope

309 22.4 10 35 30 10 0.25 Stable Rockfill slope

310 21.4 10 30.34 30 20 0.25 Stable Rockfill slope

311 25 46 35 46 393 0.25 Stable Rockfill slope

312 25 48 40 49 330 0.25 Stable Rockfill slope

313 31.3 68.6 37 47 305 0.25 Failure Rockfill slope

314 25 55 36 45.5 299 0.25 Stable Rockfill slope

315 31.3 68 37 47 213 0.25 Failure Rockfill slope

316 0.657 0.176 0.333 0.66 0.041 0 Failure Unknown

317 1 0.196 0.778 0.66 0.5 0 Stable Unknown

318 0.914 1 1 0.943 1 0 Stable Unknown
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Table 3 (continued)

NO r (kN/m3) C (kPa) u (�) b (�) H (m) ru Status Location

319 0.65 0.167 0 0.566 0.03 0 Failure Unknown

320 0.752 0.067 0.674 0.566 0.1 0 Stable Unknown

321 0.563 0.467 0.444 0.755 0.575 0 Failure Unknown

322 0.718 0.166 0.289 0.415 0.053 0.7 Stable Unknown

323 0.69 0.08 0.444 0.415 0.061 0.81 Failure Unknown

324 0.767 0.057 0.711 0.528 0.064 0.98 Failure Unknown

325 0.718 0.223 0.244 0.302 0.229 0.4 Failure Unknown

326 0.67 0.078 0.622 0.66 0.105 0.22 Failure Unknown

327 0.633 0.033 0.667 0.377 0.04 0.6 Stable Unknown

328 0.738 0.133 0.889 0.755 0.06 0 Stable Unknown

329 0.738 0.233 0.622 0.755 0.06 1 Stable Unknown

330 0.703 0.067 0.644 0.642 0.03 0.6 Stable Unknown

331 0.661 0.2 0.222 0.472 0.25 0.2 Stable Unknown

332 0.661 0.2 0.444 0.566 0.25 0.2 Stable Unknown

333 0.661 0.167 0.444 0.566 0.25 0.4 Failure Unknown

334 0.724 0.108 0.589 0.566 0.2 0 Failure Unknown

335 0.58 0.077 0 0.566 0.018 0 Failure Unknown

336 0.662 0.096 0.556 0.377 0.153 0 Stable Unknown

337 0.662 0.383 0.444 0.377 0.153 0 Stable Unknown

338 1 0.261 0.844 0.66 0.5 0 Stable Unknown

339 0.492 0.08 0.578 0.566 0.44 0 Failure Unknown

340 0.879 0.8 1 1 0.6 0 Stable Unknown

341 0.65 0.08 0 0.566 0.03 0 Failure Unknown

342 0.788 0.067 0.778 0.566 0.05 0 Stable Unknown

343 0.774 0.133 0.8 0.849 0.25 0 Failure Unknown

344 0.662 0.102 0.667 0.472 0.053 0.76 Stable Unknown

345 0.662 0.096 0.556 0.377 0.153 0.9 Failure Unknown

346 0.756 0.046 0.667 0.585 0.384 0.76 Failure Unknown

347 0.492 0.08 0.578 0.566 0.44 0.9 Failure Unknown

348 0.633 0.16 0.67 0.849 0.1 0.24 Failure Unknown

349 0.788 0.666 1 0.849 0.075 0.5 Stable Unknown

350 0.788 0.067 0.778 0.849 0.05 0.8 Failure Unknown

351 0.703 0.133 0.8 0.849 0.25 0.5 Failure Unknown

352 0.703 0.133 0.8 0.849 0.25 1 Failure Unknown

353 0.738 0.3 0.556 0.925 0.06 0.6 Stable Unknown

354 0.738 0.2 0.778 0.755 0.06 0.8 Stable Unknown

355 0.703 0.267 0.667 0.566 0.075 0.6 Stable Unknown

356 0.633 0.3 0.556 0.472 0.07 0.6 Stable Unknown

357 0.668 0.2 0.778 0.66 0.055 0.4 Stable Unknown

358 0.703 0.267 0.889 0.755 0.05 0.4 Stable Unknown

359 0.633 0.165 0.473 0.551 0.185 1 Failure Unknown

360 0.633 0.069 0.473 0.642 0.185 0.6 Failure Unknown

361 0.661 0.167 0.222 0.472 0.25 0.4 Failure Unknown

362 0.661 0.133 0.222 0.472 0.25 0.6 Failure Unknown

363 0.672 0.067 0.222 0.472 0.25 0.8 Failure Unknown

364 0.661 0.133 0.444 0.566 0.25 0.6 Failure Unknown

365 0.672 0.067 0.444 0.566 0.25 0.8 Failure Unknown

366 0.774 0.133 0.489 0.377 0.9 0 Failure Unknown

367 0.774 0.133 0.489 0.377 0.9 0.2 Failure Unknown

368 17.6 39.5 30.2 50 38 0.04 Stable Jorabat-Shillong expressway (NH-40)08 ? 230

369 17.3 39 30 50 35 0.04 Stable 08 ? 620

370 17.8 38.7 30.5 60 26 0 Stable 08 ? 980

371 17.9 39 31.2 55 25 0.15 Stable 09 ? 440
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Table 3 (continued)

NO r (kN/m3) C (kPa) u (�) b (�) H (m) ru Status Location

372 17.3 39 30 50 26 0.2 Stable 09 ? 530

373 17.3 37.9 30 45 29 0.37 Stable 11 ? 950

374 17.5 38.5 29 50 33 0.2 Stable 12 ? 870

375 17.5 39.2 29.7 55 31 0 Stable 13 ? 780

376 17.8 39.8 31.3 45 32 0.34 Stable 15 ? 530

377 17.3 39 30 48 30 0.03 Stable 15 ? 770

378 18.3 57.2 38.6 38 31 0.64 Stable 18 ? 460

379 17.4 5 43.5 58 29 0.05 Failure 19 ? 900

380 17.8 14 44.2 65 31 0.07 Failure 19 ? 970

381 17.4 0 43.7 60 26 0.4 Failure 20 ? 140

382 19.8 57.5 41.3 62 23 0.19 Stable 24 ? 170

383 20.5 6.5 12.5 42 70 0 Failure Yuan-Mo Highway

384 21.4 7.1 16.7 44 70 1 Failure Yuan-Mo Highway

385 21.5 9.5 11.5 40 75 0 Failure Yuan-Mo Highway

386 20.6 6.7 9.4 45 30 0 Failure Yuan-Mo Highway

387 20.9 9.7 18.5 39 38 1 Failure Yuan-Mo Highway

388 21.4 9.4 21.8 30 106 1 Failure Yuan-Mo Highway

389 19.9 6.8 19.4 30 80 1 Failure Yuan-Mo Highway

390 20.2 14.9 18.5 40 70 1 Failure Yuan-Mo Highway

391 19 9 15.2 45 27 0 Failure Yuan-Mo Highway

392 19.7 16.4 21.4 30 55 1 Failure Yuan-Mo Highway

393 21.2 7.8 22.4 45 25 1 Failure Yuan-Mo Highway

394 19.9 7.4 15.6 44 30 1 Failure Yuan-Mo Highway

395 19.9 7.1 21.2 30 55 0 Failure Yuan-Mo Highway

396 22.2 10.7 25.2 35 45 1 Failure Yuan-Mo Highway

397 21.8 7.2 17.8 40 34 1 Failure Yuan-Mo Highway

398 21.8 7.2 17.8 42 41 1 Failure Yuan-Mo Highway

399 21.96 34.77 14.15 28 60 0 Stable Yuan-Mo Highway

400 21.96 34.77 14.15 24 115 0 Stable Yuan-Mo Highway

401 22.93 32.33 19.73 30 50 1 Stable Yuan-Mo Highway

402 22.15 19.47 13.29 28 110 1 Stable Yuan-Mo Highway

403 23.4 20 9 36.5 50 0 Stable Yuan-Mo Highway

404 21.8 18.05 9.72 30 40 0 Failure Yuan-Mo Highway

405 23.98 32.77 17.28 40 100 0 Failure Yuan-Mo Highway

406 20.57 24.8 15.53 40 50 1 Stable Yuan-Mo Highway

407 21.2 24.88 17.29 44 52 0 Failure Yuan-Mo Highway

408 22.15 5 19 45 40 1 Failure Yuan-Mo Highway

409 21.8 18.05 9.72 35 40 0 Failure Yuan-Mo Highway

410 23.75 36.78 22.63 42 43 1 Failure Yuan-Mo Highway

411 20.98 23.59 20 45 65 0 Failure Yuan-Mo Highway

412 22.6 24.06 14.04 26 190 1 Stable Yuan-Mo Highway

413 22.29 27.54 10.1 40 70 0 Stable Yuan-Mo Highway

414 22.1 24.67 16.2 40 70 1 Stable Yuan-Mo Highway

415 20.25 32.4 11.99 45 36 1 Failure Yuan-Mo Highway

416 20.8 15.57 8.74 29.7 35 1 Failure Yuan-Mo Highway

417 21.17 15.44 16 33 32 1 Failure Yuan-Mo Highway

418 22.94 33.77 23.29 27 170 1 Stable Yuan-Mo Highway

419 22.95 46.49 25.11 30 42 1 Stable Yuan-Mo Highway

420 21.92 19.4 15.5 35 80 1 Failure Yuan-Mo Highway

421 21.42 28.9 16.2 40 30 1 Stable Yuan-Mo Highway

422 20.8 40.25 19.39 45 123 1 Failure Yuan-Mo Highway

423 20.1 34.61 24.69 22 94 0 Stable Yuan-Mo Highway

424 19.19 19.69 17.68 34 43 1 Failure Yuan-Mo Highway
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valuable tool for predicting slope stability, especially

in cases that very easily fail and classes with very low

stability followed by ET, RF, GBM and bagging

models. However, the stacking model has a large

number of calculations and long training time, so it is

necessary to combine the super learner function in

practical applications to improve the computational

efficiency.

3. The importance scores of 0.2309, 0.2007 and 0.2003

obtained by the prediction variables more influence

slope stability, of which are geotechnical material

variables (c, C and u).
4. The relationship between slope stability and influenc-

ing factors is a high-dimensional complex nonlinear

relationship, which is challenging to address by

traditional modelling methods. The analysis of engi-

neering examples shows that the ensemble learning

algorithm can deal with this relationship well and

achieve accurate and reliable prediction results, which

has good applicability for slope stability evaluation.

For future work, the introduction of samples and

parameters that play an essential role can be added to

develop an ensemble learning algorithm and improve

its generalization and reliability, such as rainfall,

earthquakes, human activities and other external or

trigger factors.

Appendix

See Table 3.
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Landslide susceptibility assessment using SVM machine learning

algorithm. Eng Geol 123(3):225–234

39. Michalowski LR (1995) Slope stability analysis: a kinematical

approach. Geotechnique 45(2):283–293

40. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B

(2011) Scikit-learn: machine learning in python. J Mach Learn

Res 12:2825–2830

41. Qi C, Tang X (2018) A hybrid ensemble method for improved
prediction of slope stability. Int J Numer Anal Methods Geomech

42(15):1823–1839

42. Qi C, Tang X (2018) Slope stability prediction using integrated

metaheuristic and machine learning approaches: a comparative

study. Comput Ind Eng 118:112–122

43. Sakellariou M, Ferentinou M (2005) A study of slope stability

prediction using neural networks. Geotech Geol Eng

23(4):419–445

44. Samui P (2008) (2008) Slope stability analysis: a support vector

machine approach. Environ Geol 56(2):255–267

45. Schapire RE, Singer Y (1999) Improved boosting algorithms

using confidence-rated predictions. Mach Learn 37(3):297–336

46. Shimshoni Y, Intrator N (1998) Classification of seismic signals

by integrating ensembles of neural networks. IEEE Trans Signal

Process 46(5):1194–1201

47. Simm J, Abril I (2014) Extratrees: extremely randomized trees

(ExtraTrees) method for classification and regression. R package

version 1.0. 5.

48. Sun G, Lin S, Zheng H, Tan Y, Sui T (2020) The virtual element

method strength reduction technique for the stability analysis of

stony soil slopes. Comput Geotech 119:103349

49. Wang CH (2004) Study on prediction methods for high engi-

neering slope. Master thesis

50. Wang L, Wu C, Tang L, Zhang W, Lacasse S, Liu H, Gao L

(2020) Efficient reliability analysis of earth dam slope stability

using extreme gradient boosting method. Acta Geotech

15(11):3135–3150

51. Wang H, Xu W, Xu R (2005) Slope stability evaluation using

back propagation neural networks. Eng Geol 80(3–4):302–315

52. Wen S, La H, Wang C (2013) Analysis of influence factors of

slope stability. Appl Mech Mater Trans Tech Publ 256:34–38

Acta Geotechnica (2022) 17:1477–1502 1501

123



53. Wolpert DH (1992) Stacked generalization. Neural Netw

5(2):241–259

54. Xiao Z, Chen C, Ji Y (2011) Applying adaptive neuro-fuzzy

inference system to stability assessment of reservoir slope. Bull

Soil Water Conserv 31(5):186–190

55. Xu W, Shao J (1998) Artificial neural network analysis for the

evaluation of slope stability. Application of numerical methods to

geotechnical problems. Springer, Berlin, pp 665–672

56. Xu F, Xu W, Wang K (2009) Slope stability analysis using least

square support vector machine optimized with ant colony algo-

rithm. J Eng Geol 17(2):253–257

57. Yan X, Li X (2011) Bayes discriminant analysis method for

predicting the stability of open pit slope. In: 2011 International

conference on electric technology and civil engineering

(ICETCE). IEEE, pp 147–150

58. Yun L, Keping Z, Jielin L (2018) Prediction of slope stability

using four supervised learning methods. IEEE Access

6:31169–31179

59. Zhao H, Yin S, Ru Z (2012) Relevance vector machine applied to

slope stability analysis. Int J Numer Anal Meth Geomech

36(5):643–652

60. Zheng F, Leung YF, Zhu J, Jiao Y (2019) Modified predictor-

corrector solution approach for efficient discontinuous deforma-

tion analysis of jointed rock masses. Int J Numer Anal Meth

Geomech 43(2):599–624

61. Zheng F, Zhuang X, Zheng H, Jiao Y, Timon R (2020) Kinetic

analysis of polyhedral block system using an improved potential-

based penalty function approach for explicit discontinuous

deformation analysis. Appl Math Model 82:314–335

62. Zhou Z, Jiang Y, Yang Y, Chen S (2002) Lung cancer cell

identification based on artificial neural network ensembles. Artif

Intell Med 24(1):25–36

63. Zhou J, Li X, Mitri HS (2015) Comparative performance of six

supervised learning methods for the development of models of

hard rock pillar stability prediction. Nat Hazards 79(1):291–316

64. Zhou J, Li E, Yang S, Wang M, Mitri H (2019) Slope stability

prediction for circular mode failure using gradient boosting

machine approach based on an updated database of case histories.

Saf Sci 118:505–518

65. Zhou S, Rabczuk T, Zhuang X (2018) Phase field modeling of

quasi-static and dynamic crack propagation: COMSOL imple-

mentation and case studies. Adv Eng Softw 122:31–49

66. Zhou S, Zhuang X, Rabczuk T (2018) A phase-field modeling

approach of fracture propagation in poroelastic media. Eng Geol

240:189–203

67. Zhou S, Zhuang X, Zhu H, Rabczuk T (2018) Phase field mod-

eling of crack propagation, branching and coalescence in rocks.

Theor Appl Fract Mech 96:174–192

68. Zhu C (2005) Analysis and evaluation of slope stability—taking

yuanmo expressway slope as an example. Kunming University of

Science and Technology

69. Zhu B, Zhou D, Chen S, Wang L (2011) Evaluation of slope

stability by improved BP neural network with L-M method.

West-China Explor Eng 10:21–24

70. Zhuang X, Zheng F, Zheng H, Jiao Y, Rabczuk T, Wriggers P

(2021) A cover-based contact detection approach for irregular

convex polygons in discontinuous deformation analysis. Int J

Numer Anal Meth Geomech 45:208–233

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

1502 Acta Geotechnica (2022) 17:1477–1502

123


	Comparative performance of eight ensemble learning approaches for the development of models of slope stability prediction
	Abstract
	Introduction
	Ensemble learning methods
	Bagging
	Random forest
	Boosting
	Gradient boosting machine
	Stacking
	Voting
	Extra trees

	Database and variables
	Parameter analysis
	Case data and preliminary analysis

	Development of slope stability assessment model
	Data pre-processing
	Model performance evaluation
	Model development and parameter optimization

	Results and discussion
	Discriminant results and performance analysis
	Relative variable impact

	Conclusions
	Appendix
	Acknowledgements
	References




