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Abstract

This paper presents an approach for calibrating and validating a constitutive model via conventional triaxial tests. First, the
consolidated drained triaxial compression test results are used for model calibration. The particle swarm optimization
algorithm based on multiple adaptive strategies is then adopted to calibrate the best fitting parameters. Subsequently, the
constitutive model is validated by considering its performance in modeling the consolidated undrained triaxial tests. The
unified hardening model for clays and sands (CSUH model) proposed by Yao et al. (Comput Geotech 110:326-343, 2019.
10.1016/j.compgeo.2019.02.024) is considered. The results demonstrate that the CSUH model can well describe the
dilatancy of clays and sands with different densities in both drained and undrained triaxial tests.
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1 Introduction

Over the past few decades, numerous constitutive models
for soils have been proposed, and more will be emerging in
future [15, 36, 37]. When using a certain constitutive law in
engineering design, one may be concerned with its cali-
bration and validation.

1.1 Calibration of the parameters

A constitutive model normally involves a number of
parameters. For example, the modified Cam-Clay (MCC)
model includes five parameters related to the elastic and
plastic behavior of soil [27-29, 32]. However, many of
these parameters are derived from laboratory tests with
particular stress paths that may not be representative for
engineering problems. Moreover, the in situ stress history
is often unknown, which hinders the use of laboratory tests.

One possible approach is to fit the constitutive model
based on laboratory tests such as conventional triaxial and
oedometer tests. In this case, some optimization methods
can be used for model calibration. This fitting approach
with optimization methods is not new. For instance, Pal
et al. [23] used the genetic algorithm (GA) [10] to calibrate
the parameters of the hierarchical single surface model.
Sadoghi Yazdi et al. [31] adopted the particle swarm
optimization (PSO) algorithm [11] to calibrate the param-
eters of the linear elastic-hardening plastic model with
Drucker—Prager yield criterion. More applications can be
found in references [1, 6, 16, 24, 54, 56].

1.2 Validation of the constitutive laws

The constitutive model should be validated by laboratory
tests with various stress paths before engineering
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application. For example, Matsuoka et al. [20] developed a
unified SMP model for clays and calibrated the parameters
through conventional drained triaxial tests on normally
consolidated Fujinomori clay (experimental data from
Nakai and Matsuoka [22]). The calibrated parameters are
then verified by independent test results, such as undrained
triaxial compression and extension tests. More examples of
model validation through independent test results can be found in
the literature [4, 9, 12-14, 18, 21, 25, 26, 30, 34, 38, 39,
41,44, 47, 50, 51].

Despite the aforementioned successes in the calibration
and validation of constitutive laws, there still lacks stan-
dard methodologies. This manuscript presents an in-depth
approach for calibrating and validating a constitutive
model with conventional laboratory test results. Specifi-
cally, the unified hardening model for clays and sands
(CSUH model) developed by Yao et al. [48] is considered.
This constitutive model inherits the basic principles of the
MCC model while extends its ability to model the
mechanical behavior of both sands and clays. This manu-
script reports the details of calibrating its eight basic
parameters via consolidated drained triaxial compression
(CD) tests. The calibrated parameters are further used to
predict the consolidated undrained triaxial compression
(CU) tests. This so-called “drained versus undrained”
approach assures its universal applicability along various
stress paths. The calibration solver and the related docu-
mentation and test cases can be found on the website:
https://github.com/ChenZuyul WHR/CSUH-BH.

In the remaining part of this manuscript, firstly, the
theories of the CSUH model and its numerical implemen-
tation are detailed. Afterward, the particle swarm opti-
mization algorithm based on multiple adaptive strategies
(MAPSO) for model calibration is described. Finally, the
model calibration and validation processes are presented,
where the authors demonstrate the relative errors and
determination coefficient of the predicted results.

2 The CSUH model
2.1 Model framework

It is well-known that state-dependent dilatancy and excess
pore water pressure are two major challenges in constitu-
tive modeling of soils [7, 8]. The original unified hardening
(UH) model, proposed by Yao et al. [44—46] for overcon-
solidated clays based on the MCC model, is capable of
characterizing these two issues by introducing a unified
hardening law [50]. Because of this advantage, it is later
extended for many kinds of soils, e.g., unsaturated soils
[18] and structured soils [57], etc., and has gained popu-
larity in many engineering practices [43, 52, 53, 55].
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Table 2 The basic parameters and intermediate variables of the CSUH model

Symbol Aspects

Description

Basic parameters
M Yielding
V Elasticity

Plasticity

Dilatancy

IR N = > =

Slope of CSL in p’ ~ g coordinates
Poisson’s ratio

Slope of the unloading line

Slope of RNCL in e ~ Inp’ coordinates
e at p' = 1 kPa for RNCL

e at p' = 1 kPa for NCL

Control the size of dilatancy

Control the rate of dilatancy

Symbol Equation

Description

Intermediate variables

_ 301-2v)(14e0)
E E — ‘K 0 (P/ +px)
M, M. =M -exp(—m- &)
Mf " -1
My = 6(\/%exp(—ﬁ) +1+ 1)

/A

y 21 (P s
:Ae =7Z— Aln| ———
¢ e (1+1’.V>

2 ,2
(2 —x)1 wyﬂﬁ)p'“’s
—(A=K)In| —FF——
P +ps

Ps ps =exp(5%) — 1

c — A=K
P p I+eg

Elastic modulus

Characteristic state stress ratio
Potential failure stress ratio

State variable

)e

Compressive hardening parameter

Plastic coefficient

In the case of clay materials, Z equals N, resulting in only seven parameters

Recently, the original UH model is further extended for
granular materials [48], which is the so-called CSUH
model.

The CSUH model can degrade into the original UH
model for overconsolidated clays and can further degrade
into the MCC model for normally consolidated clays [48].
Therefore, the highlights of the CSUH model can be
appreciated by comparing its basic features with the MCC
model, as shown in Table 1. The parameters of the CSUH
model as well as some intermediate variables are summa-
rized in Table 2. In the following, a brief review of the
CSUH model is outlined:

1. Basic framework. The CSUH model extends the
isotropic normal compression line (NCL) of the MCC
model to a more generalized form for sands. The new
NCL becomes a curved line by introducing a new
interception Z. In the CSUH model, the NCL of the
MCC model is called the reference normal compres-
sion line (RNCL). The NCL of the CSUH model
asymptotically approaches the RNCL when the param-
eter Z is equal to N. In addition, the CSUH model
indicates that the current state of point B is not
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necessarily unloaded from an isotropic compression
line, as proposed by the MCC, but may be from a more
generalized anisotropic compression line (ACL). As
illustrated in Figs (a) and (b) of Table 1, the ACL is
defined by the parameters Z and .

Plastic potential. The MCC model adopts the associ-
ated flow rule, while the CSUH model adopts the non-
associated flow rule. The parameter M in the plastic
potential equation of the MCC model is replaced by M.
in the CSUH model.

Yield Function. The CSUH model adopts a drop-
shaped yield function by introducing a critical state
parameter y. This parameter can adjust the vertical
distance between the NCL and the critical state line
(CSL), i.e., Aea,r shown in Fig (c) of Table 1, leading
to a feasible control of the dilatancy.

Hardening law. The hardening law of the CSUH model
adopts a similar form as the unified hardening param-
eter in the UH model for overconsolidated clay. A new
dilatancy parameter m is introduced in the expression
of the characteristic state stress ratio M, to control the
rate of dilatancy. The larger m is, the earlier the current
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Table 3 Boundary conditions and the controlling equations of the CSUH model for modeling conventional triaxial tests

Test type Isotropic compression test CD test CU test
Boundary conditions Ady = Ad),
Ad| = Ad), = Ad), Ady, = Ady =0 Ag; + Agy + Aez =0
i i Ae Ae Ae
Controlling equations Ao'l _ &1 Ao”l _ Agy Aa’l _ &1
Cii+Cn+Cps Cyy Cy — (C11+Co1+C31)(Ca+Ci3)
, , ’ 1 Ci3+C3+C33+C1+Cn+Cxn
Ad), = Ad) Ad, =0 (Ci + Cot + o)A,
— g
Ad. = Ad. Ad = Ad’ Ad’ — 11 21 31 1
7 %2 , 73 72 , 2 Ci3+Ci3+Ca+Cn+Cn+Cn
Agy = (Cy1 + Cxn + C13)Ad) Agy = Cy1Ad) Ad. = Ad’
03 = A0,
Aez = Aep Aey = Aey Aey = C21Aa'1 + (sz + C23)Aﬂg
A83 = A82

stress ratio # exceeds the current M,., leading to volume
dilation.

As shown in Table 2, the CSUH model involves eight
basic material parameters, with the first five being the same

[Input model parameters: M, v, k, 2, N, Z, y and m ]

[Input initial conditions: o3; and e, I

| Select test type according to boundary condilions|

|Selting: 01 = 03,05 = 034,03 = 03;;& =0,6,=0,65=0 |

ICalculatc constant ¢, and ps l

> Input Ag;

ICaIcuIate p',q,n, ¢ My M, and E |
I’

Elastoplastic loading:
[Ci] = [Csp]
v

Recalculate stress and strain
increments by corresponding
controlling equations in Table 3

Elastic trial:

[Ci] = [c5]
v

Calculate stress and strain
increments by corresponding
controlling equations in Table 3

No, unloading

Vi ’ —
Iai =0; +Aai,£l-—£,-+A£,-|

|u=a3’i—a3’ Hs,,=£1+£2+s3,e=e0—s,,(1+e0)|

o . y
Yes, next iteration ste

€1 < E1max Vi=
No 1Jj=12,
[Ouput £,¢,p', &, U, eectal ]

Fig. 1 Flowchart of the iterative process of the CSUH model in
triaxial tests

with the MCC and the original UH models [44, 48]. The
CSUH model can degrade to the original UH model by
setting parameter Z = N and by setting parameters y and
m to be zero. Due to this feature, the CSUH model is able
to uniformly decipher the mechanical behaviors of both
clays and sands. For details regarding the formulation and
prediction performance of the CSUH model, the reader
may refer to the literature [48].

2.2 Numerical integration

The CSUH model is an incrementally elastoplastic model
which requires step-by-step integrations for establishing
the stress—strain and excess pore pressure relationships, as
follows:

{Asi}:[c,j]{Aaj’.}, i=1,2,3, j=12,3 (1)

where [C,-j] represents the elastoplastic matrix {ijp] during

loading process and elastic matrix [Cﬂ during unloading

i * candidate learning exemplars
B for E;, M;and I,

candidate learning exemplars
E for elite E;

candidate learning exemplars
EM for mediocrity M,

O o |0 ,::)candidateleamingexemplars
R e ' EMTI for inferior I;

small

*
*
) 2

crror

e

3% : elite B;in swarm i to date

* selite E;
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N 1

large

>
>
»

Fig. 2 Candidate learning exemplars for different exemplars X; in
each generation
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process, i.e., elastic process. The elastoplastic matrix [CZP ]

is defined as

] = [a] + [ >

with

and

L
] = M4—1’]4aa 6g
i PM4 174 aga /7

being the elastic and plastic matrixes, respectively. {C;}

i=1,23 j=123 (4)

can be obtained from the elastic modulus E varying with
mean effective stress p’ and Poisson’s ratio v. The plastic

matrix [Cf]'} can then be obtained from intermediate vari-

ables listed in Table 2 and the partial derivative formulas in
the literature [48].

The numerical integration in a conventional triaxial test
can be started with the input of the axial strain increments
Ag; and gives the output of the principal stress increments
(Ad}, Ad) and Ad%) and the lateral principal strain incre-
ments (Ag, and Aez). The boundary conditions and the
controlling equations are listed in Table 3.

The loading—unloading criterion is expressed by the
following elastic trial function in which the principal stress
increments are calculated using the elastic matrix.
Now = 3000, + 2 Ay + <A (5)
The above criterion indicates that with a positive Afi;a, the
numerical step is a loading process during which the
principal stress increments and lateral principal strain
increments need to be recalculated by the elastoplastic
matrix; otherwise, the step is an unloading process. With
the model parameters, boundary conditions, and control-

ling equations, the stress—strain and strain-pore pressure

Fig. 3 The method of updating exemplars X' in the MAPSO
algorithm
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relationships in conventional triaxial tests can be calculated
according to the flowchart in Fig. 1.

3 The particle swarm optimization
algorithm

3.1 Framework of the swarm population

The canonical particle swarm optimization (PSO) algo-
rithm was originally developed by Kennedy and Eberhart
to optimize nonlinear functions and train the neural net-
work [11, 3]. To better balance the exploration (global
search) and exploitation (local search) capabilities, Wei
et al. [40] proposed a PSO variant based on multiple
adaptive strategies (MAPSO), which has a promising per-
formance on complicated problems. Thus, the MAPSO is
adopted to calibrate parameters of constitutive model in
this study. MAPSO divides all the exemplars, i.e., particles,
in the canonical PSO algorithm into Ny swarms, and then
different exemplars X; can automatically select their
learning exemplars (ALE) to improve their diversity.

As shown in Fig. 2, the exemplars are contained in
matrices with the following definitions:

Swarm: A swarm consists of three exemplars arranged
in columns. Based on error value, the three exemplars in a
swarm are categorized into elite E;, mediocrity M;, and
inferior I;, among which the elite exemplar has the least
error.

Population matrix I': This matrix is organized by N;
swarms. It includes all the exemplars with number of
N; =3 x N,

“Best so far” matrix B: This is a vector consisting of N
elements out of the population matrix, and each represents
the best elite exemplar of the swarm to date with the same
column. The elements are denoted by By, B, ..., By,. The
exemplar B; is the first candidate learning exemplars of E;,
M; and I,.

Submatrices E, EM and EMI: These submatrices are
defined for picking up the second candidate learning
exemplars of E;, M; and I;.

The optimization algorithm will proceed with N; loops
in each generation. Each generation updates all the exem-
plars in the population matrix that will be renewed

Table 4 The upper and lower boundaries of the parameters

Parameters M v K A N z x m
R, 1.8 045 0.1 04 3.0 1.5 099 15
R, 08 0.05 0.002 002 017 017 0.0 0.0

R, and R, represent the upper and lower limits of the search area
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Y

b Model prediction
Experiments -..ge

Fig. 4 The individual error of a single curve f;

according to the rules of arrangement that have elite,
mediocre and inferior exemplars sorted and rearranged
based on their error values. In addition, to rationally utilize
the computational resource, the MAPSO algorithm adopts
an adaptive adjustment for population size (APS) by
deleting or adding exemplars according to the generation
that the error value of the best exemplar remains
unchanged.

3.2 The process of the MAPSO algorithm

The MAPSO algorithm proceeds mainly according to the
following procedures:

Step 1: The initial exemplar X; is given randomly in the
search area R, and the initial velocity V; is given randomly
in the interval [— (R, — R))/5, (R, — R;)/5] with R, and R,
being the upper and lower limits of R. After filling up in the
population matrix I" by the N; number of exemplars, their
error values are calculated as: A, =f(X;), i=
1, 2,..., Ni.

Step 2: Sort the swarms in the population matrix based
on their values of A. The population matrix thus looks like
Fig. 2, which arranges the exemplars in ascending order
arranged by inferior, mediocre and elite elements.

Step 3: Update the candidate learning exemplars in the
“best so far” vector by making B; =E;, i =1, 2,..., N,,
which is the first generation of candidate learning exem-
plars that have relatively small values of A.

Step 4: Generate a new population matrix with

Xt+1 —_ XI + Vt+1 (6)

where V! is a velocity of an exemplar expressed as
follows:

V= w Vi (B =X 4 (8- X) (7)

The superscripts ¢ and t + 1 represent the numbers of
this generation and the next generation, respectively. In this
equation, the first candidate learning exemplar B’ is the
elite exemplar belonging to the same swarm of X'. As
shown in Fig. 2, §" is the second candidate learning
exemplar randomly taken from submatrices E, EM, or EMI
if X’ is attributed to elite, mediocrity and inferior, respec-
tively. This process of automatically selecting two candi-
date learning exemplars for a given exemplar is called
ALE. w represents an inertia weight denoting how much
the previous velocity is preserved and is equal to
0.9-0.8 x tt,, where t,, represents the maximum numbers
of generation; and r; and r, are two random numbers
uniformly distributed in the interval [0, 1]. The operation
process of updating each exemplar in the population matrix
by two candidate learning exemplars can be represented by
a vector operation diagram, as shown in Fig. 3.

Step 5: Repeat step 2 for sorting the new population
matrix and Step 3 for renewing the “best so far” matrix.
Step 6: Delete or add exemplars according to APS.

Step 7: Repeat Step 4 for a new round of generation
until the loop time ¢ reaches a preset limit #,,.

Step 8: Select the one with the least error from B; as the
optimal output.

3.3 The optimization statements

The optimization for calibrating the CSUH model proceeds
using the following definitions:

Exemplar: A vector containing the basic parameters
represented by X = (M, v, k, 4, N, Z, y, m) for the CSUH
model.

Search area: The MAPSO algorithm requires a rea-
sonable area defined by R for searching the optimized

0.60

0.50

0.40 |

030 f

020

Total error A

0.10

0.00 g .
0 500 1000 1500
t

Fig. 5 The generation ¢ versus the total error value A during the
parameter optimization of the LCT clay
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Table 5 Optimization parameters for LCT clay by MAPSO

Parameters and total error M v K N z 1 m A
Initial guess 1.036 0.385 0.03 0.093 0.955 0.955 0.014 3.666 0.537
Optimized result 1.235 0.449 0.004 0.059 0.745 0.745 0.229 11.406 0.117

parameters. The limits of the five parameters (M, v, K, 4, N)
are suggested by the MCC model [5, 19, 32, 33, 35, 49].
For sands, the parameter Z is close to the maximum void
ratio, approximately (0.4-0.7) times of N. For clays, Z is
equal to parameter N. The parameters y and m lie,
respectively, in the ranges of [0, 1) and
[0, (1 —y)/[(2A—r)(1+x)]) [48]. Table 4 gives the sug-
gested upper and lower boundaries of the parameters for
the CSUH model.

Individual error: The following two criteria are used for
assessing the relative errors between the experimental data
and model prediction [2].

Mean relative error

1 &a |yl (x;) — v, (%)
MRE = — -_ 8
M2 )] ®

Determination coefficient

. . 2
R=1-— Zf\gl (yle(xi) _yin(xl')) (9)
= T 5
Sict (i ()
where y! (x;) and y, (x;) represent the ith experimental and
model-predicted y with the same x;, respectively, as shown
in Fig. 4. N, is the total number of experimental points in a
single curve, MRE represents the relative difference
between the experimental data and model prediction, and

0.8

--Z=N=0.745 Iso. Comp.:.e =Z — Aln (p +p5)
0.7

06

05

Void ratio e

04

03 'Model prediction

Experiments ..o

0.2

1 10 100 1000
Mean effective stress p' (kPa)

10000

Fig. 6 Comparisons between the isotropic compression and extension
tests of LCT clay [25] and CSUH simulations in e ~ lgp’ coordinates
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R describes the analogy in the distribution tendency of the
two datasets. In this study, we set MRE < 0.2 and R > 0.85
as the criteria for an acceptable prediction. In the parameter
optimization of CSUH, y represents the variables ¢, p/, ¢,,
u or e, while x represents &;.

It should be noted that the two criteria have a limitation
when the values of y'(x;) are close to zero, making the
denominators of Egs. (8) and (9) close to zero as well. The
errors calculated by them are therefore exaggerated. On
this occasion, these criteria may not be applicable.

@) 1

Model prediction
Experiments [ S—

0.8

)

1 —03)/ (2o,
o o
N [@)

(o

) 39

Model prediction

-1.5 Experiments o

0.0

&y(%)
&

3.0

4.5

6.0

€1(%)

Fig. 7 Comparisons between the CD test results of LCT clay [25] and
CSUH simulations: a axial strain versus deviatoric stress and b axial
strain versus volumetric strain
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Table 6 The MRE and R values of model prediction in CD tests on the LCT clay

OCR 1 125 1.5 2 4 10
(¢} — )/ (20) MRE 0.082 0.056 0.073 0.073 0.124 0.155
R 0.944 0.952 0.949 0.925 0.878 0.822
& MRE 0.062 0.142 0.126 0.107 0.065 0.635
R 0.958 0.949 0918 0.923 0.932 0.635

Total error: Suppose there are altogether N3 compar-
isons between the experimental data and model prediction,
as shown in Fig. 4 (here N3 = 3), whose mean relative
errors are MRE, j = 1, 2,..., N3. The total error A is defined
as their average value.

1 &
A=— MRE; 10
N}; ] ( )

—~_
&0
~
(=]
S

Model prediction
Experiments ............. P S—

)

!
c

g,

o
)

(o1 —03)/(2

e
—_

0.0

£1(%)

Model prediction
Experiments -o-- OCR=1
<

<

OCR=1.25

OCR=2

100 OCR=4

0 1',:‘: - 2 -

N‘ B V— G
-100 OCR=10
200

>.

&1(%)

Fig. 8 Comparisons between the CU test results of LCT clay [25] and
the CSUH predictions: a axial strain versus deviatoric stress and
b axial strain versus excess pore pressure

Obviously, a smaller total error indicates a better fitting
exemplar. For Nj relationships y; = fi(X), j =1, 2,..., N3,
find the X associated with the minimum total error subject
to the restriction that X is within the search area R, then the
optimization statement is

min A = f(X)

11
s.t.X eR (11)

In this study, the investigated relationships are (1) Nj
number of axial strains versus the deviatoric stress. (2) N3
number of axial strains versus volumetric strain and (3) one
curve depicting isotropic compression. N, is the total
number of individual errors in drained tests and is equal to
2 X N3 —+ 1

4 Calibration and validation
4.1 Clay material
4.1.1 Calibration

The experimental results from drained and undrained
conventional triaxial compression tests on saturated Lower
Cromer Till (LCT) clay were collected from Pestana et al.
[25]. The LCT clay in isotropic compression test is com-
pressed to p. and then unloaded with different over-con-
solidation ratios (OCRs). The pre-consolidation pressure p/,
(also denoted by ¢/.) equals 770 kPa, and the corresponding
void ratio e, is 0.345. The isotropic compression test result
is actually a part of CD tests related to the initial values of
eo and Inpy of the individual triaxial compression tests
associated with various confining pressures pg. In the

Table 7 Evaluation of the individual errors MRE and R in the pre-
diction of undrained triaxial tests on the LCT clay

OCR 1 1.5 2 4 10

(g’l - gg)/(zgg) MRE 0.048 0.035 0.083 0.086 0.135
R 0934 0956 0903 0.892 0.857

u MRE 0.076 0.083 0.07 0.601  0.708
R 0.908 0.906 0904 0.331 0.453
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Table 8 Optimization parameters for the rockfill material from the Changhe dam

Parameters and total error M v K A N z 1 m A
Initial guess 1.710 0.189 0.082 0.090 1.152 0.432 0.233 11.004 0.202
Optimized result 1.678 0.272 0.021 0.087 1.125 0.742 0.385 1.716 0.061

consolidation stage, the isotropic compression test is car-
ried out to obtain the initial values of eq and Inpg before
shearing stage of the triaxial compression tests. Thus, the
isotropic compression test result is actually a part of CD
tests.

The experimental data from isotropic compression test
and CD test are adopted for the MAPSO algorithm to
calculate the basic parameters of the CSUH model. Here,
the population dimension N; = 75 in each generation. The
best exemplar, selected from 80 x N; random initial
exemplars, is taken as the initial guess parameter. The set
of parameters that leads to the minimum total error is taken
as the optimization parameter. The change in the total error
value in the optimization process is shown in Fig. 5. The
initial guess and final optimization parameters are given in
Table 5.

In this particular case, the researchers also performed
isotropic compression and extension tests for the LCT clay,
from which one may gain the actual basic parameters
M=1.2k=0.009, 1 =0.06and N = Z = 0.752, as shown
in Fig. 6 [25, 48]. This thus gives us an opportunity to
check the performance of the calibration method. The
comparisons between the actual basic parameters and the
optimized parameters show that all the parameters except
for k are in good agreement. The isotropic compression test
is a part of the CD test, while the isotropic extension test is
not. Therefore, the isotropic extension test is not used in the

0.50

0.45
N
.8
£ 040
=
o
>

0.35

Model prediction
Experiment o
0.30 leat it il
1 10 100 1000 10000
p' (kPa)

Fig. 9 Comparisons between the isotropic compression test results of
the rockfill [17] and the CSUH simulations in the e ~ lgp’
coordinates (MRE = 0.003, R = 0.996)

@ Springer

back analysis of parameters, which may be the reason why
the optimized x differs greatly from the actual .

With the optimized parameters listed in Table 5, the
mechanical response of the LCT clay can be predicted by
the CSUH model. Figure 7 shows the comparison between
experiments and model prediction in terms of axial strain &,
versus deviatoric stress g and axial strain &, versus volu-
metric strain ¢,. The individual errors MRE and R of most
prediction summarized in Table 6 meet the criteria
MRE < 0.2 and R > 0.85. Only the prediction of the vol-
umetric strain the values of relative for OCR = 10 slightly

(a) 14000 —
Model prediction a3;(kPa),ey
12000 } Expenments [ S 3500,0367
10000
= 2500,0.381
% 8000
S 6000 + 1600,0.395
4000 F - 0,0.4 13
2000 400.0.430
0 1 1
0 5 10 15 20
&1 (%)
(b) o

&, (%)

6 I Model prediction
Experiments °

1 1

0 5 10 15 20
&, (%)
Fig. 10 Comparisons between the CD test results of the rockfill [17]

and the CSUH simulations: a axial strain versus deviatoric stress and
b axial strain versus volumetric strain
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Table 9 Evaluation of the individual errors MRE and R in the pre-
diction of drained triaxial tests on the rockfill

a%; (kPa) 400 800 1600 2500 3500
q MRE 0.041 0.137 0.046 0.072 0.045
R 0.958 0.864 0.959 0.936 0.972
&y MRE 0.450 0.051 0.021 0.033 0.064
R 0.470 0.965 0.981 0.970 0.956

exceeds the criteria, while the absolute difference between
experimental and predicted results is small. A compre-
hensive analysis shows that the prediction of volumetric
strain is good. In general, the CSUH model gives an
excellent prediction of the deviatoric stress and the volu-
metric strain of LCT clay in the drained test under different
OCRs.
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Fig. 11 Comparisons between the CU test results of the rockfill [17]
and the CSUH predictions: a axial strain versus deviatoric stress and
b axial strain versus excess pore pressure

4.1.2 Validation

The stress—strain relations during the undrained tests are
more easily affected by the dilatancy than that in drained
tests. The volumetric strain is usually smaller than the
deviatoric strain during the drained shearing. Thus, if the
prediction of the volumetric strain caused by the dilatancy
is inaccurate, the prediction deviation of the stress—strain
relations in the drained stress path is not significant.
Moreover, dilatancy does not affect the stress path and the
residual strength in the drained conditions; thus, it has less
influence on the stress—strain relations in the drained
conditions.

However, in the undrained conditions, the volumetric
strain increment is zero, and there is a coupling relationship
between the recoverable and the unrecoverable increments.
In an undrained shearing, the unrecoverable volumetric
strain increment is affected by its deviatoric component
through dilatancy. Then, the unrecoverable volumetric
strain increment influences the recoverable volumetric
strain increment through the coupling relationship, thereby
affecting the mean effective stress. The dilatancy greatly
affects the effective stress path, and thus, it can signifi-
cantly affect the strength of soils under undrained condi-
tions. A slight error in the description of dilatancy under
the undrained conditions may result in a sizeable stress—
strain relation deviation, and the phenomenon “one false
step will make a great difference” will appear. Therefore, it
is essential and critical to validate the constitutive model
through undrained tests.

In what follows, we will validate the CSUH model by
predicting the undrained mechanical response of LCT clay
using the calibrated parameters listed in Table 5. The
selected experiments are related to OCR values of 1, 1.25,
2, 4, and 10. Figure 8 shows the comparisons between the
experiments and prediction in terms of & versus
(6’1 - ag)/(Za’c) and ¢; versus u.

Similar to Table 6, we also calculate the relative errors
MRE and R in the prediction of undrained triaxial tests on
LCT clay. The total errors of the ¢ versus
(¢} — 64)/(20.) relationships for all cases of OCR values
are good, meeting the criteria of MRE < 0.2 and R > 0.85
as shown in Table 7. With respect to the & versus u rela-
tionship, we find that MRE and R cannot meet these two
criteria for OCR =4 and 10. A further inspection on
Fig. 8b reveals that the values of u are very close to zero,
making both MRE and R be exaggerated by using Egs. (8)
and (9). In general, the predictions on excess pore pressure
also show good agreement with the experiments except for
the case of OCR = 10 in which the values MRE and R are
0.708 and 0.453, respectively.
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Table 10 Evaluation of the individual errors MRE and R in the pre-
diction of undrained triaxial tests on the rockfill

a%; (kPa) 400 800 1600 2500 3500
q MRE 0.261 0.141 0.051 0.054 0.073
R 0.757 0.875 0.958 0.943 0.923
u MRE 0.685 0.197 0.067 0.053 0.037
R 0.490 0.932 0.936 0.936 0.959

4.2 Granular material
4.2.1 Calibration

A further simulation is performed to examine the proposed
method for calibrating and validating the CSUH model in
predicting the mechanical behavior of granular materials.
A saturated rockfill material from the Changhe dam (CHD)
is selected for this investigation [17]. This material was
thoroughly investigated by Liu et al. [17] through isotropic
compression, CD, and CU tests with a high-pressure tri-
axial apparatus.

The model parameters for the rockfill material are cal-
ibrated using the MAPSO algorithm based on isotropic
compression and CD tests. The initial and optimized results
are listed in Table 8.

The simulated results of the isotropic compression test
and the drained triaxial tests on the rockfill material are,
respectively, shown in Figs. 9 and 10. It can be seen that
the CSUH model gives rise to excellent predictions of both
tests. Most of the predictions agree well with the test
results and meet the criteria with MRE < 0.2 and R > 0.85
as shown in Table 9, except for the prediction of volu-
metric change with the confining pressure of 400 kPa, in
which the MRE and R is 0.45 and 0.47, respectively. These
results suggest that the CSUH model can sufficiently
describe dilatancy of rockfill materials.

4.2.2 Validation

The following content is related to the validation of the
CSUH model with the calibrated parameters. Likewise, the
parameters listed in Table 8 are used to predict the
undrained behavior. The comparisons between experiments
and model prediction are shown in Fig. 11.

An inspection of Fig. 11 suggests that the numerical
predictions of the relationships ¢; versus g and & versus
u in undrained triaxial tests agree well with the experi-
mental results. Most of the predictions meet the pre-de-
scribed criteria except for the tests with confining pressure
of 400 kPa in which the values of MRE and R of the
relationships of & versus ¢ are 0.261 and 0.757, respec-
tively, and the values of MRE and R of the relationships of

@ Springer

e, versus u are 0.685 and 0.490, respectively, refer to
Table 10. This may be attributable to the fact that granular
material may exhibit remarkable dilatancy under low level
of confining pressure. In general, the CSUH model can
reasonably describe the strain hardening, as well as the
phenomenon that the excess pore water pressure first
increases and then decreases in the undrained tests.

5 Conclusions

This paper presents a standard methodology for calibrating
and validating constitutive models with conventional tri-
axial tests results. For this purpose, we consider a recently
proposed constitutive model, the CSUH model, for clays
and sands. The CSUH model is an upgrade in theory and
innovative development of the modified Cam-Clay model.
By introducing the compressive hardening parameter p;,
the CSUH model can describe the compressive hardening
characteristics of both sands and clays. In addition, the
CSUH model adopts the same hardening law of the original
UH mode, which is able to capture dilatancy and strain
softening behaviors of overconsolidated soils. By combing
all the features in a single framework, the CSUH model is
able to sufficiently decipher the mechanical behaviors of
various soils (e.g., clays, sands, and rockfill materials, etc.)
in a uniform way, which is exactly what Wroth and
Houlsby expected [42].

It is believed that verifying the CSUH model with the
independent tests can increase the credibility of this
research. With the help of the MAPSO algorithm, the
parameters of the CSUH model can be calibrated through
drained triaxial compression tests on clay and rockfill
materials. The accuracy of the optimization is examined by
two relative errors. Furthermore, the CSUH model with the
calibrated parameters is validated by simulating undrained
triaxial compression tests. The prediction shows an excel-
lent agreement with the experimental results. In general,
the results demonstrate that the CSUH model has a strong
ability for predicting the mechanical behavior of various
soils.
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