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Abstract
Foundation piles can be used as a means for increasing the capacity of the foundations under static loads or, at the same

time, can be regarded as an additional source of energy dissipation for the structure during strong motion. Under multi-

axial loading, the ultimate capacity of a pile group is closely connected with the attainment of the flexural strength in the

piles, which can in turn vary significantly according to the specific load path followed. Nonetheless, the design of piled

foundations is still based on an independent evaluation of the vertical and horizontal capacities without accounting for the

interaction between the several loads acting on the footing. To overcome this issue, in this paper a simplified numerical

procedure for evaluating the capacity of piled foundations under multi-axial loading conditions is developed, which is

based on the lower bound theorem of plastic limit analysis. On the basis of the numerical results, an analytical model of

ultimate limit state surface is proposed, representing the force combinations that activate global plastic mechanisms of the

soil–piles system. The identification of the ultimate surface necessitates a limited number of parameters having a clear

physical meaning. The ultimate surface can lead to an optimised design of pile groups, allowing for a better control of the

ultimate capacity as a function of the expected load patterns under static and dynamic conditions. In structural analysis, the

ultimate surface can also be regarded as a bounding surface of a plasticity-based macroelement for piled foundations to

account for the nonlinear features of the soil–pile system.
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Abbreviations
A3 Dimension of the ultimate surface along the Q3-

axis

B1�2 Width of the pile cap in the 1- or 2-direction

c3 Q3-Coordinate of the centre of the ultimate

surface

D Diameter of the piles

DN Unbalanced axial force in the iterative numeri-

cal procedure

DQRi Unbalanced external moment around the i-axis

in the iterative numerical procedure

C1�2 Shape ratios of the ultimate surface in the Q1–

Q3 and Q2–Q3 planes.

Hn,lim Horizontal limit load of the nth pile

Hn Shear force at the top of the nth pile

h Height of the pier

ij Spacing between the piles in the j-direction

Jij Inertia matrix of the pile group in the horizontal

plane

gh Horizontal efficiency of the pile group

gv Vertical efficiency of the pile group

L Length of the piles

Mn,y Yield moment of the nth pile

N Number of piles in the group

Nn Axial force in the nth pile

NðmaxÞ Maximum axial force in the piles

NðmÞ Mean axial force in the piles

N
ð�Þ
lim

Compressive ( ?) and tensile (–) capacity of the

single pile in total stresses

N
ðBÞ
lim

Bearing capacity of the pile tip

N
ðLÞ
lim

Shaft resistance of the single pile

Qi Generalised load acting on the foundation slab

in the i-direction

Qh Resultant load in the horizontal plane

Qh; lim Resultant limit load of the pile group in the

horizontal plane
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Q
ðmaxÞ
i

Maximum horizontal load in the i-direction

(i = 1,2)

Q1�2; lim Horizontal limit loads of the pile group in

directions 1 and 2

Q
ð1DÞ
1�2; lim

Uniaxial limit loads of the pile group in direc-

tions 1 and 2

Q
ðlimÞ
1�2; 3

Resultant limit load of the pile group consider-

ing a combined load Q1�2–Q3.

Q
ðþÞ
3; lim

Vertical limit load of the pile group in

compression

Q
ð�Þ
3; lim

Vertical limit load of the pile group in tension

Q
ðcrÞ
3; lim

Vertical limit load of the pile group corre-

sponding to the maximum external moment

Q
ðrefÞ
3

Vertical load taken as a reference in the standard

design of the foundation

Q
ð0Þ
3; i

Interaction parameter of the ultimate surface in

the Qi–Q3 space (i = 1,2)

QR1�R2 External moments around axes 1 and 2

Q
ðmaxÞ
Ri

Maximum external moment around the i-axis

Q
ðlimÞ
Rh

Resultant limit moment of the pile group

SF; 1�2 Scale factors of the ultimate surface in the Q1–

Q3 and Q2–Q3 planes.

xn;i Coordinate of the nth pile in the i-direction

1 Introduction

In numerical analysis of structures, soil–pile interaction can

be modelled by means of linear spring elements

[13, 15–17, 30, 31, 38, 39], neglecting the nonlinear

behaviour of the soil–piles system. Nonetheless, during

seismic loading a controlled yielding of the piles may

produce favourable effects, dissipating seismic energy and

limiting the seismic actions transferred to the superstruc-

ture [5]. In these cases, the capacity of piled foundations

assumes a central role in evaluating the seismic perfor-

mance of the superstructure. The nonlinear response of

single piles subjected to vertical and horizontal loads can

be accounted for in an uncoupled manner by assigning an

elastic–plastic constitutive law to the springs placed along

the shaft and at the pile tip [2, 40]. However, the global

nonlinear response of pile groups is still affected by

numerous uncertainties, such as the evaluation of the ulti-

mate capacity under multi-axial loading. In engineering

practice, the ultimate capacity of a pile group is typically

evaluated independently for vertical and horizontal loads,

assuming that the horizontal capacity is not influenced by

the presence of external vertical forces and vice versa. By

contrast, it is well known that the interaction between the

loads acting on a geotechnical system can alter profoundly

its overall resistance for the highly asymmetry in the soil

behaviour, as it was demonstrated for the case of shallow

foundations [1, 4, 6, 9, 24, 25, 28, 29, 34–36, 41] and

bridge abutments [21–23]. In the context of a macroele-

ment approach [12, 20, 41, 43], the effect of the interaction

between the external loads on failure is represented by an

ultimate limit state surface in the force space, associated

with the activation of global plastic mechanisms of the

system. In this regard, some formulations were proposed

for foundation piles considering a three-axial load pattern

including a vertical load, a horizontal load and a moment

acting in a vertical plane of the foundation (in-plane load

path). These studies, primarily based on pushover numer-

ical analyses of specific soil–piles systems [10, 11, 18, 19],

demonstrated the dependence of the ultimate capacity of

the group on the direction of the resultant load and the

essential role played by the inelastic response of the piles.

Afterwards, Di Laora et al. [33] proposed an analytical

solution for the bearing capacity of pile groups under

vertical eccentric loads able to describe the in-plane failure

surface.

In this study, we propose a generalised, analytical model

of ultimate surface accounting for a full transmission of

forces between the superstructure and the foundation piles.

The ultimate loads of pile groups under multi-axial con-

ditions are analysed through the development of a simpli-

fied numerical procedure based on the lower bound

theorem of plastic limit analysis. The importance of con-

sidering the multi-axial capacity in the design of piled

foundations is finally critically assessed by comparing the

proposed approach with the classical standard design

criterion.

2 Problem definition

In this section, the proposed numerical procedure to

determine the ultimate loads of a pile group under multi-

axial loading is presented. Figure 1 depicts an illustrative

layout of the piled foundation analysed in this study: it is

composed of N piles connected to a rigid, suspended raft

(not interacting with the soil) which the external gener-

alised forces Qi = {Q1, Q2, Q3, QR1, QR2} are applied to.

The contribution of the moment QR3 around the vertical

axis is neglected. As a further simplifying hypothesis, the

moments at the pile–raft connections are not included in

the global balance equations of the foundation, since they

do not affect significantly the ultimate conditions of the

group [33], but are considered in the evaluation of the

horizontal limit loads of the piles. Since the present study is
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aimed at evaluating the ultimate conditions of a pile group,

only the strength of the individual components needs to be

characterised. Therefore, both soil and pile behaviours are

regarded as perfectly plastic, while the dependence of the

yield moment Mn,y of the pile cross-section on the axial

force Nn is explicitly considered. The interaction among the

piles at failure is taken into account by efficiency coeffi-

cients, excluding a full block-type failure mode. This

assumption can be deemed reasonable for a pile spacing

larger than three diameters.

Failure of the pile group can be caused by two different

global plastic mechanisms:

• a vertical load mechanism caused by the attainment of

the vertical limit load (compression or tensile capacity)

in all piles;

• a horizontal load mechanism due to the mobilisation of

the horizontal limit load in all piles according to a long-

pile failure mode; this is the case of piled foundations

designed to carry significant vertical loads, which in

most cases have a length larger than 10–15 diameters.

In the numerical procedure, the ultimate condition of the

group for a prescribed load path is detected as the plastic

mechanism that activates first, representing the weakest

plastic mode, which varies with the load direction.

The vertical and horizontal limit loads of the single pile

represent the input quantities for the numerical procedure,

and several methodologies are available in the literature for

their evaluation. In particular, the horizontal limit load of

the group depends on the available yield moment in each

pile, which is in turn a function of the respective axial

force. In the presence of an external moment, the axial

force is not uniform among the piles and is bounded by the

axial capacity in compression and tension. Accordingly,

the axial forces are determined by the following procedure

to reproduce the progressive attainment of the strength

among the piles as the external forces rise.

2.1 Incremental numerical procedure

The axial force Nn in the nth pile varies linearly with the

vertical load Q3 up to the attainment of the respective

compressive or tensile capacity, as follows:

Nn ¼
Q3

N
þ QRi � J�1

ij � xj;n;Nð�Þ
lim �Nn �N

ðþÞ
lim 1ðaÞ

N
ð�Þ
lim ;Nn [N

ðþÞ
lim orNn\N

ð�Þ
lim 1ðbÞ

8
<

:

in which N(m) = Q3/N represents the mean axial force

among the piles, the vector QRi = {QR2, QR1} lists the

moment components around the horizontal axes and Jij is

the inertia matrix of the pile group in the horizontal plane,

which reads:

Q1

Q3

QR2

0.8

2

3.2piles

Q2

Q3

QR1

3.2

2

g.w.t.

1

3

2

3

1

2

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

x1,j

x 2
,j

homogeneous
sandy deposit

26

B1 = 12.6

B
2 = 9.6

Fig. 1 Schematic layout of the reference piled foundation (dimensions of the foundation in metres), with representation of the positive directions

of the external forces Qi
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Jij ¼

PN

n¼1

x2n;2
PN

n¼1

xn;2 � xn;1
PN

n¼1

xn;1 � xn;2
PN

n¼1

x2n;1

2

6
6
4

3

7
7
5 ð2Þ

where xn;i is the coordinate of the nth pile in the i-direction.
In principle, if the piles had an infinite capacity, Eq. 1a

would give directly the respective axial forces for any

combination of the generalised loads. Instead, in the pre-

sent study the soil–pile system exhibits more realistically a

dissymmetric plastic behaviour that required the imple-

mentation of the following incremental procedure to

properly compute the axial force at each load increment.

In the numerical procedure, the loads Qi are incremented

gradually according to prescribed ratios between the load

components. Then, an internal iterative calculation deter-

mines the axial forces in the piles: a trial, elastic distribu-

tion of Nn is initially computed through Eq. 1a, with a

consequent check on the attainment of the axial capacity of

the piles. If no pile has reached its vertical capacity, the

trial axial forces satisfy both the equilibrium and the

compatibility with the strength criterion in the vertical

direction and the internal iteration stops. If the nth axial

force is greater than the vertical capacity in compression or

tension (N
ð�Þ
lim ), an unbalanced axial force DN and two

unbalanced moments DQR1 ¼ DN � xn;2 and DQR2 ¼ DN �
xn;1 generate, which must be balanced by the piles that have

not reached their capacity yet. Accordingly, the terms of

the inertia matrix are updated considering only the piles not

yielded and the consequent roto-translation of the principal

axes of inertia is computed by diagonalising Jij. (the prin-

cipal axes of inertia are coincident with the physical 1- and

2-directions of the foundation only when the response of all

piles is not plastic). Thus, a new distribution of the axial

forces is computed through Eq. 1 considering also DN–
DQR1–DQR2, and a new check follows on the compatibility

of Nn with the axial capacity N
ð�Þ
lim . This procedure iterates

until balance and compatibility are satisfied. A vertical load

mechanism is detected when all the piles reach the axial

capacity.

The yield moment Mn,y of the pile cross-section is a

function of the axial force Nn computed above, that is taken

constant along the uppermost pile portion which is

involved in the long-pile failure mechanism (typically five

to ten diameters [32]). For compatibility with the strength

criterion, the shear force Hn in the nth pile cannot be

greater than its horizontal limit load Hn; lim and a horizontal

plastic mechanism occurs when Hn ¼ Hlim for

n = 1,…,N. An equal lateral capacity is considered for each

pile, as this may be deemed acceptable for foundations

with a limited number of piles. The incremental calculation

terminates when a failure mode (against vertical or hori-

zontal loads) activates.

The proposed procedure respects the assumptions of the

lower bound theorem of plastic limit analysis (perfectly

plastic behaviour, equilibrium and compatibility with the

strength criterion), and therefore, it can be thought to

provide a conservative solution for the limit loads of the

group.

2.2 Case study

The numerical procedure described above is applied to the

soil–pile system depicted in Fig. 1. It is composed of

N = 12 piles, of diameter D = 0.8 m, length L = 26 m and

arranged in n1 = 4 rows in the 1-direction and n2 = 3 rows

in the 2-direction. The same spacing i1 = i2 = 4D = 3.2 m

is assumed in the two coordinate horizontal directions. The

piles are reinforced concrete elements with a cross-section

including 9 longitudinal 12-mm-diameter steel rebars

spaced by 0.3 m, whose strength envelope is depicted in

Fig. 2. In this manner, the yield moment Mn,y of the pile is

a function of the respective axial force Nn. The subsoil is

composed of a sandy soil with a ground water table located

at zw = 2.0 m. The unit weight of the soil is equal to

16 kN/m3 and 17 kN/m3 above and below the ground

water table, respectively.

For simplicity, but without loss of generality of the

procedure, in this study the compressive axial capacity of

the single pile is computed in a decoupled manner as

N
ðþÞ
lim ¼ gv � N

ðBÞ
lim þ N

ðLÞ
lim

� �
, where N

ðBÞ
lim is the bearing

capacity of the pile tip and N
ðLÞ
lim the shaft resistance,

evaluated according to the expressions listed in Viggiani

et al. [47]; gv is an equivalent efficiency of the pile group

for vertical loads accounting for the mutual interaction

among the piles, evaluated according to [27]. The tensile

capacity N
ð�Þ
lim of the single pile is equal to the lateral

resistance N
ðLÞ
lim only. The horizontal limit load Hn; lim of

each pile is computed using the Broms method [3], con-

sidering an equivalent efficiency, gh, of the group for

horizontal loads evaluated through the solution proposed

by Mokwa [37]. Of course, different solutions for the limit

loads and for the equivalent efficiencies of the piles could

be introduced in the proposed framework without altering

the validity of the procedure.

3 In-plane failure mechanisms

In this section, we analyse the failure conditions of the

reference pile group loaded separately by two force com-

binations Q1–Q3–QR2, acting in the 1–3 vertical plane, and
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Q2–Q3–QR1, relative to the 2–3 vertical plane (Fig. 1).

Within the framework described in the previous section,

the ultimate loads of a pile group are qualitatively identical

for coarse- or fine-grained soils since the only difference

consists in different expressions for the vertical and hori-

zontal limit loads of the single pile. Therefore, only the

case of a homogeneous sandy soil is tackled for brevity. A

purely frictional strength criterion was assumed

(c’ = 0 kPa) with an angle of shearing resistance u0 = 35�.
In the incremental numerical procedure, the loads were

progressively increased following a variety of loading

paths. In order to represent the failure points in a homo-

geneous force space, the moment components were divided

by the length B1 = 12.6 m of the raft, such that Q�
R1 ¼

QR1=B1 and Q�
R2 ¼ QR2=B1.

Figure 3 shows, in a deformed scale, the force combi-

nations acting in the two coordinate vertical planes of the

foundation that activate global plastic mechanisms of the

group. Let us focus initially on the failure envelopes Q1–Q3

and Q2–Q3 in the absence of moment (QR1 = QR2 = 0). In

the case of a sole vertical load, the positive and negative

vertical limit loads, Q
ðþÞ
3; lim and Q

ð�Þ
3; lim, are associated with

the mobilisation of the bearing and tensile capacity in all

piles, respectively. In this case, Q
ðþÞ
3; lim [ [Q

ð�Þ
3; lim because

the tensile capacity of the group is due to the attainment of

the tensile capacity in the pile cross-section, which is lower

than the tensile capacity N
ð�Þ
lim of the soil–pile system. The

horizontal limit loads Q1; lim and Q2; lim (Q3 ¼ 0), more

simply indicated as Q1�2; lim, are identical because the

horizontal efficiency adopted in this study does not vary

with the load direction.

The coupled limit load Q
ðlimÞ
1�2; 3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

1�2 þ Q2
3

p
increases

when Q3 is directed downwards (Q3 [ 0) because it

increases the yield moment Mn; y of the piles and vice versa

when Q3 is directed upwards (Q3\0). The direct propor-

tionality between Q3 and Mn; y is due to the fact that in this

case the maximum axial forces in the piles are equal to

NðmaxÞ = Q
ðþÞ
3; lim=N = 4.2 MN, involving the region of the

strength envelope of the pile cross-section in which the

variation of the yield moment agrees with the variation of

the axial force, excluding the possibility to have fragile

plastic mechanisms. Notwithstanding, it was seen that if

the axial force Nn is larger than 4.2 MN the limit domain in

Fig. 3 contracts keeping its shape unchanged.

In the present case, the failure mode is driven by the

attainment of the vertical limit load if Q1�2\0:1� Q3

while a horizontal plastic mechanism activates otherwise.

Hence the simultaneous application of the horizontal and

vertical loads can lead to a substantial reduction of the

available vertical capacity of the group and also to a sig-

nificant modification of the horizontal limit load as a

function of the load ratio Q3=Q1�2.

Figure 3 shows also the effect of the external moment

on the combined limit load Q
ðlimÞ
1�2; 3. The activation of a

failure mode is not influenced by the direction of the

moments QR1 and QR2 because in the proposed framework

this leads only to a specular distribution of the axial forces

in the piles without altering the vertical and horizontal limit

loads. The presence of an external moment always reduces

Q
ðlimÞ
1�2; 3 for every load path followed, since the external

moment leads to a different distribution of the axial forces

among the piles altering the respective vertical and hori-

zontal limit loads. The ultimate locus contracts as the

Fig. 2 Axial force–moment (N–M) strength envelope of the pile cross-section
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moment rises until degenerating in a point when the

external moments are equal to the respective maximum

values Q
ðmaxÞ
R1 =B1 ¼ 4:8 MN and Q

ðmaxÞ
R2 =B1 ¼ 6:9 MN

(trends at QR1�R2=Q
ðmaxÞ
R1�R2 ¼ 1 in Fig. 3). In the proposed

simplified framework, this condition corresponds to an

opposite attainment of the axial capacity in the piles with

respect to the central vertical axis of the foundation. This is

evident in Fig. 4 in which the failure envelopes in the

QR2=B1–Q3 and QR1=B1–Q3 spaces are represented toge-

ther with the mechanisms characterising failure for Q1 = 0.

For a sufficiently low vertical force, the horizontal loads

reduce the domain of the admissible forces due to the

activation of a horizontal load mechanism, as an equivalent

interpretation of the failure locus in Fig. 3. The ultimate

loci for Q1�2=Q1�2; lim ¼ 0 (Fig. 4) are in perfect agree-

ment with the strength envelope proposed by Di Laora

et al. [33] relative to the combined effect of the vertical

force and the external moment.

Several three-dimensional numerical analyses were

carried out to support the results obtained with the pro-

posed procedure. Specifically, independent estimates of the

ultimate load of the pile group along selected loading paths

were obtained through the application of the theorems of

limit analysis in finite element simulations [44–46] using

the code OPTUM G3 [42]. The numerical model repro-

duced the geometry and mechanical properties of the ref-

erence soil–pile system (Sect. 2). Fixed restrained were

applied along the boundaries of the soil domain. Both the

soil domain and the piles were modelled by means of solid

elements with a rigid-perfectly plastic behaviour described

by the Mohr–Coulomb failure criterion with an associated

flow rule. In detail, a cohesion cp = 3400 kPa and a friction

angle up
0 = 37 kPa for the elements of the piles were

calibrated by trial and error in order to reproduce the

strength envelope of Fig. 2. The numerical simulations

computed the magnitude of the horizontal load Q1 applied

to the slab that cause failure of the system, considering four

Fig. 3 Force combinations Q2–Q3 and Q1–Q3 causing failure of the reference pile group, for different levels of the respective normalised moment

QR1/QR1
(max) and QR2/QR2

(max) from 0 to 1.0, obtained with the proposed simplified framework (circles) and through advanced numerical

analyses (triangles)
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vertical force levels Q3=Q
ðþÞ
3; lim = 0, 0.1, 0.3, 0.6. Each

analysis is composed of several iterations with mesh

adaptivity: the calculation stops when upper and lower

bound solutions become close to each other and do not vary

significantly with the number of iterations. The resulting

limit loads are shown in Fig. 3 (triangular symbols). The

portion of the failure envelope obtained with OPTUM G3

should be compared with that calculated with the simplified

procedure for QR2/QR2
(max) = 0: it yields larger values of

the horizontal limit loads, as an effect of the conservatism

introduced in the use of the Broms solution and in the

choice of the horizontal efficiency factors, but it follows

quite closely the shape of the failure envelope obtained

with the simplified procedure. The plastic mechanisms

associated with the upper bound solution, shown in Fig. 5,

indicate that only a limited portion of the foundation soil is

involved in the mechanisms, within a maximum depth of

5.5–7 diameters.

Coming back to the results of the simplified procedure,

the effect of the co-presence of a horizontal load and an

external moment is illustrated in Fig. 6, considering

different levels of the vertical force Q3=Q
ðþÞ
3; lim. The shape

of the failure locus changes from Q3=Q
ðþÞ
3; lim = 0 to 0.9 with

a progressively lower interaction between the two load

components. The maximum horizontal limit forces are

attained for Q3=Q
ðþÞ
3; lim = 0.75 and remain essentially con-

stant for greater values in virtue of the ductile behaviour of

the piles.

4 Out-of-plane failure mechanisms

A superstructure likely transfers to the foundation all the

generalised external forces Qi ¼ Q1; Q2; Q3; QR1; QR2f g.
In this section, we analyse the interaction between the

horizontal loads and between the moments acting in the

two orthogonal vertical planes 1–3 and 2–3 (Fig. 1).

4.1 Q1–Q2 interaction

Consider the reference pile group loaded by both the hor-

izontal loads Q1 and Q2 in the absence of external moment,

Fig. 4 Force combinations QR1/B1–Q3 and QR2/B1–Q3 causing failure of the reference pile group, for different levels of the respective normalised

horizontal load Q2/Q2
(max) and Q1/Q1

(max) from 0 to 0.9
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taking advantage of the slight interaction between them on

the resultant limit load (Fig. 6). The norm Qh; lim ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

1; lim þ Q2
2; lim

q
and the direction of the resultant limit

load in the horizontal plane are controlled by the horizontal

Fig. 5 Central section view of the kinematic failure mechanisms of the reference pile group and contours of the relative shear dissipation (from

0 kJ in blue to 1 kJ in red) obtained through the advanced numerical analyses in OPTUM G3 in the case of a combined load Q1-Q3 with Q3 = 0,

0.1, 0.3, 0.6 9 Q3,lim
(?) (a, b, c, d, respectively)

Fig. 6 Force combinations Q1–QR2/B1 and Q2–QR1/B1 causing failure of the reference pile group, for different levels of the vertical load Q3/

Q3
(max) = 0–0.9
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efficiency gh among the piles. The latter was evaluated

through Mokwa’s solution [3] so that the limit load Qh; lim

does not change with the direction of the resultant hori-

zontal load Qh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

1 þ Q2
2

p
because the reference pile

group has the same spacing in both the horizontal direc-

tions. As a result, by using the proposed numerical pro-

cedure the ultimate locus in the Q1–Q2 space is represented

by a circumference, whose radius is strongly influenced by

the presence of the vertical force, as shown in Fig. 7. The

vertical force produces an expansion of the admissible

domain up to a level Q3=Q
ðþÞ
3; lim of about 0.6, beyond which

the horizontal limit load remains unchanged in virtue of the

ductile behaviour exhibited by the piles (Sect. 3).

The proposed framework could be easily improved by

the introduction of a more sophisticated model for the

horizontal efficiency, which would reasonably lead to an

elliptical shape of the limit locus in the Q1–Q2 space. This

is demonstrated by the values of Qh; lim obtained through

the advanced numerical analyses performed in OPTUM

G3, represented in Fig. 7 (triangular symbols), varying the

ratio Q1/Q2 and for a vertical force level Q3=Q
ðþÞ
3; lim = 0.6.

The comparison between the numerical analyses and the

proposed simplified procedure reveals that for the case at

hand the latter underestimates Qh; lim by 20–30% and that

the limit loads in 1- and 2-directions differ by about 10%.

4.2 QR1–QR2 interaction

The effect of the bi-directionality of the external moment is

analysed considering only the co-presence of the vertical

force Q3. Figure 8 shows the moment combinations, Q
ðlimÞ
R1

and Q
ðlimÞ
R2 , producing failure of the pile group

Q
ðlimÞ
Rh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q
ðlimÞ2
R1 þ Q

ðlimÞ2
R2

q

, computed for Q3=Q
ðþÞ
3; lim = 0–

0.95. When the vertical force is equal to zero, the inter-

action between QR1 and QR2 is negligible. As the vertical

force rises, this interaction becomes increasingly more

pronounced, leading to an elliptical relationship between

Q
ðlimÞ
R1 and Q

ðlimÞ
R2 for Q3=Q

ðþÞ
3; lim [ 0.6. More in detail, the

size of the admissible domain increases with the vertical

force as long as Q3=Q
ðþÞ
3; lim \ 0.5, while it reduces for

Q3=Q
ðþÞ
3; lim [ 0.5; the case Q3=Q

ðþÞ
3; lim = 0.5 is the condition

in which the ultimate locus reaches its maximum dimen-

sion, as it appears evident from the results in Fig. 4. This

non-monotonic variation of the strength envelope from

small to large values of Q3=Q
ðþÞ
3; lim predicted by the pro-

posed framework is due to a different mobilisation of the

axial capacity among the piles. Figure 9 shows the pro-

gressive mobilisation of the axial capacity of the piles for

some significant loading paths: cases (a) and (b) consider

the sole application of the moment QR1 and QR2,

Fig. 7 Force combinations Q1–Q2 causing failure of the reference pile group, for different levels of the vertical load Q3/Q3
(max) = 0–0.95,

obtained with the proposed simplified framework (circles) and through advanced numerical analyses (triangles)
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respectively, while cases (c) and (d) refer to the con-

comitant application of the two external moments

QR1 = QR2 considering a normalised vertical force

Q3=Q
ðþÞ
3; lim = 0 and 0.8, respectively. The number associ-

ated with each pile indicates the order with which the

relative axial capacity is attained. In case (a), the piles in

the row 1 reach simultaneously the tensile capacity, with a

redistribution of the internal forces among the other piles at

the subsequent load increment. A similar sequence occurs

in case (b), with a progressive mobilisation of the tensile

capacity in three rows and a sole lateral row in which the

piles fail in compression. A different mobilisation of the

overall resistance occurs in the case of a bi-component

moment QR1 = QR2 with Q3=Q
ðþÞ
3; lim = 0 (case c), with a

non-symmetric mobilisation of the axial capacity.

5 Equation of the ultimate limit state
surface

In this section, an analytical formulation for the ultimate

limit state surface y ¼ y
_
Qið Þ of pile groups is developed,

referring to the trends of the generalised limit load found

through the proposed numerical procedure (Sect. 4). The

importance of an analytical description of the ultimate

conditions is related to its application in (1) plasticity-

based macroelement representations for piled foundations

and (2) a more rational design of piled foundations

accounting for the interaction between all the loads trans-

ferred by the superstructure.

5.1 In-plane mechanisms

In the light of the results shown in Sect. 3, the relationship

between the vertical force Q3 and the horizontal forces Q1

and Q2 (QR1 ¼ QR2 ¼ 0) should include the following

features:

• the highly dissymmetric effect of Q3 (Fig. 3);

• the marked nonlinear interaction between Q3 and Q1�2

(Fig. 3);

• a variable size and shape of the ultimate locus in the

Q1–QR2 and Q2–QR1 spaces as a function of the

mobilised vertical resistance Q3=Q
ðþÞ
3; lim (Fig. 4).

To use the ultimate surface in numerical computations

(macroelement modelling), it is also convenient that its

shape be convex, needed to have consistent plastic defor-

mations [14], and smooth (no angular points).

We propose to describe the ultimate surface in the Q1–

Q3 and Q2–Q3 spaces through the following modified

expression of the Granville’s egg [26]:

Q1�2 � Q3 þ Q1�2 � Qð0Þ
3;1�2

� �2

¼ A3

2
� S21�2 � C2

1�2 � c3 þ Q
ð0Þ
3;1�2

� �
� Q3 � c3 þ

A3

2

� �

�

� �Q3 þ c3 þ
A3

2

� �

ð3Þ

which is a quartic ovoidal curve, completely defined by the

constitutive parameters c3, Q
ð0Þ
3;1�2, A3, SF;1�2 and C1�2.

Figure 10 depicts the ultimate locus in the Q1–Q3 space for

the reference pile group. The size of the Granville’s egg

along the Q3-axis is controlled by A3 ¼ Q
ðþÞ
3; lim � Q

ð�Þ
3; lim,

while its position by c3 ¼ Q
ðþÞ
3; lim þ Q

ð�Þ
3; lim

� �
=2, represent-

ing the Q3-coordinate of the centre of the ultimate locus

(the translation is needed to reproduce the asymmetric

response of the piles). The ultimate locus is symmetric with

respect to the Q3-axis and its dimensions along the Q1�2-

axes are controlled by the interaction parameters Q
ð0Þ
3; 1�2,

the scale factors SF; 1�2, scaling the size of the ultimate

locus, and the shape ratios C1�2.

5.1.1 Effect of the moment

The external moment always causes a contraction of the

limit locus in the Q1–Q3 and Q2–Q3 spaces. This effect was

included into the parameters Ii ¼

c3; Q
ð0Þ
3;1�2; A3; SF;1�2; C1�2

n o
of the modified Granville’s

egg (Eq. 3): the generic evolution law Ii ¼

Fig. 8 Force combinations QR1/B1–QR2/B1 causing failure of the

reference pile group, for different levels of the vertical load Q3/

Q3
(max) = 0–0.95
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Îi QR2�R1=Q
ðmaxÞ
R2�R1

� �
(the symbol Îi indicates the body of the

function) relates the parameter Ii to the corresponding

mobilised moment QR2�R1=Q
ðmaxÞ
R2�R1 in order to reproduce

the desired translation and changes in size and shape of the

ultimate locus as the moment rises (Figs. 3, 4 and 6).

Through a systematic comparison with the results obtained

by the numerical procedure, the functions

Îi QR2�R1=Q
ðmaxÞ
R2�R1

� �
are here described by super-ellipses,

such as:

c3 QR2�R1ð Þ ¼ c
ð0Þ
3 þ ac;3 � 1� QR2�R1j j

Q
ðmaxÞ
R2�R1 � bc;3

 !nc;3" #1=nc;3

ð4Þ

Q
ð0Þ
3;1�2 QR2�R1ð Þ ¼ aQ3;1�2

� 1� QR2�R1j j
Q

ðmaxÞ
R2�R1 � bQ3;1�2

 !nQ3;1�2
" #1=nQ3;1�2

ð5Þ

A3 QR2�R1ð Þ ¼ aA;3 � 1� QR2�R1j j
Q

ðmaxÞ
R2�R1 � bA;3

 !nA;3
" #1=nA;3

ð6Þ

SF;1�2 QR2�R1ð Þ ¼ S
ð0Þ
F;1�2 þ aSf;1�2

� 1� QR2�R1j j
Q

ðmaxÞ
R2�R1 � bSf;1�2

 !nSf;1�2
" #1=nSf;1�2

ð7Þ

C1�2 QR2�R1ð Þ ¼ aC;1�2

� 1� QR2�R1j j
Q

ðmaxÞ
R2�R1 � bC;1�2

 !nC;1�2
" #1=nC;1�2

ð8Þ

in which the moment components vary in the range

[- Q
ðmaxÞ
R1�R2, Q

ðmaxÞ
R1�R2]. Note that the parameters

c3;Q
ð0Þ
3;1�2;A3; SF;1�2;C1�2

n o
are a function of the absolute

value of the respective external moment because in the

proposed numerical procedure the horizontal limit load

does not depend on the direction of the external moment.
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Fig. 9 Progressive attainment of the axial capacity in the piles considering a load pattern Q3-QR1/B1-QR2/B1
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The resulting generalised surface of ultimate loads in the

Q1–Q3–QR2/Bx and Q2–Q3–QR1/Bx spaces can be therefore

obtained by simply introducing Eqs. 4–8 into Eq. 3

(Appendix).

5.2 Five-dimensional ultimate limit state surface

The ultimate surface described by Eqs. 3–8 identifies the

admissible force states in the two orthogonal vertical

planes, 1–3 and 2–3, of the foundation (Fig. 1), considering

the respective load patterns Q1–Q3–QR2/Bx and Q2–Q3–

QR1/Bx applied separately. To describe failure conditions

induced by a generic five-dimensional load path, we need

to introduce into Eqs. 3–8 the effect on the limit load of the

reciprocal interaction between the horizontal forces, Q1

and Q2, and between the moment components, QR1 and

QR2 (Figs. 7 and 8). The shape of the ultimate locus in the

Q1–Q2 space depends on the horizontal efficiency gh of the

piles. In the reference case (Fig. 7), the isotropic model

proposed by Mokwa [37] was employed so that the ulti-

mate locus presents a circular shape. More in general, a

super-elliptical relationship is here proposed between the

horizontal limit loads Q1; lim and Q2; lim, whose Cartesian

equation reads:

Q1; lim

aQ1

� �n12

þ Q2; lim

aQ2

� �n12

¼ 1 ð9Þ

in which the exponent n12 determines the shape of the

locus: n12\ 1 gives a hypo-ellipse, characterised by a

concave shape, n12 = 1 represents a linear relationship

between Q1; lim and Q2; lim, while n12[ 1 confers the

desired convex shape to the locus; more in detail, n12 = 2 is

an ellipse and n12[ 2 describes a super-elliptical rela-

tionship in which the curvature of the locus is minimum for

Q1; lim = 0 or Q2; lim = 0 and increases progressively

towards Q1;lim

�
Q2;lim = 1. The terms aQ1 and aQ2 are the

semi-axes of the super-ellipse and represent the horizontal

limit forces Q1;lim and Q2;lim when Q2 = 0 and Q1 = 0,

respectively. When aQ1 and aQ2 are identical, Eq. 9

degenerates into a circumference. The dependence of

aQ1 ¼ Q1 Q2 ¼ 0; Q3; QR1; QR2ð Þ and aQ2 ¼
Q2 Q1 ¼ 0; Q3; QR1; QR2ð Þ on the other force components

is described by Eqs. 3–8, while their dependence on the

external moment is reproduced by the relationship between

Q
ðlimÞ
R1 and Q

ðlimÞ
R2 .

To reproduce analytically the numerical results shown in

Fig. 8 a super-elliptical model is again adopted to describe

the interaction between Q
ðlimÞ
R1 and Q

ðlimÞ
R2 :

Q
ðlimÞ
R1

aQR1

 !nR1R2

þ Q
ðlimÞ
R2

aQR2

 !nR1R2

¼ 1 ð10Þ

in which aQR1 ¼ QR1 Q2; Q3; QR1; QR2 ¼ 0ð Þ and aQR2 ¼
QR2 Q2; Q3; QR1 ¼ 0; QR2ð Þ vary according to Eqs. 3–8.

The shape of the ultimate locus in the QR1–QR2 space

changes with the level of the vertical force Q3=Q
ðþÞ
3; lim

(Fig. 8). This effect is simulated by assuming a super-el-

liptical variation of the exponent nR1R2 with Q3=Q
ðþÞ
3;lim:

nR1R2
Q3

Q
ðþÞ
3; lim

 !

¼ aR1R2

� 1� Q3

Q
ðþÞ
3; lim � bR1R2

 !n
ðQ3Þ
R1R2

2

4

3

5

1=nðQ3ÞR1R2

ð11Þ

in which aR1R2, bR1R2 and n
ðQ3Þ
R1R2 are constant parameters to

be calibrated. For the pile group under examination, a

linear variation of nR1R2 with Q3=Q
ðþÞ
3;lim was found to

provide the best fitting with the numerical results of Fig. 8,

so that n
ðQ3Þ
R1R2 = 1.

The ultimate surface in the Q1–Q2–Q3–QR1–QR2 space

can be now derived by introducing the parametric form of

Eqs. 9–11 into Eq. 3. After some manipulation, the

Cartesian equation of the ultimate surface can be written

as:

Fig. 10 Representation of the physical meaning of the constitutive

parameters of the modified Granville’s egg [26] in the Q1–Q3 space
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y Q1;Q2;Q3;QR1;QR2ð Þ

¼ 2 � Q1 � Q3 þ Q1 � Q̂ð0Þ
3;1 QR2ð Þ

h i2

� Â3 QR2ð Þ � Ŝ2F;1 QR2ð Þ � Ĉ2
1 QR2ð Þ

n

� ĉ3 QR2ð Þ þ Q̂
ð0Þ
3;1 QR2ð Þ

h i2
� �Q3 þ

Â
ð0Þ
3 QR2ð Þ

2
þ ĉ3 QR2ð Þ

" #

� Q3 þ
Â
ð0Þ
3 QR2ð Þ

2
� ĉ3 QR2ð Þ

" #)�1

þ 2 � Q2 � Q3 þ Q2 � Q̂ð0Þ
3;2 QR1ð Þ

h i2

� Â3 QR1ð Þ � Ŝ2F;2 QR1ð Þ � Ĉ2
2 QR1ð Þ

n

� ĉ3 QR1ð Þ þ Q̂
ð0Þ
3;2 QR1ð Þ

h i2
� �Q3 þ

Â
ð0Þ
3 QR1ð Þ

2
þ ĉ3 QR1ð Þ

" #

� Q3 þ
Â
ð0Þ
3 QR1ð Þ

2
� ĉ3 QR1ð Þ

" #)�1

�1 ¼ 0

ð12Þ

in which the two moment components QR1 and QR2 are

included in the evolution functions Îi QRj

� 	
(Eqs. 3–8).

Equation 12 represents a hyper-ovoidal surface with super-

elliptical generatrices, and the relative parametric equa-

tions are reported in Appendix.

The formulation described above was used to determine

the ultimate surface for the reference pile group, calibrating

the evolution laws Ii to reproduce the failure points

obtained by the numerical procedure. Limiting the repre-

sentation to the Q1–Q3–QR2/B1 space, Fig. 11 shows that

the proposed analytical model is able to simulate quite

satisfactorily the progressive contraction of the ultimate

locus, with an ultimate surface that remains convex for

every force combination. (The projections of the surface on

all the coordinate force planes are convex and do not

intersect with each other.) The maximum differences

between the numerical and analytical solutions are D = 22–

23% and occur for high values of the external moment

(QR2/QR2
(max)[ 0.5 in the Q1–Q3 space in Fig. 11) and of

the vertical force (Q3/Q3,lim
(?)[ 0.5 in the Q1–QR2/B1

space in Fig. 11).

The entire set of parameters used to describe the ulti-

mate surface is reported in Table 1, which were chosen

according to the following calibration procedure.

6 Calibration of the ultimate limit state
surface

The proposed five-dimensional ultimate surface for a pile

group, Eq. 12, is defined by the 33 parameters listed in

Table 1, which, however, can be considerably reduced by

identifying the most significant input quantities (in bold in

Table 1) from which all the others can be derived.

The vertical limit loads Q
ð�Þ
3;lim and Q

ðþÞ
3;lim can be evalu-

ated by referring to many solutions available in the liter-

ature. By virtue of the shape of the ultimate locus in the

Q1�2–Q3 spaces, Q
ðmaxÞ
1 and Q

ðmaxÞ
2 can be evaluated, for

example, by Brom’s theory [27] considering a yield

moment of the piles corresponding to Q
ðþÞ
3;lim. The maximum

moments Q
ðmaxÞ
R1 and Q

ðmaxÞ
R2 occur when

Q3 ¼ N
ðþÞ
lim þ N

ð�Þ
lim















� �.
2 ð13Þ

and correspond to a symmetric failure mode: half of the

pile rows mobilise the axial capacity in compression and

the remaining half the capacity in tension (Sect. 3). Under

this condition, the maximum external moment Q
ðmaxÞ
Rk

around direction k can be computed as:

Q
ðmaxÞ
Rk ¼

N
ðþÞ
lim þ N

ð�Þ
lim















2
� ih �

XN

j¼1

\nh � 2j� 1ð Þ[ � nk

ð14Þ

in which\[ represent the Macaulay brackets and the

subscript h denotes the horizontal direction orthogonal to

direction k.

In order to define a form of general validity for the

super-elliptical evolution laws in Eqs. 4–8, it is convenient

to introduce the following normalisation scheme for the

ultimate surface: the vertical force Q3 and the evolution

parameters ĉ3 QR2�R1ð Þ, Q̂ð0Þ
3;1�2 QR2�R1ð Þ and Â3 QR2�R1ð Þ,

which control the size and translation of the ultimate locus

along the Q3-axis, are normalised with respect to Q
ðþÞ
3;lim; the

horizontal forces Q1 and Q2 are divided by the corre-

sponding limit values, Q
ð1DÞ
1;lim and Q

ð1DÞ
2;lim, under uniaxial

loading conditions; the two moment components QR1 and

QR2 have been already normalised by Q
ðmaxÞ
R1 and Q

ðmaxÞ
R2 ;

finally the scale factor ŜF;1�2 QR2�R1ð Þ and the shape ratio

Ĉ1�2 QR2�R1ð Þ are non-dimensional by definition. The
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resulting non-dimensional expressions for c3, Q
ð0Þ
3;1�2 and A3

are:

c3

Q
ðþÞ
3;lim

¼ c
ð0Þ
3

Q
ðþÞ
3;lim

þ ac;3

Q
ðþÞ
3;lim

� 1� QR2�R1j j
Q

ðmaxÞ
R2�R1 � bc;3

 !nc;3" #1=nc;3

ð15Þ

Q
ð0Þ
3;1�2

Q
ðþÞ
3;lim

¼ aQ3;1�2

Q
ðþÞ
3;lim

� 1� QR2�R1j j
Q

ðmaxÞ
R2�R1 � bQ3;1�2

 !nQ3;1�2
" #1=nQ3;1�2

ð16Þ

A3

Q
ðþÞ
3;lim

¼ aA;3

Q
ðþÞ
3;lim

� 1� QR2�R1j j
Q

ðmaxÞ
R2�R1 � bA;3

 !nA;3" #1=nA;3

ð17Þ

Fig. 11 Fitting of the numerical results (filled circles) with the proposed analytical model of ultimate surface with representation of the relative

maximum differences D
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Figure 12 shows the non-dimensional evolution laws,

obtained considering the values assigned to the parameters

of the ultimate surface for the reference pile group

(Table 1), and the relative effects on the shape of the

ultimate surface in the Q1–Q3 space. By virtue of the non-

dimensional form, the evolution functions in Fig. 12 can be

considered as a general result for rectangular piled foun-

dations and accordingly the input parameters reduce

drastically.

The evolution function ĉ3 QR2�R1ð Þ (Fig. 12a) is com-

pletely defined by the initial value ĉ3 QR2�R1 ¼ 0ð Þ ¼ c
ð0Þ
3

(translation of the ultimate surface along the Q3-axis),

which can be written as a function of the vertical limit

loads Q
ðþÞ
3;lim and Q

ð�Þ
3;lim:

c
ð0Þ
3 ¼ ac;3 þ

Q
ðþÞ
3;lim � Q

ð�Þ
3;lim

� �

2
þ Q

ð�Þ
3;lim ð18Þ

in which the parameter ac;3 is taken as 0.5 Q
ðþÞ
3;lim to reproduce

the non-dimensional curve in Fig. 12a. If the capacity in

compression is comparable with the tensile capacity, c
ð0Þ
3 = 0,

while for a marked dissymmetric behaviour of the group

(Q
ðþÞ
3;lim [ [Q

ð�Þ
3;lim) the ultimate locus is highly decentredwith

respect to the axis origin, c
ð0Þ
3 [0, as illustrated in Fig. 12b.

When the external momentQR2�R1=Q
ðmaxÞ
R2�R1 rises the centre c3

moves progressively to greater values of Q3, reproducing the

numerical results in Fig. 11.

The interaction parameter Q̂
ð0Þ
3;1�2 QR2�R1ð Þ modifies the

shape of the ultimate surface in the Q1-Q3 space, as shown

Table 1 Parameters of the ultimate limit state surface

Parameter Units Input Description Reference pile group

Q1
(max) MLT-2 Maximum load in direction 1 6.3 MN

Q2
(max) MLT-2 Maximum load in direction-2 6.3 MN

Q3,lim
(1) MLT22 3 Compressive vertical limit load 51.1 MN

Q3,lim
(2) MLT22 3 Tensile vertical limit load 2 5.0 MN

QR1
(max) ML2T-2 Maximum external moment in direction-1 59.6 MNm

QR2
(max) ML2T-2 Maximum external moment in direction-2 87.3 MNm

c3

c3
(0) MLT-2 Translation parameter 47.0 MN

ac,3 MLT-2 c3 at QR1
(max) = QR2

(max) = 0 - 24.0 MN

bc,3 – Scale factor 1.0

nc,3 – Exponent of the super-ellipse 20.0

Q3,1–2

aQ3,1–2
(0) MLT22

3 Q3,1–2

at
QR1

(max) = QR2
(max) = 0 2 77.5\2 77.5 MN

bQ3,1–2 – Scale factor 1.05–1.05

nQ3,1–2 – Exponent of the super-ellipse 2.0–2.0

A3

aA3 MLT-2 A3 at QR1
(max) = QR2

(max) = 0 56.7 MN

bA3 – Scale factor 1.0

nA3 – Exponent of the super-ellipse 1.25

SF,1–2

SF,1–2
(0) – 3 Scaling of the locus at QR1

(max) = QR2
(max) = 0 0.89–0.88

aSf,1–2 – SF,1–2 at QR1
(max) = QR2

(max) = 0 - 0.8\- 0.8

b Sf,1–2 – Scale factor 1.0–1.0

n Sf,1–2 – Exponent of the super-ellipse 2.6–2.5

C,1–2

aU,1–2 – 3 C1–2 at QR1
(max) = QR2

(max) = 0 2.1–2.1

bU,1–2 – Scale factor 1.8–1.8

nU,1–2 – 3 Exponent of the super-ellipse 1.0–1.0

Bold values indicate the input parameters of the proposed model
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in Fig. 12c, d: it can be proved that the ultimate surface is

convex if and only if Q̂
ð0Þ
3;1�2 QR2�R1ð Þ�Q

ðþÞ
3;lim, V

QR2�R1 �Q
ðmaxÞ
R2�R1. In particular, large values of Q

ð0Þ
3;1�2 lead

to a spherical surface in the Q1–Q3 space, while it assumes

an ovoidal shape as Q
ð0Þ
3;1�2 tends to Q

ðþÞ
3;lim. Accordingly, by

imposing the condition Q̂
ð0Þ
3;1�2 QR2�R1ð Þ ¼ Q

ðþÞ
3;lim when

Fig. 12 Non-dimensional representation and effect of the evolution parameters c1-2/Q3
(max) (a, b), Q3,1–2/Q3

(max) (c, d), A1-2/Q3
(max) (e, f), SF,1–2/

Q3
(max) (g, h), U1–2/Q3

(max) (i, j)
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QR2�R1 ¼ Q
ðmaxÞ
R2�R1 into Eq. 16 the following analytical

expression for aQ3;1�2 is obtained as:

aQ3;1�2 ¼ �
Q

ðþÞ
3;lim

1� 1

b
nQ3;1�2

Q3;1�2

� �1=nQ3;1�2

ð19Þ

which guarantees that the ultimate surface is convex. Then,

according to Eq. 16 the shape of the ultimate locus

becomes progressively more spherical as the external

moment rises, reproducing the effect shown in Fig. 11.

The function Â3 QR2�R1ð Þ represents the size of the

ultimate locus along the Q3-axis, which decreases less than

linearly with the external moment, Fig. 12e, until becom-

ing equal to zero when QR2�R1 ¼ Q
ðmaxÞ
R2�R1 (in this condition,

the projection of the ultimate surface in the Q1–Q3 space

degenerates into a point aligned with the Q3-axis). The

initial value aA;3 can be simply determined using the ver-

tical limit loads Q
ðþÞ
3;lim and Q

ð�Þ
3;lim as:

aA;3 ¼ Q
ðþÞ
3;lim � Q

ð�Þ
3;lim ð20Þ

The size of the ultimate locus along the Q1-axis is

controlled by the scale factor ŜF;1�2 QR2�R1ð Þ and the shape

ratio Ĉ1�2 QR2�R1ð Þ. The horizontal limit loads increase

linearly with ŜF;1�2 QR2�R1ð Þ and Ĉ1�2 QR2�R1ð Þ, as illus-

trated in Fig. 12h, j. The scale factor increases more than

linearly with the normalised moment (Fig. 12g) so that the

major axis of the locus in the Q1–Q3 space is aligned with

the Q3-axis for QR2�R1=Q
ðmaxÞ
R2�R1 less than about 0.5, while it

is aligned with the Q1-axis for greater values of

QR2�R1=Q
ðmaxÞ
R2�R1. Hence, the input parameter for the func-

tion ŜF;1�2 QR2�R1ð Þ is the initial value S
ð0Þ
F;1�2, which, by

definition, is given by:

S
ð0Þ
F;1�2 ¼ SF;1�2 QR2�R1 ¼ 0ð Þ � aSf;1�2 ¼

Q
ðmaxÞ
1�2

Q
ðmaxÞ
1�2;ref

� aSf;1�2

ð21Þ

The maximum horizontal load Q
ðmaxÞ
1�2 can be evaluated

as described at the beginning of this section, while Q
ðmaxÞ
1�2;ref

can be computed through the parametric expression of the

horizontal limit load in Eq. 25, reported in Appendix, in

which ŜF;1�2 QR2�R1ð Þ ¼ 1 and Ĉ1�2 QR2�R1ð Þ ¼ 1.

Finally, the initial value aC;1�2 ¼ Ĉ1�2 QR2�R1 ¼ 0ð Þ can
be computed as:

aC;1�2 ¼ Ĉ1�2 QR2�R1 ¼ 0ð Þ ¼ Q
ðmaxÞ
1�2

Q
ðmaxÞ
1�2;ref

ð22Þ

The good match between the numerical results and the

ultimate surface in Fig. 11 refers to an exponent nC;1�2

(Eq. 8) equal to 1, describing a linear decrease of C1�2 with

the normalised moment. This choice was dictated by the

fact that the ultimate locus must be convex: Figure 12j

shows indeed that the traces of the ultimate surface for

different levels of QR2�R1=Q
ðmaxÞ
R2�R1 intersect with each other

when nC;1�2 = 2.0, implying a loss of convexity of the

ultimate surface in the QR1�R2-Q3 spaces. To keep the

ultimate surface convex, it was seen that nC;1�2 has to be

close to unity and, at the same time, not too low in order to

avoid a too rapid contraction of the locus as the normalised

moment rises (case with nC;1�2 = 0.5 in Fig. 12j).

7 Towards an improved design criterion
for piled foundations

The proposed expression for the ultimate limit state surface

of piled foundations may be used in the formulation of a

macroelement representation of the overall behaviour of

the foundation. The same limit surface can also be

employed for a direct assessment of the safety of the

foundation, within a traditional force-based design

approach. To illustrate this, the limit surface found for the

case study of Fig. 1 was used to carry out force-based

verifications in which the safety with respect to an ultimate

limit state is expressed by a factor reducing the overall

resistance [7, 8]. A value of the factor equal to 2.5 was

selected, lumping uncertainties on loads, characteristic

resistance and design resistance in a single parameter, but

the present discussion is not affected by a particular choice

of the partial factors, since these produce only a contraction

of the limit surface.

In the standard design approach of a pile group, loaded

simultaneously in different directions, it is difficult to

evaluate a priori the yield bending moment of the pile

sections, as this depends on the axial force acting on each

pile. In the example illustrated in this section, we assume

that the loading path is made of two different loading

stages. In a first stage, which may represent a permanent

situation, the foundation is loaded by a vertical force,

which is either centred, or applied with a fixed eccentricity

e, and no horizontal load. In a second stage, which may

represent a transient situation, the vertical and horizontal

forces Q3 and Q1 are varied proportionally, maintaining a

constant eccentricity.

Figure 13 depicts two sections of the design limit sur-

face in the Q1–Q3 plane evaluated for two different values

of the eccentricity e ¼ QR2=Q1, equal to zero (Fig. 13a)

and to 0.15 B1 (Fig. 13b), where B1 is the width of the pile

cap in the direction-1. The vector in these figures, of norm
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Q3 ¼ Q
ðrefÞ
3 , represents the initial loading condition. In

order to evaluate the limit domain that would result from a

standard design approach, the hypothesis is made that in

such approach the same yield bending moment My is

assumed in all piles and that it corresponds to the mean

axial force NðmeanÞ evaluated at the end of the initial

loading stage.

As shown in Fig. 13, for a given value of e the limit

domain obtained with a standard approach is rectangular:

the maximum and minimum values of the vertical force Q3

depend on the compressive and tensile resistance of the

piles, while the maximum value of the horizontal force Q1

depends on My, which is the same for all piles and in turn

depends on Q
ðrefÞ
3 and e. As expected, the standard design

approach predicts a limit load, which is in agreement with

the proposed limit surface for near-vertical loading paths,

that is, for limit conditions related to the attainment of the

vertical bearing capacity of the pile group. For loading

paths with a significant horizontal component, Q1, the

adequacy of the standard approach depends crucially on the

selection of the effective yield bending moments in the

piles. If, as in Fig. 13, My is calculated for N ¼ NðmeanÞ,

then the standard and the proposed procedures are nearly

coincident for loading paths with minor changes in the

vertical load component Q3. On the contrary, when chan-

ges in Q3 are significant but the limit conditions are still

(a) (b)

Fig. 13 Comparison between the failure force combinations Q1–Q3–QR2 for the reference pile group, provided by the proposed hyper-egg

ultimate surface and the standard design, considering an initial external moment QR2
(ini) equal to (a) 0.0 9 and (b) 0.5 9 SF 9 QR2

(max)

(SF = safety factor)

Fig. 14 Comparison between the proposed hyper-egg ultimate surface

and the standard design: representation in the Q1–QR2/B1 space of the

admissible force states for the reference pile group, considering a

safety factor SF = 2.5 and a vertical load Q3
(ref) = 10 MN
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dominated by the horizontal limit load in the piles, the

discrepancies between the two design approaches are sig-

nificant and, in the example of Fig. 13, the standard

approach produces a very large overestimation of the

resistance for loading paths characterised by an increment

of Q1 and a decrement of Q3.

Figure 14 refers to different loading paths that, starting

from the same initial loading stage of Fig. 13, entail pro-

portional increments of the horizontal load Q1 and the

moment QR2. This could represent, for instance, the effect

of seismic loading on a bridge pier of height h ¼ QR2=Q1.

Figure 14 shows for the case study of Fig. 1 the section of

the design limit surface for Q3 ¼ Q
ðrefÞ
3 = 10 MN. The

three loading paths depicted in this figure are relative to

three different pier heights, equal to 0.75, 1.3 and 2.5 times

the width B1 of the pile cap. It can be seen that in all cases a

standard approach that considers a constant yield moment

in all piles produces a significant overestimation of the

resistance of the pile group.

8 Conclusions

In this study, we developed an efficient, simplified

numerical procedure to analyse the ultimate conditions of

deep foundations under multi-axial loading. The procedure

is compatible with the lower bound theorem of plastic limit

analysis and provides the combinations of the generalised

external forces activating global plastic mechanisms of the

soil–pile system. The proposed procedure was validated

comparing the response along selected loading paths with

that obtained with a series of three-dimensional numerical

analyses that implement iteratively the limit analysis the-

orems (OPTUM G3). The principal effects of the interac-

tion between the external forces at failure can be

summarised as follows:

• the interaction of the vertical and horizontal loads has a

strong influence on the resistance of the foundation

because of the important effect of the axial forces on the

yield moment of each pile;

• the external moments cause a progressive attainment of

the axial pile capacities, and a global plastic mechanism

occurs for a much larger load than that needed to yield

the most loaded pile;

• the directions of the resultant load and moment in the

horizontal plane can modify significantly the available

resistance of the pile group, to an extent that is a

function of the mobilised vertical resistance of the

group, Q3=Q
ðþÞ
3;lim;

• the interaction between the resultant horizontal load and

moment has instead a minor influence on the limit load

of the group for high vertical loads, Q3 [ 0:75Q
ðþÞ
3;lim.

On the basis of the results of the numerical procedure,

an analytical expression was developed to describe the

ultimate limit state surface of a piled foundation, formu-

lated as a hyper-egg with super-elliptical generatrices in the

five-dimensional force space. This expression for the ulti-

mate surface can be regarded as a yield surface of a plas-

ticity-based macroelement. To this end, a calibration

procedure was devised in which the ultimate surface can be

completely defined by the vertical and horizontal limit

loads of the pile group. However, the same expression for

the ultimate surface can also be employed for the direct

verification of the ultimate limit state of a piled foundation,

taking implicitly into consideration the interaction between

the different load components, as demonstrated in the

previous section.

Appendix: Parametric equations
of the ultimate limit state surface

It can be demonstrated that the parametric form of Eq. 3,

describing the ultimate surface for a pile group in the two

independent Q1–Q3 and Q2–Q3 spaces (QRi = 0), reads:

Q1�2 ¼
A3 � SF;1�2 � C1�2

2
�

c3 þ Q
ð0Þ
3;1�2

� �
� sin t1�2;3

� 	

c3 þ Q
ð0Þ
3;1�2 þ A3

2
� cos t1�2;3

� 	

ð23Þ

Q3 ¼ c3 þ
A3

2
� cos t1�2;3

� 	
ð24Þ

where the parameter t1-2,3 = [0,2 p] represents the angle

between the Q3-axis and the force vector of coordinates

(Q1�2,Q3).

If Eqs. 4–8 are included into Eqs. (23)–(24), one can

obtain the expressions of the limit forces associated with

the two independent load patterns acting in the 1–3 and 2–3

vertical planes of the pile group, such as:

Acta Geotechnica (2022) 17:2495–2516 2513

123



Q1�2;lim ¼ aA;3
2

� 1� QR2�R1j j
Q

ðmaxÞ
R2�R1 � bA;3

 !nA;3
" #1=nA;3

� S
ð0Þ
F;1�2 þ aSf;1�2

n

� 1� QR2�R1j j
Q

ðmaxÞ
R2�R1 � bSf;1�2

 !nSf;1�2
" #1=nSf;1�2

9
=

;

� aC;1�2 � 1� QR2�R1j j
Q

ðmaxÞ
R2�R1 � bC;1�2

 !nC;1�2
" #1=nC;1�2

8
<

:

9
=

;

� c
ð0Þ
3 þ ac;3 � 1� QR2�R1j j

Q
ðmaxÞ
R2�R1 � bc;3

 !nc;3" #1=nc;3
8
<

:

þaQ3;1�2 � 1� QR2�R1j j
Q

ðmaxÞ
R2�R1 � bQ3;1�2

 !nQ3;1�2
" #1=nQ3;1�2

9
=

;

� sin t1�2;3

� 	
� c

ð0Þ
3 þ ac;3 � 1� QR2�R1j j

Q
ðmaxÞ
R2�R1 � bc;3

 !nc;3" #1=nc;3
8
<

:

þaQ3;1�2 � 1� QR2�R1j j
Q

ðmaxÞ
R2�R1 � bQ3;1�2

 !nQ3;1�2
" #1=nQ3;1�2

þ aA;3
2

� 1� QR2�R1j j
Q

ðmaxÞ
R2�R1 � bA;3

 !nA;3" #1=nA;3

� cos t1�2;3

� 	

9
=

;

�1

ð25Þ

Q3;lim ¼ c
ð0Þ
3 þ ac;3 � 1� QR2�R1j j

Q
ðmaxÞ
R2�R1 � bc;3

 !nc;3
" #1=nc;3

þ aA;3
2

� 1� QR2�R1j j
Q

ðmaxÞ
R2�R1 � bA;3

 !nA;3
" #1=nA;3

� cos t1�2;3

� 	

ð26Þ
QR1;lim

Bx

¼ PR1

Bx

ð27Þ

QR2;lim

Bx

¼ PR2

Bx

ð28Þ

in which the moment components vary in the range

[- Q
ðmaxÞ
R1�R2, Q

ðmaxÞ
R1�R2] and the parameters PR1 and PR2 are

simply the magnitude of the external moments QR1 and

QR2, respectively.

Finally, the parametric equation of the generalised, five-

dimensional ultimate surface can be obtained by intro-

ducing the parametric form of Eqs. 9–11 into Eqs. 25–28:

Q1;lim ¼ aA;3
2

� 1� QR2j j
Q

ðmaxÞ
R2 � bA;3

 !nA;3
" #1=nA;3

� S
ð0Þ
F;1 þ aSf;1 � 1� QR2j j

Q
ðmaxÞ
R2 � bSf;1

 !nSf;1
" #1=nSf;1

8
<

:

9
=

;

� aC;1 � 1� QR2j j
Q

ðmaxÞ
R2 � bC;1

 !nC;1
" #1=nC;1

8
<

:

9
=

;

� c
ð0Þ
3 þ ac;3 � 1� QR2j j

Q
ðmaxÞ
R2 � bc;3

 !nc;3
" #1=nc;3

8
<

:
þaQ3;1

� 1� QR2j j
Q

ðmaxÞ
R2 � bQ3;1

 !nQ3;1" #1=nQ3;1
9
=

;

� sin t1;3
� 	

� cos t12ð Þ � c
ð0Þ
3 þ ac;3

n

� 1� QR2j j
Q

ðmaxÞ
R2 � bc;3

 !nc;3
" #1=nc;3

þaQ3;1

� 1� QR2j j
Q

ðmaxÞ
R2 � bQ3;1

 !nQ3;1
" #1=nQ3;1

þ aA;3
2

� 1� QR2j j
Q

ðmaxÞ
R2 � bA;3

 !nA;3" #1=nA;3

� cos t1;3
� 	

9
=

;

�1

ð29Þ
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Q2;lim ¼ aA;3
2

� 1� QR1j j
Q

ðmaxÞ
R1 � bA;3

 !nA;3
" #1=nA;3

� S
ð0Þ
F;2 þ aSf;2 � 1� QR1j j

Q
ðmaxÞ
R1 � bSf;2

 !nSf;2
" #1=nSf;2

8
<

:

9
=

;

� aC;2 � 1� QR1j j
Q

ðmaxÞ
R1 � bC;2

 !nC;2
" #1=nC;2

8
<

:

9
=

;

� c
ð0Þ
3 þ ac;3 � 1� QR1j j

Q
ðmaxÞ
R1 � bc;3

 !nc;3
" #1=nc;3

8
<

:

þaQ3;2 � 1� QR1j j
Q

ðmaxÞ
R1 � bQ3;2

 !nQ3;2" #1=nQ3;2
9
=

;

� sin t2;3
� 	

� sin t12ð Þ � c
ð0Þ
3 þ ac;3

n

� 1� QR1j j
Q

ðmaxÞ
R1 � bc;3

 !nc;3" #1=nc;3

þaQ3;2

� 1� QR1j j
Q

ðmaxÞ
R1 � bQ3;2

 !nQ3;2" #1=nQ3;2

þ aA;3
2

� 1� QR1j j
Q

ðmaxÞ
R1 � bA;3

 !nA;3" #1=nA;3

� cos t2;3
� 	

9
=

;

�1

ð30Þ

Q3;lim ¼ c
ð0Þ
3 þ ac;3 � 1� QR2�R1j j

Q
ðmaxÞ
R2�R1 � bc;3

 !nc;3
" #1=nc;3

þ aA;3
2

� 1� QR2�R1j j
Q

ðmaxÞ
R2�R1 � bA;3

 !nA;3
" #1=nA;3

� cos t1�2;3

� 	

ð31Þ
QR1;lim

Bx

¼ PR1

Bx

� cos tR1R2ð Þ½ 	2=nR1R2 ð32Þ

QR2;lim

Bx

¼ PR2

Bx

� sin tR1R2ð Þ½ 	2=nR1R2 ð33Þ

which represents a hyper-ovoidal curve with super-ellipti-

cal generatrices. The surface above is completely described

by the following parameters: the angle t13 = [0,2 p]
between the Q1-axis and the projection of the force vector

on the Q1–Q3 plane, the angle t23 = [0,2 p] between the Q2-

axis and the projection of the force vector on the Q2–Q3

plane, the angle t12 = [0,2 p] between the Q1-axis and the

projection of the force vector on the Q1–Q2 plane and the

angle tR1R2 = [0,2 p] between the QR1-axis and the pro-

jection of the force vector on the QR1–QR2 plane.
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ROSE School Università degli Studi di Pavia & Istituto Univer-

sitario di Studi Superiori, Pavia, Italy

12. Cremer C, Pecker A, Davenne L (2002) Modelling of nonlinear

dynamic behaviour of a shallow strip foundation with macro-

element. J Earthq Eng 6(2):175–211

13. Dobry R, Vicente E, O’Rourke MJ, Roesset JM (1982) Hori-

zontal stiffness and damping of single piles. J Geotech Eng Div

108(3):439–459

14. Drucker DC (1950) Some implications of work hardening and

ideal plasticity. Q Appl Math 7(4):411–418

15. Gazetas G (1991) Foundation vibrations. In: Fang HY (ed)

Foundation engineering handbook, Chapter 15, 2nd edn. Chap-

man and Hall, New York

16. Gazetas G, Dobry R (1984) Simple radiation damping model for

piles and footings. J Geotech Eng Div 110(6):937–956

17. Gazetas G, Dobry R (1984) Horizontal response of piles in lay-

ered soil. J Geotech Eng Div 110(1):20–40

18. Gerolymos N, Papakyriakopoulos O, Brinkgreve RBJ (2015)

Macroelement modeling of piles in cohesive soil subjected to

combined lateral and axial loading. In: Proc. 8th Eur. Conf. on

Numerical Methods in Geotechnical Engineering, Delft, Balk-

ema, Rotterdam

19. Gerolymos N, Gazetas G (2005) Phenomenological model

applied to inelastic response of soil-pile interaction systems. Soils

Found 45(4):119–132

20. Gorini DN, Callisto L (2020) A macro-element approach to

analyse bridge abutments accounting for the dynamic behaviour

of the superstructure. Geotechnique 70(8):711–719

Acta Geotechnica (2022) 17:2495–2516 2515

123



21. Gorini DN, Whittle AJ, Callisto L (2019) Ultimate design

capacity of bridge abutments. In: Earthquake Geotechnical

Engineering for Protection and Development of Environment and

Constructions: Proceedings of the 7th International Conference

on Earthquake Geotechnical Engineering, (ICEGE 2019),

2682-2689, DOI: https://doi.org/10.1201/9780429031274, Rome,

Italy

22. Gorini DN, Whittle AJ, Callisto L (2020) Ultimate limit states of

bridge abutments. J Geotechn Geoenvironmental Eng 146(7)

23. Gorini DN (2019) Soil-structure interaction for bridge abut-
ments: two complementary macro-elements. PhD thesis, Sapienza

University of Rome, Rome, Italy, https://iris.uniroma1.it/handle/

11573/1260972

24. Gottardi G, Butterfield R (1995) The displacement of a model

rigid surface footing on dense sand under general planar loading.

Soils Found 35(3):71–82

25. Gottardi G, Houlsby GT, Butterfield R (1999) Plastic response of

circular footings on sand under general planar loading.

Geotechnique 49(4):453–469

26. Granville WA, Smith PF, Longley WR (1975) Elements of the

differential and integral calculus. Wiley, New York

27. Hannigan PJ, Goble GG, Likins GE, Rausche F (2006) Design
and construction of driven pile foundations, FHWA-HI-97-013,

National Highway Institute Federal Highway Administration,

U.S. Department of Transportation, Washington, D.C

28. Houlsby GT, Cassidy MJ (2002) A plasticity model for the

behaviour of footings on sand under combined loading.

Geotechnique 52(2):117–129

29. Houlsby GT, Martin CM (1993) Modelling on the behaviour of

jack-up units on clay. Predictive soil mechanics. Thomas Telford,

London, pp 339–358

30. Karatzia X, Mylonakis G (2012) Horizontal response of piles in

layered soil: Simple analysis. In: 2nd International Conference on

Performance-Based Design in Geotechnical Engineering, Taor-

mina, Italy

31. Kaynia AM, Kausel E (1982) Dynamic Stiffness and Seismic
Response of Pile Groups. Research Report R82-03, Mas-

sachusetts Institute of Technology, Cambridge, Massachusetts

32. Di Laora R, Rovithis E (2015) Kinematic bending of fixed-head

piles in nonhomogeneous soil. J Geotech Geoenviron Eng.

https://doi.org/10.1061/(ASCE)GT.1943-5606.

0001270,04014126

33. Di Laora R, de Sanctis L, Aversa S (2019) Bearing capacity of

pile groups under vertical eccentric load. Acta Geotech

14(1):193–205

34. Martin CM, Houlsby GT (2000) Combined loading of spudcan

foundations on clay: laboratory tests. Geotechnique

50(4):325–338

35. Martin CM, Houlsby GT (2001) Combined loading of spudcan

foundations on clay: numerical modelling. Geotechnique

51(8):687–700

36. Martin CM (1994) Physical and numerical modeling of oshore

foundations under combined loads. PhD thesis, University of

Oxford

37. Mokwa RL (1999) Investigation of the resistance of pile caps to
lateral loading. Ph.D. thesis, Virginia Tech, Blacksburg, VA.

38. Mylonakis G, Roumbas D (2001) Dynamic stiffness and damping

of piles in inhomogeneous soil media. In: Proceedings, 4th

International Conference on Recent Advances in Geotechnical

Earthquake Engineering and Soil Dynamics, San Diego, Cali-

fornia, Paper No. 6.27

39. Mylonakis G, Gazetas G (1999) Lateral Vibration and Internal

Forces of Grouped Piles in Layered Soil. J Geotechn Geoenvi-

ronmental Eng, ASCE 125(1):16–25

40. El Naggar MH, Bentley KJ (2000) Dynamic analysis for laterally

loaded piles and dynamic p-y curves. Can Geotech J

37(6):1166–1183

41. Nova R, Montrasio L (1991) Settlements of shallow foundations

on sand. Geotechnique 41(2):243–256

42. OptumCE (2016) OptumG2 v. 2016. Manual. https://optumce.

com/products/brochure-and-datasheet/.

43. Roscoe KH, Schofield AN (1956) The stability of short pier

foundations on sand. Br Weld J 343–354

44. Sloan SW (1988) Lower bound limit analysis using finite ele-

ments and linear programming. Int J Numer Anal Methods

Geomech 12:61–67

45. Sloan SW (1989) Upper bound limit analysis using finite ele-

ments and linear programming. Int J Numer Anal Methods

Geomech 13:263–282

46. Sloan SW (2013) Geotechnical stability analysis. Geotechnique

63(7):531–572

47. Viggiani C, Mandolini A, Russo G (2012) Piles and pile foun-

dations. Spon Press, Abingdon, U.K., p 278

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

2516 Acta Geotechnica (2022) 17:2495–2516

123

https://doi.org/10.1201/9780429031274
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001270,04014126
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001270,04014126
https://optumce.com/products/brochure-and-datasheet/
https://optumce.com/products/brochure-and-datasheet/

	Generalised ultimate loads for pile groups
	Abstract
	Introduction
	Problem definition
	Incremental numerical procedure
	Case study

	In-plane failure mechanisms
	Out-of-plane failure mechanisms
	Q1--Q2 interaction
	QR1--QR2 interaction

	Equation of the ultimate limit state surface
	In-plane mechanisms
	Effect of the moment

	Five-dimensional ultimate limit state surface

	Calibration of the ultimate limit state surface
	Towards an improved design criterion for piled foundations
	Conclusions
	Appendix: Parametric equations of the ultimate limit state surface
	References




