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Abstract
The shear modulus of a soil, G, shows a hyperbolic degradation curve relationship with increasing shear strain, c. G is

usually normalized against the small-strain modulus (Gmax) as G/Gmax vs c (log). Factors that significantly influence G are

shear strain amplitude, c, soil plasticity index (PI) and effective pressure, r0. Design curve charts of G/Gmax vs c have been
produced for seismic engineering purposes. Mathematical models have also been developed, using statistically analysed

parameters to reflect the influence of c, PI and r0. Soil overconsolidation ratio (OCR) has a significantly lesser impact than

the three mentioned factors. In this paper, mathematical fitting and shaping functions for PI and r0 are developed to extend

the shear modulus reduction model further. The requirement to calculate reference strain, cref, is removed, and only soil PI

and r0 are required. Cyclic triaxial experiments are conducted with reconstituted kaolin and bentonite in different mix

proportions (to achieve varying PI) and at different effective stresses. The model equation matches well against both the

established curves and experimental results and can facilitate preliminary prediction of shear stress–strain behaviour and

Gmax with different cohesive soil types and at different depths below ground.

Keywords Bentonite � Cohesive soils � Effective pressure � Kaolin � Modulus degradation curve � Plasticity index �
Shear modulus

List of symbols
B Bentonite

D Damping ratio, soil

E Elastic modulus, soil

e Void ratio, soil

Gmax Very small-strain shear modulus, soil

G Shear modulus, soil

G/

Gmax

Normalized shear modulus vs shear strain curve

K Kaolin

OCR Overconsolidation ratio, soil

PI Plasticity index, soil

UCS Unconfined compressive strength (quc)

r0 Effective stress, soil

rD Deviatoric stress, soil

a Power factor curvature parameter

e Axial strain

c Shear strain

c0.7 Shear strain at G/Gmax = 0.7

m Poisson ratio

f (r0) Fitting function (effective pressure)

f (PI) Fitting function (plasticity index)

Z Curvature function (effective pressure)

atm Atmospheric pressure

1 Introduction

While the soil elastic modulus (E) defines elastic behaviour

due to axial loading, the shear modulus identifies a soil’s

deformation due to shear loading. The shear modulus

(G) and damping ratio (D) are the two primary soil prop-

erties utilized in seismic analysis to predict response to

dynamic loading. It is also known that cyclic secant shear

modulus G degrades nonlinearly with increasing shear

strain (c), hence the importance of the shear modulus or

stiffness vs shear strain relationship. The shear stiffness is

often normalized to the very small-strain modulus, Gmax, as

a ratio of G/Gmax to provide a dimensionless predictive
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value of the shear stiffness with increasing shear strain

values, irrespective of the Gmax values measured.

As shown in Fig. 1, the normalized shear modulus curve

can be organized into three main sections, which are sep-

arated by threshold shear strain points:

• Very small strains (c\ 0.001%), where the shear

modulus is generally constant and maximum.

• Small to medium strains (0.001\ c\ 0.1%) where

shear modulus begins to degrade in nonlinear fashion.

• Large strains (c[ 0.1%), where strength degradation is

non-recoverable, and the soil eventually reaches failure.

To derive the normalized curve, it is usually necessary

to obtain the very small-strain shear modulus (Gmax), which

requires either bender element or resonant column tests in

the laboratory or from field measurements of shear wave

velocity (i.e. Gmax = qV2
s ). Correlation studies by Karray

and Hussein [7] between normalized tip resistance and

shear wave velocity may also lead to the development of

Gmax from CPT results. However, bender element tests

measure shear strains up to 0.001% and resonant column

tests, up to 0.1%. The larger strain measurements require

cyclic triaxial tests.

Many empirical equations soils have been developed

and compiled to estimate Gmax for cohesive based on void

ratio (e), effective stress (r0), overconsolidation ratio

(OCR) and plasticity index (PI) [6].

Previous researchers have developed regression models

from experimental results to aid in design. Hardin and

Drnevich [3] developed the basic hyperbolic model upon

which many subsequent models are based. Vucetic and

Dobry [21] created design charts showing the effect of PI

on modulus reduction curve (G/Gmax) vs shear strain (c).
Ishibashi and Zhang [4] proposed a unified formula for

shear modulus from the analysis of experimental research

data of various soils, from non-plastic sands to highly

plastic clay. Subsequently, Darendeli [1] and Zhang et al.

[23] both introduced a shaping power parameter (a) to the

normalized shear strain (c/cref) in Hardin and Drnevich’s

model to better fit the normalized curve for small strains.

Vardanega and Bolton [20] proposed an alternative way to

estimate Darendeli’s power parameter (a) by transforming

the hyperbolic equation to a linear form for ease of

regression analysis. Finally, Kishida et al. [10] developed a

shear modulus regression model for highly organic soils

and subsequently proposed an adaptation for cohesive soils

[8, 9].

This article proposes further development of the nor-

malized shear modulus regression model to a form that

requires only the following primary influence factors to be

input—cyclic shear strain (cc), plasticity index (PI) and

effective stress (r0). A series of strain-controlled cyclic

Fig. 1 Normalized shear modulus (G/Gmax) vs shear strain showing strain range classification, stress–strain behaviour, type of degradation and

pore pressure state. Also shown are the typical strain ranges related to different soil behaviour and laboratory equipment measurement ranges.

Adapted from [2, 16]
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triaxial experiments of reconstituted soils of varying PI and

at different r0 are conducted to validate the model.

2 Discussion of models for normalized shear
modulus vs shear strain

This section summarizes how different regression models

address the key influence variables of shear strain (c),
plasticity index (PI) and effective stress (r0).

2.1 Hardin and Drnevich [3]

Hardin and Drnevich [3] defined the normalized shear

modulus model as a hyperbolic relationship.

G

Gmax

¼ 1

1þ c
cref

� � ð1Þ

whereby cref is taken as shear strain at G/Gmax = 0.5.

The above model is a symmetrical sigmoidal function.

The reference strain determines the location of the midway

point of the curve. However, the primary influence factors

of PI, r0, are not directly considered in the model.

2.2 Vucetic and Dobry [21]

Subsequently, Vucetic and Dobry [21] studied the corre-

lation between G/Gmax and PI. They used cohesive soils of

various PI from a database of 16 studies to develop the

ready-to-use design curves for cohesive soils of various PI.

The constructed trend lines of six PIs to different strains

and G/Gmax values are generated for each PI. No significant

influence was detected in the G/Gmax values for a wide

range of OCR from 1 to 15. However, the effect of

effective stress was not considered in the design curves [4].

Furthermore, findings are represented graphically without

the benefit of an equation as shown in Fig. 2. Hence,

interpolation between the six defined curves and extrapo-

lation to obtain values beyond the 1% strain is required.

2.3 Ishibashi and Zhang [4]

Ishibashi and Zhang [4] had proposed a simple unified

formula that included non-plastic granular soils and highly

plastic cohesive soils. Thus, their G/Gmax is expressed in

terms of (1) shear strain, (2) mean effective pressure and

(3) soil plasticity index.

G

Gmax

¼ K c; Ip
� �

r
0 m
_

c;Ipð Þ
m0 ð2Þ

where,

Ip ¼ Plasticity index PIð Þ expressed numerically

Ko ¼ coefficient of earth pressure at rest, which can

be considered as
1� m
m

and m ¼ Poisson ratio

r
0

v0 ¼ effective vertical stress

K c; Ip
� �

¼ 0:5 1 + tanh ln
0:000102þ n Ip

� �
c

� �0:492
( )" #

n Ip
� �

¼ 0 for Ip ¼ 0

¼ 3:37 � 10�6I1:404p for 0\Ip � 15

¼ 7:0 � 10�7I1:976p for 15\Ip � 70

¼ 2:7 � 10�5I1:115p for Ip [ 70

m
_

c; Ip
� �

¼ 0:272 1� tanh ln
0:000556

c

� �0:4
( )" #

e�0:0145I1:3p

r
0

m0 ¼ mean in situ effective stress

¼ 1þ 2Ko

3

� �
r

0

v0

ð3Þ

The formula was developed from a general equation for

sandy soils adapted from research by Hardin and Drnevich

[3], Iwasaki et al. [5], Tatsuoka et al. [18] and Kokusho

[11] from the form G ¼ K cð Þ�rm
_
cð Þ

m0 . The equation is then

adapted to include plasticity index effects.

2.4 Darendeli [1]

From a database of 110 resonant column and torsional

shear tests from twenty different sites in four separate

geographic locations, Darendeli’s [1] PhD research utilizes

Hardin and Drnevich’s hyperbolae function. The soil

samples’ PI ranges from non-cohesive, i.e. 0 to 132%. In

Fig. 2 Normalized shear modulus (G/Gmax) vs shear strain for soils

with different PI. Adapted from Vucetic and Dobry (1991) Fig. 6a

[21]
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addition, a curvature coefficient power factor (a) is inserted
into the normalized shear strain equation to fit the soil

results better.

G

Gmax

¼ 1

1þ c
cr

� �a ð4Þ

where,

cr ¼ £1 þ £2 � PI � OCR£3
� �

� r
0£4
o

a ¼ £5

The following parameters, Ø1 to Ø5 for the regression

model, are obtained using the first-order, second-moment

Bayesian method.

£1 ¼ 0:0352; £2 ¼ 0:0010; £3 ¼ 0:3246

£4 ¼ 0:3483; £5 ¼ 0:919
:

2.5 Zhang et al. [23]

Zhang et al. [23] developed equations for estimating the

curvature parameter power factor (a), and for reference

strain (cr) of Quaternary, Tertiary and older, and residual/

saprolite soils from statistical analysis of resonant column

and torsional shear test results of 122 specimens from

South Carolina, North Carolina and Alabama, USA.

Influence factors considered in Zhang et al.’s equations are

shear strain, mean effective confining stress and plasticity

index. The modified hyperbolic model by Darendeli is still

adopted as the modelling function, and the derived values a
and cr that best fit Eq. (4) to the compiled test data are

determined by multiple regression.

a ¼ 0:0021PI þ 0:834 Quaternary soilð Þ
r2 ¼ 0:505

¼ 0:0009PI þ 1:026 Tertiary soilð Þ
r2 ¼ 0:015

¼ 0:0043PI þ 0:794 Residual=Saprolite soilð Þ
r2 ¼ 0:053

PI ¼ Plasticity index PIð Þ numerically, e:g: 0:4

cr ¼ cr1 r
0

m=Pa

� �k

cr ¼ shear strain at G=Gmax ¼ 0:5:

ð5Þ

where,

cr1 ¼ reference strain at mean effective confining stress

of 100 kPa

¼ 0:0011PI þ 0:0749 Quaternary soilð Þ r2 ¼ 0:508

¼ 0:0004PI þ 0:0311 Tertiary soilð Þ r2 ¼ 0:143

¼ 0:0009PI þ 0:0385 Residual/Saprolite soilð Þ

r2 ¼ 0:107

Pa ¼ reference stress of 100 kPa

k ¼ stress correction exponent

¼ 0:316e�0:0142PI Quaternary soilð Þ r2 ¼ 0:323

¼ 0:316e�0:0110PI Tertiary soilð Þ r2 ¼ 0:232

¼ 0:420e�0:0456PI Residual/Saprolite soilð Þ r2 ¼ 0:486

r0m ¼ mean effective confining stress

¼ 1þ 2K
0
o

3

� �
r

0

v0

where,

r
0

v ¼ vertical effective stress

r
0

h ¼ horizontal effective stress

K
0

o ¼ coefficient of effective earth stress at rest

¼ r
0

h=r
0

v

It should be noted that the coefficient of determination

(R2) reported in the fitting of the functions of the variable is

considerably\ 0.9, although the final comparison of

measured and calculated G/Gmax is improved at

R2 = 0.792, 0.841 and 0.930 for Quaternary, Tertiary and

residual/saprolite soils, respectively.

2.6 Kishida [8]/[9]

Dynamic behaviour of organic and inorganic cohesive soils

was researched in the PhD study by Kishida [10] from a

database of 98 cyclic triaxial and resonant column/torsional

shear tests on soils from the Sacramento–San Joaquin

Delta, USA [8]. The regression model differs from others

in that it attempts to predict directly shear modulus (G)

from the variables of cyclic shear strain (cc), effective

vertical confining stress (r
0

vo) and plasticity index (PI). The

basis of the model came from a study on dynamic beha-

viour of highly organic soils [10] and later adapted for

cohesive soils [9].
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ln G ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ b4X4

þ b5 X1 � X1

� �
� X2 � X2

� �
þ b6 X1 � X1

� �
� X3 � X3

� �

þ b7 X2 � X2

� �
� X3 � X3

� �

þ b8 X1 � X1

� �
� X2 � X2

� �
X3 � X3

� �

ð6Þ

where X1, X2, X3 and X4 are transformed predictor vari-

ables of cc (in %), r
0
vo(in kPa), PI (in %) and OCR.

X1 ¼ ln cc þ crð Þ ;X2 ¼ ln r0vo
X3 ¼ 2 = 1 þ exp PI=22ð Þ½ � ;X4 ¼ ln OCR

�X1 ¼ �2:5 ; �X2 ¼ 4:0 ; �X3 ¼ 0:5

cr ¼ exp b9 þ b10 X3 � �X3ð Þ½ �
c1 ¼ 1:0

b0 to b10 are regression parameters

b0 ¼ 5:25 ; b1 ¼ �0:937 ; b3 ¼ �1:45

b6 ¼ 0:00 ; b9 ¼ �2:51 ; b10 ¼ �2:77

b2 ¼ 1� 0:5 �X3 1 þ ln crð Þ � �X1

ln cl=cr þ cc=cr

� �
2
4

3
5

b4 ¼ 0:8� 0:8X3

b5 ¼
0:5 �X3

ln cl=cr þ cc=cr

� �

b7 ¼ �0:5 1 þ ln crð Þ � �X1

ln cl=cr þ cc=cr

� �
2
4

3
5

b8 ¼
0:5

ln cl=cr þ cc=cr

� �

2.7 Vardanega and Bolton [20]

Vardanega and Bolton analysed data from 67 tests on 21

clays/silts of various PI ranging from 12 to 150% in

undrained conditions [20]. A new methodology was

proposed to derive the reference strain and curvature

parameter power factor (a) from Darendeli’s modified

hyperbolic equation Eq. (4). The equation is transformed

as follows:

G

Gmax

¼ 1

1þ c
cr

� �a

! Gmax

G
¼ 1þ c

cr

� �a

! Gmax

G
� 1 ¼ c

cr

� �a

! log
Gmax

G
� 1

� �
¼ a log

c
cr

� �

The equation is in a linear form, and a simple linear

regression exercise can be undertaken to find the best-fit

parameters of a and cr for the soils from the database. The

influence of strain rate effects is also considered in the

regression analysis allowing a (using cr at G/Gmax at 0.5

initially) and cr to be derived from static or dynamic soil

tests.

For cr, it is suggested for best fit to the data set:

cr ¼ J
Ip

1000

� �
in actual numerical values

J ¼ 2:2 for static adjustment:

3:7 for dynamic adjustment:

Ip ¼ Plasticity index expressed numerically, e.g: 0:4

For a, it is suggested for best fit to the dataset:

a ¼ 0:736 with static adjustmentð Þ
¼ 0:943 with dynamic adjustmentð Þ

ð7Þ

The analysis also concurs with Kokusho et al. [12] and

Vucetic and Dobry [21] on the limited effect of OCR on the

shear modulus degradation curve. However, the influence

effects of effective stress on G/Gmax are not addressed.

Table 1 List of soil types

# Silt

(%)

Clay

(%)

Kaolin

(%)

Bentonite

(%)

PL

(%)

LL

(%)

PI

(%)

MDD

(Mg/m3)

SG

CM1X 79 21 100 – 32 63 31 1.317 2.63

CM2X 69 29 80 20 32 67 35 1.259 2.53

CM3X 59 38 60 40 24 79 55 1.419 2.44

CM4X 42 53 20 80 36 105 69 1.172 2.39

CM5X 29 63 – 100 36 110 74 1.157 2.20
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3 Materials, equipment and methodology

3.1 Materials utilized

For the experiments, commercially available inorganic

bentonite and kaolinite mineral clay were used. Various

proportions were then mixed to produce remoulded and

reconstituted synthetic cohesive soils of varying PI. The

kaolinite was obtained from the company Kaolin Malaysia

Sdn. Bhd. The bentonite was industrial grade sodium

bentonite sourced from the company Masda Chemical Sdn.

Bhd. The proportions for the various mixes are outlined in

Table 1. In addition, laboratory tests were conducted to

obtain the plastic limit (PL), liquid limit (LL), max. dry

density (MDD) and specific gravity (SG) for each soil

sample.

3.2 Equipment used and sample preparation

Proctor compaction tests were performed to determine each

soil mix’s maximum dry density and optimum moisture

content. The soil samples are mixed with distilled water to

the required moisture content of 33%, hand spooning into

the mould in three layers, and compacted by cylindrical

metal hammer tamping to achieve a minimum of 90% max.

dry density.

Dynamic strain-controlled testing was conducted using a

cyclic triaxial device (as shown in Fig. 3) on 50 mm

diameter x 100 mm height cylindrical specimens at various

conditions to derive the shear modulus behaviour with

increasing strain.

Before testing, the soil specimen is first saturated using a

back pressure of 290 kPa, applied from the top to ensure a

minimum Skempton’s B-coefficient of 0.95. A consolida-

tion phase follows the saturation of the sample. Side drains

are utilized to accelerate the consolidation process. The

axial strain is measured by internal instrumentation pro-

vided in the cyclic device. Shear modulus and damping

ratio are calculated from the deviatoric stress vs strain data

obtained according to ASTM D3999M.

3.3 Experiment programme

For the cyclic triaxial (CT) tests, each specimen was sub-

jected to strain-controlled cyclic loading with axial strain

range from 0.001 to 5%. The accepted analysis results are

dependent on the quality of the readings. Deviatoric stress

is calculated from the cyclic vertical axial load divided by

the adjusted sample area.

c ¼ e= 1þ mð Þ ð8Þ
E ¼ LDA=SDAð Þ � Ls=Að Þ ð9Þ

where from cyclic triaxial test readings,

LDA ¼ double amplitude load kNð Þ:
SDA ¼ double amplitude deformation mmð Þ:
Ls ¼ specimen height after consolidation mmð Þ:
A ¼ adjusted area Section 11:2:2 ASTM D3999Mð Þ:
E ¼ Young’s modulus

The axial strain (e) is converted to shear strain (c),
assuming a Poisson ratio of 0.5 (typically for saturated

undrained conditions). Thus, the secant shear modulus (G)

is similarly related to the secant Young’s modulus (E).

G ¼ E=2 1þ mð Þ ð10Þ

Each axial strain setting is subject to five load cycles.

The shear modulus is derived from the mean value of

deviatoric stress vs axial strain from the four load cycles

(double amplitude) after the first single amplitude cycle at

each strain level. The loading frequency is 1 Hz. The

summary of the experiments is outlined in Table 2.

Fig. 3 GDS enterprise-level dynamic triaxial testing system utilized

for the cyclic triaxial test
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4 Test results

The derived secant shear modulus (G) is plotted against the

log cyclic shear strain amplitude (c).

4.1 Derivation of Gmax by empirical equations

To normalize the shear modulus, Gmax is required. Due to

the unavailability of in-field tests and bender element/res-

onant column equipment, Gmax is derived from established

empirical equations for kaolin and bentonite, respectively.

For kaolin, the Hardin and Drnevich equation [3] based

on reconstituted kaolinite and Boston Blue Clay tests is

used.

Gmax ¼ 1230 FðeÞ OCRð ÞK �ro0:5ab in lb:=in2
� �

ð11Þ

where,

FðeÞ ¼ ð2:973� eÞ2=ð1þ eÞ
OCR ¼ taken as 1 for reconstituted soil

�ro ¼ mean principal effective stress ðlb:=in2Þ
K ¼ parameter dependent on PI of soil

The parameter K can be obtained from Hardin and

Drnevich [3]—Table 1. For bentonite, an equation derived

from research by Marcuson and Wahls [17] is utilized.

Gmax ¼ 445 FðeÞ r0o0:5 in lb:=in2
� �

ð12Þ

where,

FðeÞ ¼ ð4:4� eÞ2=ð1þ eÞ
r0o ¼ effective stress lb:=in2

� �

The void ratio, e, for the soil sample is obtained from the

oedometer test. Gmax for samples CM2X to CM4X was

proportioned from that of kaolin and bentonite. Gmax val-

ues of various PI and effective stress are outlined in

Table 3. Figure 4 shows hysteretic loops (stress–strain

curves) typically obtained from the cyclic triaxial test.

4.2 PI influence on shear modulus

The effect of varying PI on secant shear modulus, as shown

in Fig. 5, clearly follows other established regression

models, showing shear modulus increase for the same

strain measured as PI increases.

4.3 Effective stress influence on Shear modulus

The following figures (Figs. 6, 7) show shear modulus

increase for the same strain measured as effective stress

increases for kaolin and bentonite.

5 Derivation of the fitted model

The hyperbolic relationship by Hardin and Drnevich [3],

and which was further developed by Darendeli [1], Zhang

et al.[23], and Vardanega and Bolton [20] is still retained as

Table 2 Experiment programme

Specimen

no.

Type of

test

PI

(%)

Measured effective stress, r0

(kPa)

CM1X-

xxx0

CT 31 32

CM1X-

xxx1

CT 31 91

CM1X-

xxx2

CT 31 195

CM2X-

xxx1

CT 35 96

CM3X-

xxx1

CT 55 95

CM4X-

xxx1

CT 69 95

CM5X-

xxx0

CT 74 47

CM5X-

xxx1

CT 74 90

CM5X-

xxx2

CT 74 198

Table 3 Calculated Gmax from the empirical equation

Specimen

no.

e Plasticity

index, PI

(%)

Effective stress,

r0 (kPa)
Calculated

Gmax (MPa)

CM1X-

xxx0

0.9 31 32 14.06

CM1X-

xxx1

0.9 31 91 23.72

CM1X-

xxx2

0.9 31 195 34.72

CM2X-

xxx1

1.01 35 96 20.34

CM3X-

xxx1

0.9 55 95 31.02

CM4X-

xxx1

1.04 69 95 20.45

CM5X-

xxx0

0.9 74 47 17.04

CM5X-

xxx1

0.9 74 90 23.59

CM5X-

xxx2

0.9 74 198 34.98
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all past research results have validated the basic shape of

the shear modulus curve. However, it is proposed to extend

the equation in terms of shear strain (c), plasticity index

(PI) and effective stress (r0) with the following:

• Insertion of a fitting function for plasticity index, f (PI).

• Insertion of a fitting function for effective stress, f (r0).
• Removal of the need to derive reference strain.

• Replacement of the original curvature parameter, a, by
Darendeli [1] with a new effective stress-influenced

parameter curvature function, Z.

The proposed new form of equation shall be as follows:

Fig. 4 Results of cyclic test (CM1X-xxx1)

Fig. 5 Effect of plasticity index on shear modulus, G

Fig. 6 Influence of effective stress on shear modulus, G for kaolin

(PI = 31)

2354 Acta Geotechnica (2022) 17:2347–2363

123



G

Gmax

¼ 1

1þ f PIð Þ:f r0ð Þ: cð ÞZ
ð13Þ

The curvature parameter, a, originally fixed at 0.919 [1],

is now replaced by a new curvature function, Z, influenced

by both PI and effective stress. The effect from OCR

variation is not considered due to previous research

reporting its insignificant effect on G/Gmax [12, 21]. Recent

studies by Wichtmann and Triantafyllidis [22] have also

reported no clear correlation between OCR and effective

stress paths when conducting cyclic triaxial tests. Both G

and c are obtained from the conversion of cyclic triaxial

test measurements of deviatoric stress and axial strain.

5.1 Fitting function f (PI) for the influence
of plasticity index

Firstly, the influence of effective stress is fixed by con-

sidering samples at fixed r0 of 100 kPa, leaving only the

PI’s effect to determine f (PI). Since the experiment sample

PI range is only limited from PI = 31 to 74, additional

values at PI = 0, 15, 85, 100 and 150 are derived from the

hyperbolic model by Darendeli [1] to extrapolate additional

values for a better definition of the relationship between f

(PI) and PI. Darendeli’s model values were selected as it

was already noted that the increase due to r0 does not

decrease as PI increases beyond 100 [9]. Finally, from

regression analysis, the f (PI) values, when plotted against

PI, fitted to an asymmetrical sigmoidal function as below.

Figure 8 shows the fitting function f (PI) vs PI.

f PIð Þ ¼ a1þ a2� a1ð Þ= 1þ PI=c1ð Þb1
� �m1

ð14Þ

where,

a1 ¼165:2315; a2 ¼ 785.1011

b1 ¼2:751255; c1 ¼ 60600.94; m1 ¼ 58536190

with a coefficient of determination (R2) = 0.992.

5.2 Fitting function D (r0) for the influence
of effective stress

For the influence of effective stress, the soil samples’

plasticity index is fixed by considering samples at a fixed

PI, leaving only the effect of r0 to determine f (r0). Again,
since the sample r0 range at PI = 31 is only limited to

r0 = 50, 100 and 200 kPa, additional values at r0 = 4, 8

and 16 atm using equations from Darendeli’s [1] model are

included to provide additional values to define better the

relationship between f (r0) and r0.
Lanzo et al. [15] observed that G/Gmax increases as

effective stress increases at soils with low PI, but the effect

diminishes as PI increases. The observation is repeated by

Likitlersuang et al. [16], who plotted strain increase due to

increasing mean effective stress becoming negligible for PI

beyond 100. Kishida [9] stated that in the Darendeli

regression model, G/Gmax continues to rise with increasing

PI without diminishing at high PI. Therefore, it is necessary

to introduce a reducing function to reduce the effect until it

becomes insignificant beyond PI = 100. Although f (r0)
can be derived using Darendeli model values, it must be

further modified to account for the diminishing effect and

insignificance beyond PI = 100 (discussed in 5.4). Hence,

the function, D (r0), for the effect of r0 without the

diminishing effect from PI above 100% is first derived.

Then, regression analysis was performed whereby the

values were found to fit an exponential function form as

shown in Fig. 9.

D r0ð Þ = d1þ d2� e c2�r0ð Þ ð15Þ

with the following fitting constants: d1 = � 0.10;

d2 = 8.826902; c2 = � 1.134872. r0 is in units of (atm)

with a coefficient of determination (R2) = 0.957.

Fig. 7 Influence of effective stress on shear modulus, G for bentonite

(PI = 74)

Fig. 8 Parameter, f (PI) vs PI (r0 = 100 kPa)
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5.3 Shaping function z (r0) for the influence
of effective stress

Both Darendeli [1] and Vardanega and Bolton [20] pro-

posed fixed values for the curvature parameter in their

models based on mean values from the range of soils in

their studies. However, the experiment results indicate that

the curvature of the normalized model is also influenced by

effective stress. Therefore, a new curvature function, z (r0),
is proposed to replace a. To investigate the correlation

between curvature and effective stress, samples at a fixed

PI are considered leaving only the effect of r0 to determine

z (r0). Once again, a combination of experimental results

and additional values at r0 = 4, 8 and 16 atm using

Darendeli’s model equations [1] is included to define better

the relationship between z (r0) and r0.

z r0ð Þ ¼ d3þ d4�e c4�r0ð Þ ð16Þ

where the following are the fitting constants: d3 = � 0.809;

d4 = 0.211; c4 = � 0.008. r0 is in units of kPa with a

coefficient of determination (R2) = 0.927.

5.4 Reducing the influence of effective stress
with increasing PI

As mentioned in section 5.2, Lanzo’s et al. [15] observa-

tion that G/Gmax increases as effective stress increases at

soils with low PI, but the effect diminishes as PI increa-

ses was validated by Likitlersuang et al. [16], who plotted

strain increase due to increasing mean effective stress

becoming negligible for PI beyond 100. Kishida [9] noted

that the Darendeli regression model, G/Gmax continues to

rise with increasing PI without diminishing at high PI.

Hence, the necessity to introduce a reducing function to

reduce the effect until it becomes insignificant beyond

PI = 100. Likitlersuang et al. [16] produced a chart for the

variations of strain at G/Gmax = 0.7 (c0.7) for a PI range of

0 to 200 and the mean effective stress (r
0
mÞ ranging from 1

to 600 kPa, together with values by Vucetic and Dobry

[21], Ishibashi and Zhang [4], and Teachavorasinskun et al.

[19]. The increase in strain with increasing r
0
m up to PI =

100 can be expressed in a asymptotic function, HðPIÞ,
which is 1 minus the normalized ratio between the differ-

ence of c0.7 at r
0
m = 0 kPa and at 600 kPa at a particular PI/

difference of c0.7 at r
0
m = 0 kPa and at 600 kPa at PI = 0.

Four different points are plotted for this normalized ratio at

PI = 0 (where normalized ratio = 0, 20, 60 and 100). When

regression analysis is applied, the values can be fitted to an

exponential function for the normalized ratio. The differ-

ence in strain, Dc0.7 at r
0
m = 0 kPa and at 600 kPa fits,

follows an exponential function, F(PI), as shown in Fig. 10,

where:

FðPIÞ ¼ da þ db � eca�PI ð17Þ

where the following are the fitting constants:da =

– 0.007381; db = 0.170501; ca = – 0.018464. PI is in %—

e.g. 20%, 30%, etc. with a coefficient of determination

(R2) = 0.989.

The difference in strain is normalized at F(PI)/F(PI = 0),

and H(PI) is 1� FðPIÞ=FðPI ¼ 0Þ.

Fig. 9 Parameter, D r0ð Þ vs r0 (PI = 31)
Fig. 10 Parameter, F (PI) vs PI at c0.7

Fig. 11 H(PI) vs PI to reduce the effect of effective stress with PI
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H(PI) can be further smoothened to fit a sigmoidal

function form through regression analysis as shown in

Fig. 11 and represented mathematically as follows:

H PIð Þ = a3þ a4� a3ð Þ= 1þ PI=c3ð Þb2
� �m2

ð18Þ

where the following are the fitting constants:

a3 ¼1:002608; a4 ¼ 0:0081622; b2 ¼ 1:25:

c3 ¼6378562; m2 ¼ 1575318.

PI is in %—e.g. 20%, etc., with a coefficient of deter-

mination (R2) = 0.90.

The fitting function, f(r0), and curvature function, Z, for

effective stress can now be expressed as:

f r0ð Þ ¼ D r0ð Þ þ H PIð Þ � 1� D r0ð Þð Þ ð19Þ

Z ¼ z r0ð Þ þ H PIð Þ � 1� z r0ð Þð Þ ð20Þ

Figure 12 shows the plot of f (r0) for various values of
PI. The above equations may be applied for any

combination of soil plasticity index (PI) and effective stress

(r0) above 50 kPa.

5.5 Comparison with experimental results

The proposed model equation compares well with the

experimental results performed. Figure 13 shows the

Fig. 12 Parameter f r
0� �

vs PI for various r0

Fig. 13 Comparison of calculated and measured G/Gmax

Fig. 14 Comparison of calculated and measured G/Gmax at PI = 31

for varying effective stress (r0)
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calculated G/Gmax vs experimental result G/Gmax values

with the calculated coefficient of determination (R2) values

of 0.968 overall. Most of the residuals between calculated

and measured values come from samples CM2X-xxx1x

(80% K/20% B) and CM3X-xxx1x (60% K/40% B).

Noticeable scatter from both mentioned samples occurs

from G/Gmax[ 0.5 onwards. The scatter may be attributed

to (1) consistency limitations of cyclic triaxial device

measurement at smaller strains\ 0.1% and (2) a low

number of experiment values. Consistent readings for

cyclic triaxial tests are generally limited to strains[ 0.1%.

In order to obtain better readings below 0.1% strain, res-

onant column (RC) tests would need to be conducted.

In Fig. 14, calculated G/Gmax values are compared

against experimental results at varying effective stress

(r0 = 50, 100 and 200 kPa). A close fit is achieved with

high R2, even for a low number of experimental values.

Likewise, in Fig. 15, the calculated G/Gmax values are

compared against experimental results at varying PI.

5.6 Comparison with other regression models

The proposed model equation is compared with the other

regression models discussed. When comparing at fixed

effective stress of 100 kPa, the following can be observed:

• For lower values of the plasticity index, ranging from

PI = 0 to 35, regression models are closely aligned

together. The model equation is also compared to the

average G/Gmax (global strain) results for Brahmaputra

sand (PI = 0) [14] from studies by Kumar et al. [13] and

found to be in good agreement.

• As PI increases, models start to diverge noticeably from

each other to form into two distinct groups.

• Group 1—comprising Ishibashi and Zhang [4] and

Zhang et al. [23].

• Group 2—comprising Vucetic and Dobry [21], Kishida

[8, 9], and Vardanega and Bolton [20].

The Darendeli model [1] is positioned approximately

midway between the two groups. Finally, the basic

Fig. 15 Comparison of calculated and measured G/Gmax for various PI
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hyperbolic model by Hardin and Drnevich [3] is essentially

dependent on the reference strain, which is tied to experi-

mental results and only appears in the charts for PI = 31,

35, 55, 69 and 74.

Figure 16 shows a consistently good fit of the proposed

model equation to the other regression models gradually

approaching convergence with the Darendeli model curve.

The proposed model curve degradation slope is gener-

ally aligned for all models except for Hardin and Drnevich,

which utilized a curvature parameter of 1 and Vardanega

and Bolton [20].

Referring to Fig. 16a and b, for PI = 31 and 35, the

proposed model equation is at the lower bound of Group 1

models because the mathematical fitting was tied closely to

the test results obtained.

After that, the proposed model equation agrees closely

with Group 1 and Darendeli [1] from PI = 35 to 74 and

starts to move towards aligning with Group 2 from PI =

100 onwards, where Kishida [8, 9], Vardanega and Bolton

[20], and Vucetic and Dobry [21] models have the least

biases and are considered more accurate [9].

In Fig. 17, the model equation continues to match the

Darendeli model [1] and, as designed to, moves to align

closer with the Kishida model [9] when soil PI exceeds

100. As shown in Figs. 16 and 17, the close fit demon-

strates the model equation’s ability to accommodate a wide

range of plasticity index values from PI = 0 to 200 within

the lower and upper bounds of the regression models.

5.7 Design curves for various effective pressures

To demonstrate the effectiveness of the reducing function,

H(PI), in limiting the influence of increasing effective

pressure as PI increases, design curves are plotted for

various PI with effective stresses of r0 = 50–100–200 kPa

(0.49–0.99–1.97 atm) in Fig. 18. The curves clearly show

H (PI)’s limiting effect as the influence (measured by the

gap between r0 = 50 and r0 = 200) diminishes to negligi-

ble values beyond PI = 100.

Fig. 16 Comparison of regression models based on r0 = 100 kPa (PI 0 to 55)
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6 Discussion

The proposed model seeks to incorporate both aspects of

the Darendeli model, developed from Hardin and Drne-

vich, which appears more suited with lower bias at lower PI

and the Kishida model, which exhibited advantages over

the other models for higher soil PI values [9].

Firstly, the divergence into two distinct groups may be

explained through the basis from which the results’ data-

base is obtained to derive the regression models.

Group 1 comprises models that are based initially on

experiments of non-cohesive soils—e.g. Ishibashi and

Zhang [4], who adapted their model from non-plastic soils

and Zhang et al. [23], which based the model on the

research of soils grouped by geologic age—Quaternary/

Tertiary and non-age-specific residual/saprolite soils.

Group 2 consists of models developed from results

derived from a higher plasticity cohesive soils research

database—e.g. Vucetic and Dobry [21] and Vardanega and

Bolton [20]. In Kishida [8], the regression model was

originally adapted from equations developed for organic

soils with high plasticity.

Thus, it can be postulated that Group 1 models are more

suited towards non-cohesive and lower PI soils, whereas

Group 2 is optimized towards high PI soils. Kishida [9]

also reports on biases with PI for the different models. The

model developed by Darendeli [1] is positioned between

the two groups. Darendeli [1] tested various soils ranging

from non-plastic PI = 0 to 53 with only two other soil

samples higher at 79 and 132. It also underestimates

G/Gmax for higher PI but not to the same extent as Group 1

models. Kishida’s model [8] refers to Vucetic and Dobry’s

[21] model to accuracy. However, Vucetic and Dobry’s

model does not include the effect of effective stress on

G/Gmax [1, 9]. Moreover, Gmax derived using the Kishida

model equations differs considerably from the established

empirical equations [3, 17] for kaolin and bentonite soil.

The established empirical equations are validated

because they were utilized to create the normalized curves

from experimental shear modulus results for PI = 31, 35,

Fig. 17 Comparison of regression models based on r0 = 100 kPa (PI 69 to 200)
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55, 69 and 74. These proposed model curve results match

very well, showing high coefficients of determination (R2)

to Darendeli’s model for soil PI up to 100 and Kishida’s

model for soil PI above 100.

Secondly, the Darendeli [1] and Zhang et al. [23] models

continue to increase when applied with high PI values

showing increasing effective stress beyond the threshold of

100 in conflict with the observations by Likitlersuang et al.

[16]. This conflict is rectified in the proposed extended

model equation by introducing the limiting function, H(PI).

H(PI) effectively reduces any further increase in G/Gmax to

insignificant magnitudes beyond PI = 100, in alignment

with the findings of Likitlersuang et al. [16]. The reducing

effect from H(PI) is clearly shown in Fig. 18, with the

influence of effective pressure variation becoming

insignificant beyond PI = 100. Kishida proposed that the

reducing effect of r0 with increasing PI could be related to

soil compressibility [9].

Thirdly, the observation of differing values for the

curvature parameter, a, can now be resolved by replacing a

with a new curvature function that considers the influence

of effective stress and soil plasticity index. Darendeli [1]

set the value of a at 0.919 as the mean value from various

soils tested. However, actual a varied between soil groups

(from clean sands to silts to clays) tested. Vardanega and

Bolton [20] proposed an updated a value of 0.943 with

a ± 30% margin for 90% of the soil data studied. The

differing values for a suggest a possible relationship

between soil PI and a.
Experiment results also showed a correlation between

the curvature parameter and effective stress for a given PI.

Hence, a curvature function Z is proposed to replace the

curvature parameter, a. Initially, a curvature function at a

fixed PI, z(r0), is established. After that, the limiting effects

beyond the value of PI = 100 are imposed by similarly

introducing the limiting function, H(PI), to develop the

corrected curvature function, Z (Eq. 20).

Finally, the proposed model equation (Eq. 13) dispenses

with the need for a reference strain. Instead, the mathe-

matically fitted extended model only requires the plasticity

Fig. 18 Comparison of model equation based on r0 = 50–100-200 kPa (0.49–0.99–1.97 atm)
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index (property of the soil) and effective stress (depth of

the soil) to define the relationship between shear modulus

and shear strain. The plasticity index of soil can be readily

determined from laboratory tests for Atterberg limits,

whereas the effective stress can be derived after consider-

ing the elevation of the groundwater level and density of

the different soil layers. Table 4 summarizes the compar-

ison of the different regression models.

7 Conclusion

Soil G/Gmax vs shear strain behaviour models have been

extensively researched with several different approaches.

The primary influence factors for the behaviour are shear

strain (c), effective stress (r0) and plasticity index (PI).

Other influence factors are not substantive enough to

affect the behaviour significantly. However, model pre-

diction differences can become substantial when influence

factors diverge from experiment values on which the

research is based. Furthermore, previous reviews have

identified omissions or non-considerations of the effect of

influence factors in the different regression models devel-

oped to date.

The established regression models discussed can be

divided into Group 1 using the non-cohesive soils model

and Group 2, based on higher PI cohesive soil. Both groups

agree closely at low PI but begin to differ as PI increases,

significantly when beyond 100. The authors propose

extending the Darendeli model further with fitting func-

tions to represent better the spectrum of PI (from 0%

onwards) and effective stress (from 50 kPa onwards) for

cohesive soils.

The proposed model also has the advantage of refer-

encing the primary influence factors developed mathe-

matically, considering previous models’ combined research

findings. The diminishing influence of effective stress at

soil PI beyond 100% has been incorporated into this

extended model, and the need for the reference strain is

removed. Experiments conducted have also revalidated the

empirical equations for Gmax by its close fit of the derived

G/Gmax vs strain curves. The calculated values of G/Gmax

from the proposed model are in close agreement with

experimental values. In addition, the proposed extended

model compares favourably with the Kishida regression

model, which is considered to have lower biases at higher

soil PI. It is hoped that the proposed model can be utilized

to facilitate the preliminary prediction of shear modulus

with increasing strain. Future research identified to refine

the model further is as follows:

• The curvature power parameter (a), which was the

average for all soils studied by Darendeli [1], has now

been replaced by a curvature function (Z). However,

Table 4 Qualitative comparison of models

Model Mathematical function Influence factors

Reference

strain (cr)
Plasticity index (PI) Effective stress (r0)

Hardin and

Drnevich [3]

Basic hyperbolic Requires cr No, based only on strain

increase

No, based only on strain increase

Vucetic and Dobry

[21]

No mathematical

function

N/A Yes No effect with a change in r0 as PI increases

Ishibashi and

Zhang [4]

Non-Hardin hyperbolic No cr Very small effect with a

change in PI

No effect with a change in r0 as PI increases

Darendeli [1] Modified Hardin

hyperbolic

Requires cr Increases as the PI increases

Fixed shaping parameter

Yes—increases with an increase in r0. Continues
increasing beyond PI = 100

Zhang et al. [23] Modified Hardin

hyperbolic

Requires cr No effect with a change in PI Yes—small effect with a change in r0. Continues
increasing beyond PI = 100

Kishida [8] Direct derivation of

shear modulus, G

Requires cr Increases as the PI increases Very small effect with a change in r0 up to

PI = 100, after that, negligible effect

Vardanega and

Bolton [20]

Modified Hardin

hyperbolic

Requires cr Increases as the PI increases

Fixed shaping parameter

No effect with a change in r0 as PI increases

Extended Model

equation proposed

(Eq. 13)

Extended Darendeli

hyperbolic

cr not
required

Increases as the PI increases

The shaping function

considers the effect of PI

Increases as r0 increases up to PI = 100, after that

negligible effect

The shaping function considers the effect of r0
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additional tests are recommended to refine and validate

this function due to the low number of experiments.

• Due to the limited number of experiments performed,

the soil research database should be expanded to

validate the model further.

• The reducing effect of effective stress on G/Gmax could

be further investigated by correlating it with soil

compressibility (e.g. coefficient of soil compressibility)

obtained from soil oedometer tests.

• A relationship between soil compressive strength

(q) and elastic modulus (E) with shear modulus may

be studied.

• A corresponding model for the damping ratio of soils vs

strain can similarly be developed from the methodology

used in this article.

• Studies to apply the model for improved or stabilized

soil (e.g. soil stabilization) can be conducted. By

increasing binder dosage, compressive strengths can

approach conventional mass or weak concrete. Thus,

the constitutive model may transition from regular soil

to hard soil soft rock (HSSR). Research is needed to

establish a crossover point.
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