
RESEARCH PAPER

Calibrating and validating a soil constitutive model through
conventional triaxial tests: an in-depth study on CSUH model

Binglong Zhu1 • Zuyu Chen2

Received: 24 August 2021 / Accepted: 30 November 2021 / Published online: 3 January 2022
� The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
This paper presents an approach for calibrating and validating a constitutive model via conventional triaxial tests. First, the

consolidated drained triaxial compression test results are used for model calibration. The particle swarm optimization

algorithm based on multiple adaptive strategies is then adopted to calibrate the best fitting parameters. Subsequently, the

constitutive model is validated by considering its performance in modeling the consolidated undrained triaxial tests. The

unified hardening model for clays and sands (CSUH model) proposed by Yao et al. (Comput Geotech 110:326–343, 2019.

10.1016/j.compgeo.2019.02.024) is considered. The results demonstrate that the CSUH model can well describe the

dilatancy of clays and sands with different densities in both drained and undrained triaxial tests.

Keywords Cam-Clay model � Constitutive model � CSUH model � Dilatancy � Undrained test � Unified hardening model

Abbreviations
Cij The element of elastic matrix Ce

ij

h i
or elastoplastic

matrix Cep
ij

h i
; i and j = 1, 2, 3

e Current void ratio

e0 Initial void ratio

ec0 Void ratio on the critical state line (CSL) at

p0 = 0 kPa

E Elastic modulus

H Hardening parameter

m Dilatancy parameter

M Critical state stress ratio: slope of CSL in p0–
q coordinates

Mc Characteristic state stress ratio

Mf Potential failure stress ratio

MRE Assessment criteria: mean relative error

N Void ratio of the asymptote of normal compression

line (RNCL) at p0 = 1 kPa in the e * lnp0

coordinates

p0 Mean effective stress p0 ¼ r0
1
þ2r0

3

3
in conventional

compression test

p0x Intersection of current yield surface with the p0-axis

p0x0 Initial value of p0x
ps Compressive hardening parameter

p0y Intersection of plastic potential surface with the p0-
axis

q Deviatoric stress q ¼ r01 � r03
� �

in conventional

compression test

R Assessment criteria: the determination coefficient

R Search area of exemplar Xi

u Excess pore pressure

Vi Velocity of exemplar

Xi Exemplar or potential solution of the optimization

problem

Z The void ratio of the normal compression line

(NCL) at p0 = 1 kPa for sands in the e * lnp0

coordinates

j Slope of the unloading line in the e * ln(p0 ? ps)

coordinates

k Slope of the NCL in the e * ln(p0 ? ps) coordi-

nates, is also the slope of the RNCL in the e * lnp0

coordinates

g Stress ratio g ¼ q
p0

m Poisson’s ratio

v Critical state parameter

n State variable describing the current density
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ei The maximum, medium and minimum principal

strain when i = 1, 2, and 3, respectively

ev Volumetric strain

epv Plastic (unrecoverable) volumetric strain

r0j The maximum, medium and minimum effective

principal stress when j = 1, 2, 3, respectively

r03i Initial confine pressure in the shear stage

r0c Pre-consolidation pressure

K Total error: the average value of all individual error

MRE(Xi)

Dei The ith principal strain increment, i = 1, 2, 3

Dr0j The jth principal stress increment, j = 1, 2, 3

1 Introduction

Over the past few decades, numerous constitutive models

for soils have been proposed, and more will be emerging in

future [15, 36, 37]. When using a certain constitutive law in

engineering design, one may be concerned with its cali-

bration and validation.

1.1 Calibration of the parameters

A constitutive model normally involves a number of

parameters. For example, the modified Cam-Clay (MCC)

model includes five parameters related to the elastic and

plastic behavior of soil [27–29, 32]. However, many of

these parameters are derived from laboratory tests with

particular stress paths that may not be representative for

engineering problems. Moreover, the in situ stress history

is often unknown, which hinders the use of laboratory tests.

One possible approach is to fit the constitutive model

based on laboratory tests such as conventional triaxial and

oedometer tests. In this case, some optimization methods

can be used for model calibration. This fitting approach

with optimization methods is not new. For instance, Pal

et al. [23] used the genetic algorithm (GA) [10] to calibrate

the parameters of the hierarchical single surface model.

Sadoghi Yazdi et al. [31] adopted the particle swarm

optimization (PSO) algorithm [11] to calibrate the param-

eters of the linear elastic-hardening plastic model with

Drucker–Prager yield criterion. More applications can be

found in references [1, 6, 16, 24, 54, 56].

1.2 Validation of the constitutive laws

The constitutive model should be validated by laboratory

tests with various stress paths before engineering

application. For example, Matsuoka et al. [20] developed a

unified SMP model for clays and calibrated the parameters

through conventional drained triaxial tests on normally

consolidated Fujinomori clay (experimental data from

Nakai and Matsuoka [22]). The calibrated parameters are

then verified by independent test results, such as undrained

triaxial compression and extension tests. More examples of

model validation through independent test results canbe found in

the literature [4, 9, 12–14, 18, 21, 25, 26, 30, 34, 38, 39,

41, 44, 47, 50, 51].

Despite the aforementioned successes in the calibration

and validation of constitutive laws, there still lacks stan-

dard methodologies. This manuscript presents an in-depth

approach for calibrating and validating a constitutive

model with conventional laboratory test results. Specifi-

cally, the unified hardening model for clays and sands

(CSUH model) developed by Yao et al. [48] is considered.

This constitutive model inherits the basic principles of the

MCC model while extends its ability to model the

mechanical behavior of both sands and clays. This manu-

script reports the details of calibrating its eight basic

parameters via consolidated drained triaxial compression

(CD) tests. The calibrated parameters are further used to

predict the consolidated undrained triaxial compression

(CU) tests. This so-called ‘‘drained versus undrained’’

approach assures its universal applicability along various

stress paths. The calibration solver and the related docu-

mentation and test cases can be found on the website:

https://github.com/ChenZuyuIWHR/CSUH-BH.

In the remaining part of this manuscript, firstly, the

theories of the CSUH model and its numerical implemen-

tation are detailed. Afterward, the particle swarm opti-

mization algorithm based on multiple adaptive strategies

(MAPSO) for model calibration is described. Finally, the

model calibration and validation processes are presented,

where the authors demonstrate the relative errors and

determination coefficient of the predicted results.

2 The CSUH model

2.1 Model framework

It is well-known that state-dependent dilatancy and excess

pore water pressure are two major challenges in constitu-

tive modeling of soils [7, 8]. The original unified hardening

(UH) model, proposed by Yao et al. [44–46] for overcon-

solidated clays based on the MCC model, is capable of

characterizing these two issues by introducing a unified

hardening law [50]. Because of this advantage, it is later

extended for many kinds of soils, e.g., unsaturated soils

[18] and structured soils [57], etc., and has gained popu-

larity in many engineering practices [43, 52, 53, 55].
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Recently, the original UH model is further extended for

granular materials [48], which is the so-called CSUH

model.

The CSUH model can degrade into the original UH

model for overconsolidated clays and can further degrade

into the MCC model for normally consolidated clays [48].

Therefore, the highlights of the CSUH model can be

appreciated by comparing its basic features with the MCC

model, as shown in Table 1. The parameters of the CSUH

model as well as some intermediate variables are summa-

rized in Table 2. In the following, a brief review of the

CSUH model is outlined:

1. Basic framework. The CSUH model extends the

isotropic normal compression line (NCL) of the MCC

model to a more generalized form for sands. The new

NCL becomes a curved line by introducing a new

interception Z. In the CSUH model, the NCL of the

MCC model is called the reference normal compres-

sion line (RNCL). The NCL of the CSUH model

asymptotically approaches the RNCL when the param-

eter Z is equal to N. In addition, the CSUH model

indicates that the current state of point B is not

necessarily unloaded from an isotropic compression

line, as proposed by the MCC, but may be from a more

generalized anisotropic compression line (ACL). As

illustrated in Figs (a) and (b) of Table 1, the ACL is

defined by the parameters Z and v.
2. Plastic potential. The MCC model adopts the associ-

ated flow rule, while the CSUH model adopts the non-

associated flow rule. The parameter M in the plastic

potential equation of the MCC model is replaced byMc

in the CSUH model.

3. Yield Function. The CSUH model adopts a drop-

shaped yield function by introducing a critical state

parameter v. This parameter can adjust the vertical

distance between the NCL and the critical state line

(CSL), i.e., DeA2F shown in Fig (c) of Table 1, leading

to a feasible control of the dilatancy.

4. Hardening law. The hardening law of the CSUH model

adopts a similar form as the unified hardening param-

eter in the UH model for overconsolidated clay. A new

dilatancy parameter m is introduced in the expression

of the characteristic state stress ratio Mc to control the

rate of dilatancy. The larger m is, the earlier the current

Table 2 The basic parameters and intermediate variables of the CSUH model

Symbol Aspects Description

Basic parameters

M Yielding Slope of CSL in p0 * q coordinates

m Elasticity Poisson’s ratio

j Slope of the unloading line

k Plasticity Slope of RNCL in e * lnp0 coordinates

N e at p0 = 1 kPa for RNCL

Z e at p0 = 1 kPa for NCL

v Dilatancy Control the size of dilatancy

m Control the rate of dilatancy

Symbol Equation Description

Intermediate variables

E E ¼ 3 1�2mð Þ 1þe0ð Þ
j p0 þ psð Þ Elastic modulus

Mc Mc ¼ M � exp �m � nð Þ Characteristic state stress ratio

Mf
Mf ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 3�Mð Þ

M2 exp � n
k�j

� �
þ 1

q
þ 1

� ��1 Potential failure stress ratio

n
n ¼ DeEB ¼ Z � k ln

p0 þ ps
1þ ps

� �

� k� jð Þ ln
M2þg2

M2�vg2

� �
p0 þ ps

p0 þ ps

0
@

1
A� e

State variable

ps ps ¼ exp N�Z
k

� �
� 1 Compressive hardening parameter

cp cp ¼ k�j
1þe0

Plastic coefficient

In the case of clay materials, Z equals N, resulting in only seven parameters
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stress ratio g exceeds the current Mc, leading to volume

dilation.

As shown in Table 2, the CSUH model involves eight

basic material parameters, with the first five being the same

with the MCC and the original UH models [44, 48]. The

CSUH model can degrade to the original UH model by

setting parameter Z = N and by setting parameters v and

m to be zero. Due to this feature, the CSUH model is able

to uniformly decipher the mechanical behaviors of both

clays and sands. For details regarding the formulation and

prediction performance of the CSUH model, the reader

may refer to the literature [48].

2.2 Numerical integration

The CSUH model is an incrementally elastoplastic model

which requires step-by-step integrations for establishing

the stress–strain and excess pore pressure relationships, as

follows:

Deif g ¼ Cij

	 

Dr0j

n o
; i ¼ 1; 2; 3; j ¼ 1; 2; 3 ð1Þ

where Cij

	 

represents the elastoplastic matrix Cep

ij

h i
during

loading process and elastic matrix Ce
ij

h i
during unloading

Fig. 1 Flowchart of the iterative process of the CSUH model in

triaxial tests

Table 3 Boundary conditions and the controlling equations of the CSUH model for modeling conventional triaxial tests

Test type Isotropic compression test CD test CU test

Boundary conditions Dr02 ¼ Dr03
Dr01 ¼ Dr02 ¼ Dr03 Dr02 ¼ Dr03 ¼ 0 De1 þ De2 þ De3 ¼ 0

Controlling equations
Dr01 ¼

De1
C11 þ C12 þ C13

Dr02 ¼ Dr01
Dr03 ¼ Dr02
De2 ¼ C21 þ C22 þ C23ð ÞDr01
De3 ¼ De2

9>>>>>>>>=
>>>>>>>>;

Dr01 ¼
De1
C11

Dr02 ¼ 0

Dr03 ¼ Dr02
De2 ¼ C21Dr

0
1

De3 ¼ De2

9>>>>>>>>=
>>>>>>>>;

Dr01 ¼
De1

C11 � C11þC21þC31ð Þ C12þC13ð Þ
C13þC23þC33þC12þC22þC32

� �

Dr02 ¼
� C11 þ C21 þ C31ð ÞDr01

C13 þ C23 þ C33 þ C12 þ C22 þ C32

Dr03 ¼ Dr02
De2 ¼ C21Dr

0
1 þ C22 þ C23ð ÞDr03

De3 ¼ De2

9>>>>>>>>>>>=
>>>>>>>>>>>;

Fig. 2 Candidate learning exemplars for different exemplars Xi in

each generation
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123



process, i.e., elastic process. The elastoplastic matrix Cep
ij

h i

is defined as

Cep
ij

h i
¼ Ce

ij

h i
þ Cp

ij

h i
ð2Þ

with

Ce
ij

h i
¼ 1

E

1 �m �m
�m 1 �m
�m �m 1

2
4

3
5; ð3Þ

and

Cp
ij

h i
¼ cp

M4
c � g4

M4
f � g4

of
or0j
og
op0

og

or0i
; i ¼ 1; 2; 3; j ¼ 1; 2; 3 ð4Þ

being the elastic and plastic matrixes, respectively. Ce
ij

h i

can be obtained from the elastic modulus E varying with

mean effective stress p0 and Poisson’s ratio m. The plastic

matrix Cp
ij

h i
can then be obtained from intermediate vari-

ables listed in Table 2 and the partial derivative formulas in

the literature [48].

The numerical integration in a conventional triaxial test

can be started with the input of the axial strain increments

De1 and gives the output of the principal stress increments

(Dr01, Dr
0
2 and Dr03) and the lateral principal strain incre-

ments (De2 and De3). The boundary conditions and the

controlling equations are listed in Table 3.

The loading–unloading criterion is expressed by the

following elastic trial function in which the principal stress

increments are calculated using the elastic matrix.

Dftrial ¼
of

or01
Dr01 þ

of

or02
Dr02 þ

of

or03
Dr03 ð5Þ

The above criterion indicates that with a positive Dftrial, the
numerical step is a loading process during which the

principal stress increments and lateral principal strain

increments need to be recalculated by the elastoplastic

matrix; otherwise, the step is an unloading process. With

the model parameters, boundary conditions, and control-

ling equations, the stress–strain and strain-pore pressure

relationships in conventional triaxial tests can be calculated

according to the flowchart in Fig. 1.

3 The particle swarm optimization
algorithm

3.1 Framework of the swarm population

The canonical particle swarm optimization (PSO) algo-

rithm was originally developed by Kennedy and Eberhart

to optimize nonlinear functions and train the neural net-

work [11, 3]. To better balance the exploration (global

search) and exploitation (local search) capabilities, Wei

et al. [40] proposed a PSO variant based on multiple

adaptive strategies (MAPSO), which has a promising per-

formance on complicated problems. Thus, the MAPSO is

adopted to calibrate parameters of constitutive model in

this study. MAPSO divides all the exemplars, i.e., particles,

in the canonical PSO algorithm into Ns swarms, and then

different exemplars Xi can automatically select their

learning exemplars (ALE) to improve their diversity.

As shown in Fig. 2, the exemplars are contained in

matrices with the following definitions:

Swarm: A swarm consists of three exemplars arranged

in columns. Based on error value, the three exemplars in a

swarm are categorized into elite Ei, mediocrity Mi, and

inferior Ii, among which the elite exemplar has the least

error.

Population matrix C: This matrix is organized by Ns

swarms. It includes all the exemplars with number of

N1 = 3 9 Ns.

‘‘Best so far’’ matrix B: This is a vector consisting of Ns

elements out of the population matrix, and each represents

the best elite exemplar of the swarm to date with the same

column. The elements are denoted by B1, B2, …, BNs. The

exemplar Bi is the first candidate learning exemplars of Ei,

Mi and Ii.

Submatrices E, EM and EMI: These submatrices are

defined for picking up the second candidate learning

exemplars of Ei, Mi and Ii.

The optimization algorithm will proceed with N1 loops

in each generation. Each generation updates all the exem-

plars in the population matrix that will be renewed

Fig. 3 The method of updating exemplars Xt?1 in the MAPSO

algorithm

Table 4 The upper and lower boundaries of the parameters

Parameters M m j k N Z v m

Ru 1.8 0.45 0.1 0.4 3.0 1.5 0.99 15

Rl 0.8 0.05 0.002 0.02 0.17 0.17 0.0 0.0

Ru and Rl represent the upper and lower limits of the search area

3412 Acta Geotechnica (2022) 17:3407–3420
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according to the rules of arrangement that have elite,

mediocre and inferior exemplars sorted and rearranged

based on their error values. In addition, to rationally utilize

the computational resource, the MAPSO algorithm adopts

an adaptive adjustment for population size (APS) by

deleting or adding exemplars according to the generation

that the error value of the best exemplar remains

unchanged.

3.2 The process of the MAPSO algorithm

The MAPSO algorithm proceeds mainly according to the

following procedures:

Step 1: The initial exemplar Xi is given randomly in the

search area R, and the initial velocity Vi is given randomly

in the interval [- (Ru - Rl)/5, (Ru - Rl)/5] with Ru and Rl

being the upper and lower limits of R. After filling up in the

population matrix C by the N1 number of exemplars, their

error values are calculated as: Ki ¼ f ðXiÞ; i ¼
1; 2; . . .; N1.

Step 2: Sort the swarms in the population matrix based

on their values of K. The population matrix thus looks like

Fig. 2, which arranges the exemplars in ascending order

arranged by inferior, mediocre and elite elements.

Step 3: Update the candidate learning exemplars in the

‘‘best so far’’ vector by making Bi = Ei, i = 1, 2,…, Ns,

which is the first generation of candidate learning exem-

plars that have relatively small values of K.
Step 4: Generate a new population matrix with

Xtþ1 ¼ Xt þ Vtþ1 ð6Þ

where Vtþ1 is a velocity of an exemplar expressed as

follows:

Vtþ1 ¼ w � Vt þ r1 � ðBt � XtÞ þ r2 � St � Xtð Þ ð7Þ

The superscripts t and t ? 1 represent the numbers of

this generation and the next generation, respectively. In this

equation, the first candidate learning exemplar Bt is the

elite exemplar belonging to the same swarm of Xt. As

shown in Fig. 2, St is the second candidate learning

exemplar randomly taken from submatrices E, EM, or EMI

if Xt is attributed to elite, mediocrity and inferior, respec-

tively. This process of automatically selecting two candi-

date learning exemplars for a given exemplar is called

ALE. w represents an inertia weight denoting how much

the previous velocity is preserved and is equal to

0.9–0.8 9 t/tm, where tm represents the maximum numbers

of generation; and r1 and r2 are two random numbers

uniformly distributed in the interval [0, 1]. The operation

process of updating each exemplar in the population matrix

by two candidate learning exemplars can be represented by

a vector operation diagram, as shown in Fig. 3.

Step 5: Repeat step 2 for sorting the new population

matrix and Step 3 for renewing the ‘‘best so far’’ matrix.

Step 6: Delete or add exemplars according to APS.

Step 7: Repeat Step 4 for a new round of generation

until the loop time t reaches a preset limit tm.

Step 8: Select the one with the least error from Bi as the

optimal output.

3.3 The optimization statements

The optimization for calibrating the CSUH model proceeds

using the following definitions:

Exemplar: A vector containing the basic parameters

represented by X = (M, m, j, k, N, Z, v, m) for the CSUH

model.

Search area: The MAPSO algorithm requires a rea-

sonable area defined by R for searching the optimized

Fig. 4 The individual error of a single curve fi

Fig. 5 The generation t versus the total error value K during the

parameter optimization of the LCT clay

Acta Geotechnica (2022) 17:3407–3420 3413
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parameters. The limits of the five parameters (M, m, j, k, N)
are suggested by the MCC model [5, 19, 32, 33, 35, 49].

For sands, the parameter Z is close to the maximum void

ratio, approximately (0.4–0.7) times of N. For clays, Z is

equal to parameter N. The parameters v and m lie,

respectively, in the ranges of [0, 1) and

0; ð1� vÞ=½ k� jð Þ 1þ vð Þ½ �Þ [48]. Table 4 gives the sug-

gested upper and lower boundaries of the parameters for

the CSUH model.

Individual error: The following two criteria are used for

assessing the relative errors between the experimental data

and model prediction [2].

Mean relative error

MRE ¼ 1

N2

XN2

i¼1

yieðxiÞ � yimðxiÞ
�� ��

yieðxiÞ
�� �� ð8Þ

Determination coefficient

R ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN2

i¼1 yieðxiÞ � yimðxiÞ
� �2

PN2

i¼1 yieðxiÞ
� �2

vuut ð9Þ

where yieðxiÞ and yimðxiÞ represent the ith experimental and

model-predicted y with the same xi, respectively, as shown

in Fig. 4. N2 is the total number of experimental points in a

single curve, MRE represents the relative difference

between the experimental data and model prediction, and

R describes the analogy in the distribution tendency of the

two datasets. In this study, we setMRE\ 0.2 and R[ 0.85

as the criteria for an acceptable prediction. In the parameter

optimization of CSUH, y represents the variables q, p0, ev,
u or e, while x represents e1.

It should be noted that the two criteria have a limitation

when the values of yieðxiÞ are close to zero, making the

denominators of Eqs. (8) and (9) close to zero as well. The

errors calculated by them are therefore exaggerated. On

this occasion, these criteria may not be applicable.

Fig. 6 Comparisons between the isotropic compression and extension

tests of LCT clay [25] and CSUH simulations in e * lgp0 coordinates

Fig. 7 Comparisons between the CD test results of LCT clay [25] and

CSUH simulations: a axial strain versus deviatoric stress and b axial

strain versus volumetric strain

Table 5 Optimization parameters for LCT clay by MAPSO

Parameters and total error M m j k N Z v m K

Initial guess 1.036 0.385 0.03 0.093 0.955 0.955 0.014 3.666 0.537

Optimized result 1.235 0.449 0.004 0.059 0.745 0.745 0.229 11.406 0.117

3414 Acta Geotechnica (2022) 17:3407–3420
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Total error: Suppose there are altogether N3 compar-

isons between the experimental data and model prediction,

as shown in Fig. 4 (here N3 = 3), whose mean relative

errors areMREj, j = 1, 2,…, N3. The total error K is defined

as their average value.

K ¼ 1

N3

XN3

j¼1

MREj ð10Þ

Obviously, a smaller total error indicates a better fitting

exemplar. For N3 relationships yj = fj(X), j = 1, 2,…, N3,

find the X associated with the minimum total error subject

to the restriction that X is within the search area R, then the

optimization statement is

min K ¼ f ðXÞ
s.t.X 2 R

ð11Þ

In this study, the investigated relationships are (1) N3

number of axial strains versus the deviatoric stress. (2) N3

number of axial strains versus volumetric strain and (3) one

curve depicting isotropic compression. N4 is the total

number of individual errors in drained tests and is equal to

2 9 N3 ? 1.

4 Calibration and validation

4.1 Clay material

4.1.1 Calibration

The experimental results from drained and undrained

conventional triaxial compression tests on saturated Lower

Cromer Till (LCT) clay were collected from Pestana et al.

[25]. The LCT clay in isotropic compression test is com-

pressed to p0c and then unloaded with different over-con-

solidation ratios (OCRs). The pre-consolidation pressure p0c
(also denoted by r0c) equals 770 kPa, and the corresponding

void ratio ec is 0.345. The isotropic compression test result

is actually a part of CD tests related to the initial values of

e0 and lnp0 of the individual triaxial compression tests

associated with various confining pressures p0. In the

Fig. 8 Comparisons between the CU test results of LCT clay [25] and

the CSUH predictions: a axial strain versus deviatoric stress and

b axial strain versus excess pore pressure

Table 6 The MRE and R values of model prediction in CD tests on the LCT clay

OCR 1 1.25 1.5 2 4 10

r01 � r03
� ��

2r0c
� �

MRE 0.082 0.056 0.073 0.073 0.124 0.155

R 0.944 0.952 0.949 0.925 0.878 0.822

ev MRE 0.062 0.142 0.126 0.107 0.065 0.635

R 0.958 0.949 0.918 0.923 0.932 0.635

Table 7 Evaluation of the individual errors MRE and R in the pre-

diction of undrained triaxial tests on the LCT clay

OCR 1 1.5 2 4 10

r01 � r03
� ��

2r0c
� �

MRE 0.048 0.035 0.083 0.086 0.135

R 0.934 0.956 0.903 0.892 0.857

u MRE 0.076 0.083 0.07 0.601 0.708

R 0.908 0.906 0.904 0.331 0.453
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consolidation stage, the isotropic compression test is car-

ried out to obtain the initial values of e0 and lnp0 before

shearing stage of the triaxial compression tests. Thus, the

isotropic compression test result is actually a part of CD

tests.

The experimental data from isotropic compression test

and CD test are adopted for the MAPSO algorithm to

calculate the basic parameters of the CSUH model. Here,

the population dimension N1 = 75 in each generation. The

best exemplar, selected from 80 9 N1 random initial

exemplars, is taken as the initial guess parameter. The set

of parameters that leads to the minimum total error is taken

as the optimization parameter. The change in the total error

value in the optimization process is shown in Fig. 5. The

initial guess and final optimization parameters are given in

Table 5.

In this particular case, the researchers also performed

isotropic compression and extension tests for the LCT clay,

from which one may gain the actual basic parameters

M = 1.2, j = 0.009, k = 0.06 and N = Z = 0.752, as shown

in Fig. 6 [25, 48]. This thus gives us an opportunity to

check the performance of the calibration method. The

comparisons between the actual basic parameters and the

optimized parameters show that all the parameters except

for j are in good agreement. The isotropic compression test

is a part of the CD test, while the isotropic extension test is

not. Therefore, the isotropic extension test is not used in the

back analysis of parameters, which may be the reason why

the optimized j differs greatly from the actual j.
With the optimized parameters listed in Table 5, the

mechanical response of the LCT clay can be predicted by

the CSUH model. Figure 7 shows the comparison between

experiments and model prediction in terms of axial strain e1
versus deviatoric stress q and axial strain e1 versus volu-

metric strain ev. The individual errors MRE and R of most

prediction summarized in Table 6 meet the criteria

MRE\ 0.2 and R[ 0.85. Only the prediction of the vol-

umetric strain the values of relative for OCR = 10 slightly

Table 8 Optimization parameters for the rockfill material from the Changhe dam

Parameters and total error M m j k N Z v m K

Initial guess 1.710 0.189 0.082 0.090 1.152 0.432 0.233 11.004 0.202

Optimized result 1.678 0.272 0.021 0.087 1.125 0.742 0.385 1.716 0.061

Fig. 9 Comparisons between the isotropic compression test results of

the rockfill [17] and the CSUH simulations in the e * lgp0

coordinates (MRE = 0.003, R = 0.996)

Fig. 10 Comparisons between the CD test results of the rockfill [17]

and the CSUH simulations: a axial strain versus deviatoric stress and

b axial strain versus volumetric strain

3416 Acta Geotechnica (2022) 17:3407–3420

123



exceeds the criteria, while the absolute difference between

experimental and predicted results is small. A compre-

hensive analysis shows that the prediction of volumetric

strain is good. In general, the CSUH model gives an

excellent prediction of the deviatoric stress and the volu-

metric strain of LCT clay in the drained test under different

OCRs.

4.1.2 Validation

The stress–strain relations during the undrained tests are

more easily affected by the dilatancy than that in drained

tests. The volumetric strain is usually smaller than the

deviatoric strain during the drained shearing. Thus, if the

prediction of the volumetric strain caused by the dilatancy

is inaccurate, the prediction deviation of the stress–strain

relations in the drained stress path is not significant.

Moreover, dilatancy does not affect the stress path and the

residual strength in the drained conditions; thus, it has less

influence on the stress–strain relations in the drained

conditions.

However, in the undrained conditions, the volumetric

strain increment is zero, and there is a coupling relationship

between the recoverable and the unrecoverable increments.

In an undrained shearing, the unrecoverable volumetric

strain increment is affected by its deviatoric component

through dilatancy. Then, the unrecoverable volumetric

strain increment influences the recoverable volumetric

strain increment through the coupling relationship, thereby

affecting the mean effective stress. The dilatancy greatly

affects the effective stress path, and thus, it can signifi-

cantly affect the strength of soils under undrained condi-

tions. A slight error in the description of dilatancy under

the undrained conditions may result in a sizeable stress–

strain relation deviation, and the phenomenon ‘‘one false

step will make a great difference’’ will appear. Therefore, it

is essential and critical to validate the constitutive model

through undrained tests.

In what follows, we will validate the CSUH model by

predicting the undrained mechanical response of LCT clay

using the calibrated parameters listed in Table 5. The

selected experiments are related to OCR values of 1, 1.25,

2, 4, and 10. Figure 8 shows the comparisons between the

experiments and prediction in terms of e1 versus

r01 � r03
� ��

2r0c
� �

and e1 versus u.
Similar to Table 6, we also calculate the relative errors

MRE and R in the prediction of undrained triaxial tests on

LCT clay. The total errors of the e1 versus

r01 � r03
� ��

2r0c
� �

relationships for all cases of OCR values

are good, meeting the criteria of MRE\ 0.2 and R[ 0.85

as shown in Table 7. With respect to the e1 versus u rela-

tionship, we find that MRE and R cannot meet these two

criteria for OCR = 4 and 10. A further inspection on

Fig. 8b reveals that the values of u are very close to zero,

making both MRE and R be exaggerated by using Eqs. (8)

and (9). In general, the predictions on excess pore pressure

also show good agreement with the experiments except for

the case of OCR = 10 in which the values MRE and R are

0.708 and 0.453, respectively.Fig. 11 Comparisons between the CU test results of the rockfill [17]

and the CSUH predictions: a axial strain versus deviatoric stress and

b axial strain versus excess pore pressure

Table 9 Evaluation of the individual errors MRE and R in the pre-

diction of drained triaxial tests on the rockfill

r03i kPað Þ 400 800 1600 2500 3500

q MRE 0.041 0.137 0.046 0.072 0.045

R 0.958 0.864 0.959 0.936 0.972

ev MRE 0.450 0.051 0.021 0.033 0.064

R 0.470 0.965 0.981 0.970 0.956
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4.2 Granular material

4.2.1 Calibration

A further simulation is performed to examine the proposed

method for calibrating and validating the CSUH model in

predicting the mechanical behavior of granular materials.

A saturated rockfill material from the Changhe dam (CHD)

is selected for this investigation [17]. This material was

thoroughly investigated by Liu et al. [17] through isotropic

compression, CD, and CU tests with a high-pressure tri-

axial apparatus.

The model parameters for the rockfill material are cal-

ibrated using the MAPSO algorithm based on isotropic

compression and CD tests. The initial and optimized results

are listed in Table 8.

The simulated results of the isotropic compression test

and the drained triaxial tests on the rockfill material are,

respectively, shown in Figs. 9 and 10. It can be seen that

the CSUH model gives rise to excellent predictions of both

tests. Most of the predictions agree well with the test

results and meet the criteria with MRE\ 0.2 and R[ 0.85

as shown in Table 9, except for the prediction of volu-

metric change with the confining pressure of 400 kPa, in

which the MRE and R is 0.45 and 0.47, respectively. These

results suggest that the CSUH model can sufficiently

describe dilatancy of rockfill materials.

4.2.2 Validation

The following content is related to the validation of the

CSUH model with the calibrated parameters. Likewise, the

parameters listed in Table 8 are used to predict the

undrained behavior. The comparisons between experiments

and model prediction are shown in Fig. 11.

An inspection of Fig. 11 suggests that the numerical

predictions of the relationships e1 versus q and e1 versus

u in undrained triaxial tests agree well with the experi-

mental results. Most of the predictions meet the pre-de-

scribed criteria except for the tests with confining pressure

of 400 kPa in which the values of MRE and R of the

relationships of e1 versus q are 0.261 and 0.757, respec-

tively, and the values of MRE and R of the relationships of

e1 versus u are 0.685 and 0.490, respectively, refer to

Table 10. This may be attributable to the fact that granular

material may exhibit remarkable dilatancy under low level

of confining pressure. In general, the CSUH model can

reasonably describe the strain hardening, as well as the

phenomenon that the excess pore water pressure first

increases and then decreases in the undrained tests.

5 Conclusions

This paper presents a standard methodology for calibrating

and validating constitutive models with conventional tri-

axial tests results. For this purpose, we consider a recently

proposed constitutive model, the CSUH model, for clays

and sands. The CSUH model is an upgrade in theory and

innovative development of the modified Cam-Clay model.

By introducing the compressive hardening parameter ps,

the CSUH model can describe the compressive hardening

characteristics of both sands and clays. In addition, the

CSUH model adopts the same hardening law of the original

UH mode, which is able to capture dilatancy and strain

softening behaviors of overconsolidated soils. By combing

all the features in a single framework, the CSUH model is

able to sufficiently decipher the mechanical behaviors of

various soils (e.g., clays, sands, and rockfill materials, etc.)

in a uniform way, which is exactly what Wroth and

Houlsby expected [42].

It is believed that verifying the CSUH model with the

independent tests can increase the credibility of this

research. With the help of the MAPSO algorithm, the

parameters of the CSUH model can be calibrated through

drained triaxial compression tests on clay and rockfill

materials. The accuracy of the optimization is examined by

two relative errors. Furthermore, the CSUH model with the

calibrated parameters is validated by simulating undrained

triaxial compression tests. The prediction shows an excel-

lent agreement with the experimental results. In general,

the results demonstrate that the CSUH model has a strong

ability for predicting the mechanical behavior of various

soils.
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