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Abstract
A simple critical state-based constitutive model is proposed to represent the non-coaxial plastic deformations of saturated

clay subjected to monotonic shearing with fixed principal stress directions. While extensively reported in experimental

studies, this particular type of soil response has not been adequately addressed by constitutive modeling. The presented

model employs a revised three-dimensional non-coaxial flow rule that relies on introducing a reference stress tensor for

decomposing stress rate and consequently defining the non-coaxial flow direction even when stress rate is colinear with the

current stress. Undrained hollow cylinder torsional shear tests are performed on undisturbed Shanghai clay specimens.

Such experimental observations, combined with complementary test results on Wenzhou clay, validate the proposed

model. The comparisons show that the proposed model can reasonably represent the non-coaxial plastic flows of clays

under monotonic shearing characterized by different fixed principal stress directions and various intermediate stress levels.
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1 Introduction

Classical plasticity theory assumes the direction of plastic

flow is colinear with the normal of a plastic potential

usually defined in the space of principal stresses. Conse-

quently, the directions of principal plastic strain rates

coincide with those of the principal stresses, (i.e., the so-

called coaxiality). On the other hand, the non-coaxiality of

inelastic strain rate has been extensively observed in

experiments on soils under stress rotations

[4, 11, 17, 26, 28, 31, 33, 34, 38, 40, 44, 45]. These

experimental works generally suggest that the direction of

plastic strain rate not only depends on the current state of

stress but also the stress rate.

In accordance with soil behavior revealed from labora-

tory investigations, attentions have been given to incor-

porating the non-coaxial plastic flow into the constitutive

models for soils. To model the strain localization of brittle

rock mass, Rudnicki and Rice [35] employed a yield sur-

face with a vertex-like structure, which leads directly to a

non-coaxial plastic flow rule. In such framework, the

plastic strain rate can be decomposed into coaxial and non-

coaxial components, where the latter is colinear with the

non-coaxial stress rate. Qian et al. [32] completed this non-

coaxial flow theory by considering the influence of the

third stress invariant and consequently extending the

original theory to three-dimensional stress space. Such

general model framework (hereafter referred to as tan-

gential loading approach) has successfully replicated many

non-coaxial responses of soils including those observed in

simple shear [5, 13, 25, 50, 56, 61] and pure principal stress

rotation [21, 22, 41, 46, 52, 55].

The plastic theory based on assuming non-coaxial

plastic flow colinear with the non-coaxial stress rate

encounters difficulties in describing the non-coaxiality in

soils under monotonic loading with fixed principal stress

directions [26, 31, 51], where the stress increment is also

colinear with the current stress direction; hence, the non-
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coaxial stress rate is zero. On the other hand, non-coaxial

plastic deformations of soils under monotonic loading with

fixed principal stress directions are extensively reported for

fine-grained soils [4, 11, 26, 31, 33, 47, 51]. To simulate

non-coaxial behavior under monotonic loading with fixed

principal stress directions, Gutierrez et al. [12] define a

flow rule including the radial component and the tangential

component in a special stress space. The tangential com-

ponent plays a crucial role in dictating the non-coaxial flow

and is associated with the radial one, which represents the

coaxial flow, by means of the non-coaxial function. Sub-

sequently, the anisotropic transformed stress method [57],

which defines an anisotropic transformed stress tensor with

different principal directions from the ordinary stress ten-

sor, was introduced and the non-coaxiality of sand was

modeled from the view of cross-anisotropy [42]. Also, the

plastic potential in terms of fabric anisotropy was intro-

duced to describe the non-coaxiality in sand under loading

with fixed principal stress direction [10]. Alternatively, the

non-coaxial flow direction can be redefined as the orthog-

onal direction of the current principal stresses, as proposed

by Chen and Huang [6]. The above approaches for mod-

eling non-coaxial plastic flow have mainly been applied to

sand, whereas its counterpart for clays is largely underde-

veloped. Given that the non-coaxiality of sand and clay is

often governed by different factors (e.g., state dependence,

particle gradation and fabrics are the main factors for sand

[4, 58], while structuration, anisotropy and stress histories

are the main factors for clay [31, 62]), the non-coaxial

models reviewed above generally cannot be directly

applied to clay.

The goal of this work is to propose a critical state-based

elastoplastic constitutive model to represent the non-

coaxial plastic responses of saturated clays under mono-

tonic loading with fixed principal stress directions. For this

purpose, a novel non-coaxial approach is introduced by

modifying Qian et al.’s [32] non-coaxial plastic flow rule.

A comprehensive HCA (hollow cylinder apparatus) testing

program is performed on saturated Shanghai soft clay to

assess the proposed non-coaxial model. Also, the presented

model is verified against the published results of laboratory

tests on saturated Wenzhou soft clay.

2 Non-coaxial flow rule

The non-coaxial plastic theory additively decomposes the

total strain rate into elastic, coaxial plastic and non-coaxial

plastic parts:

_eij¼ _eeij þ _epcij þ _epnij ð1Þ

where a superposed dot indicates a time derivative, and the

superscripts e, pc and pn denote elastic, coaxial plastic and

non-coaxial plastic, respectively. The coaxial plastic strain

rate _epcij can be conventionally defined by a plastic potential,

i.e.,

_epcij ¼ _K
oQ

orij
ð2Þ

where _K, Q and rij denote the plastic scalar factor, the

plastic potential and the effective stress tensor,

respectively.

According to the non-coaxial flow theory proposed by

Qian et al. [32], the non-coaxial plastic strain rate _epnij is

colinear with the non-coaxial stress rate, which in gener-

alized stress space is given by

_snij¼ _sij �
_sklskl

smnsmn
sij �

_sklSkl
SmnSmn

Sij ð3Þ

where sij is the deviatoric stress tensor; the superscript n

denotes non-coaxiality; and Sij is given by

Sij ¼ sikskj �
2

3
J2dij �

3

2

J3
J2

sij ð4Þ

where dij = Kronecker delta; and J2, J3 = second and third

invariants of the deviatoric stress tensor, sij. The two

invariants are given as follows:

J2 ¼ sijsij=2; J3 ¼ sijsjkski=3 ð5Þ

Equation (4) can introduce the influence of the third

stress invariant and define a three-dimensional stress space

dij–sij–Sij and consequently formulate non-coaxial stress

rate. Hence, the corresponding non-coaxial strain rate is

defined as

_epnij ¼ 1

Ht
_snij ð6Þ

where Ht denotes the plastic modulus governing the

response related to the stress rate tangential to the yield

surface.

In the works by Qian et al. [32], the Gram–Schmidt

orthogonal projection of _sij with respect to the reference

stress tensor sij was conducted and sij was regarded as the

reference stress tensor. In this process, the influence of the

third stress invariant of sij was taken into consideration.

Then, the stress rate decomposition _snij was obtained and the

corresponding non-coaxial strain rate was defined. Equa-

tion (6) can be rewritten in the following form

_epnij ¼ Cnp
ijkl _rkl ð7Þ

where _rkl = effective stress rate; and Cnp
ijkl = non-coaxial

compliance tensor given by
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Cnp
ijkl ¼

1

Ht

dikdjl þ dildjk
2

� dkldij
dmndmn

� sijskl
smnsmn

� SijSkl
SmnSmn

� �

ð8Þ

Equation (6) implies that the non-coaxial plastic strain

rate direction is actually coincident with the non-coaxial

stress rate direction, and Eqs. (3) and (7) imply that both of

these two directions are orthogonal to the current stress

direction. Equation (7) essentially defines a relaxed plastic

loading condition compared with the classical plasticity. In

this way, the plastic responses for stress path tangential to

the yield surface (i.e., the neutral loading in classical

plasticity) can be considered.

As mentioned earlier, when the stress rate direction

coincides with that of the current stress (for instance, under

monotonic shearing with fixed principal stress directions),

i.e.,

sij _sijffiffiffiffiffiffiffiffiffiffi
sklskl

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
_smn _smn

p ¼ 1 ð9Þ

then Eq. (7) will lead to

_epnij ¼ Cnp
ijkl _rkl ¼ 0 ð10Þ

Equation (10) implies that all plastic strains will be

coaxial under monotonic shearing with fixed principal

stress directions. This, however, contradicts experimental

observations [26, 31, 51]. To resolve this issue, the previ-

ous non-coaxial theory should be revised to describe the

non-coaxiality under monotonic shear loading. It had been

proved by Li and Dafalias [23] that the coaxial stress rate is

a simple and reasonable form and is in agreement with their

definition form. They also stated that the non-coaxial stress

rate should be obtained in regard to the principal axes of

the reference tensor. Motivated by Qian et al. [32] and Li

and Dafalias [23], the principal stress tensor spij is used to

replace sij in the non-coaxial stress rate by Qian et al. [32]

and defined as

spij ¼
2

3
q

sin h� 2

3
p

� �
0 0

0 sin h 0

0 0 sin hþ 2

3
p

� �

2
6664

3
7775 ð11Þ

where h ¼ 1
3
sin�1 � 3

ffiffi
3

p

2
J3
J
3=2
2

� �
and q ¼

ffiffiffiffiffiffiffi
3J2

p
are the Lode

angle and the equivalent deviatoric stress computed with

reference to the current stress states. In addition, Spij is used

to replace Sij and the normalized unit tensor n _r
ij is used to

replace _sij. Eventually, the non-coaxial stress part nnonij is

obtained:

nnonij ¼ n _r
ij �

n _r
kls

p
kl

spmns
p
mn

spij �
n _r
klS

p
kl

SpmnS
p
mn

Spij ð12Þ

where n _r
ij ¼

_rij
_rk k denotes the unit stress rate. The tensor S

p
ij in

Eq. (12) is related to the second and third invariants of the

tensor spij:

Spij ¼ spiks
p
kj �

2

3
J2dij �

3

2

J3
J2

spij ð13Þ

Equations (11), (12) and (13) imply that the direction of

the non-coaxial plastic flow is defined by conducting a

Gram–Schmit orthogonal projection of the current stress

rate with respect to the reference stress tensor spij. From a

view of the mechanism, spij represents a stress state equiv-

alent to the current stress sij in terms of the intensity of

shear stress and the intermediate principal stress ratio (i.e.,

the same deviatoric stress q and Lode angle h), yet its

principal directions coincide with the material axes of

anisotropy defined by the direction of initial deposition and

the two mutually orthogonal directions along the bedding

plane (note that these three mutually orthogonal directions

are coincident with the base vectors used to define all

second-order tensors throughout this work). So it is related

to material axes of anisotropy defined by the direction of

initial deposition of natural clay and its fabric. Taking the

tensor spij as a reference tensor, the normalized unit tensor

n _r
ij can be decomposed into the coaxial and non-coaxial

parts. The reference tensor spij and the non-coaxial stress

rate nnonij are consistent with the general non-coaxiality

mechanism between two tensors by Li and Dafalias [23].

Lastly, it should be noted that in Eq. (12) spmns
p
mn and

SpmnS
p
mn are the second invariant of spij and Spij, while n _r

kls
p
kl

and n _r
klS

p
kl are the second joint invariant of between tensors

n _r
ij and spij, and between n _r

ij and Spij. Accordingly, the non-

coaxial flow direction is a linear combination of the sec-

ond-order symmetric tensors n _r
ij, s

p
ij, S

p
ij and their invariants

and joint invariants; hence, the objectivity of the flow

direction can be ensured. Given the direction of the non-

coaxial plastic strain rate specified by Eq. (12), we postu-

late that the rate of such plastic strain can be expressed by

_epnij ¼ _K 1� g
M

D Ec
knn

non
ij ð14Þ

where h i is the symbol of Macaulay brackets; g and M

denote the current stress ratio and the critical state stress

ratio, respectively; and c, kn are material constants which

control the magnitude of the non-coaxial plastic strain. The

term within the Macaulay brackets is introduced to model

the decreasing degree of non-coaxiality as the deviatoric

stress increases and the approximately coaxiality between

stress and strain increment at critical state, as reported for
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clay [20, 51, 62]. It should be noted that Eq. (14) implies

that the same plastic multiplier is used for both the coaxial

and the non-coaxial plastic strain rate. This model decision

is made as both kinds of irrecoverable deformations are

driven by a common plasticity process, and they only differ

regarding directions. Moreover, it should be emphasized

that while a common multiplier is used, it does not mean

that the non-coaxial and coaxial flows will have the same

intensity. The inclusion of the parameters kn and c will

control the magnitudes of non-coaxial irrecoverable

deformations relative to the coaxial parts. Lastly, it should

be noted that the non-coaxial stress rate nnonij and its cor-

responding generation of non-coaxiality agree with the

non-coaxial yield theory by Qian et al. [32], which is also

called ‘vertex’ yield theory as early proposed by Rudnicki

and Rice [35]. Qian et al. [32] revised Rudnicki and Rice’s

‘vertex’ theory into three-dimensional space. Keeping in

mind, the previous non-coaxial theory is related to stress-

induced anisotropy under non-proportional loading, while

this work is intended to revise previous theories to describe

non-coaxiality under monotonic shear loading. By com-

bining the coaxial [i.e., Eq. (2)] and the non-coaxial [i.e.,

Eq. (14)] plastic strain rate, the total plastic flow rule can

be expressed as follows:

_epij ¼ _K
oQ

orij
þ 1� g

M

D Ec
knn

non
ij

� �
ð15Þ

3 Model description

To represent the non-coaxial plastic responses of clays

under rotation of principal stress directions, the non-coaxial

flow rule described in Sect. 2 is incorporated into a critical

state-based elastoplastic model. In the following presenta-

tion, all the stress variables are regarded as effective

stresses and a compression positive convention is used for

both stress and strain measures.

3.1 Elastic behavior

The proposed model adopts a hypoelastic model commonly

used in Cam-clay-type models [8, 9, 29, 53, 60]. The bulk

modulus K is assumed to depend on the current mean

effective stress p0 = rkk/3 as follows:

K ¼ 1þ e0ð Þp0
j

ð16Þ

where j is the slope of the swelling line in e-lnp0 plane. The
second independent elastic constant is chosen to be a

constant Poisson’s ratio m. Accordingly, the shear modulus

G can be related to K:

G ¼ 3ð1� 2mÞ
2ð1þ mÞ K ð17Þ

The model of Eqs. (16)–(17) represents a simple and

convenient way to model the elastic response of clay and,

in combination of the isotropic hardening rule introduced

in the following, reproduces the normal compression

behavior of clay.

The corresponding elastic incremental constitutive

relation is given by

_rij ¼ De
ijkl _e

e
kl ð18Þ

where De
ijkl is the elastic stiffness moduli, being a function

of K and G as follows:

De
ijkl ¼ K � 2

3
G

� �
dijdkl þ G dikdjl þ dildjk

� �
ð19Þ

3.2 Plastic behavior

The plastic behavior of the model is developed within the

framework of the critical state theory. The formulation of

the proposed model is given in detail as follows.

For simplicity, we adopt the yield surface employed by

Huang et al. [16] and Ling et al. [24] but ignoring its

original dependence on the fabric tensor. Such yield

function in triaxial stress space can be expressed as:

F ¼ p0 � pcð Þ p0 þ R� 2

R
pc

� �
þ R� 1ð Þ2

M2
q2 ¼ 0 ð20Þ

The model constant R controls the ratio of the two major

axes of the yield surface, and when R = 2, Eq. (20)

recovers the yield surface employed in the classical mod-

ified Cam-clay model, and M is the slope of the critical

state line, which is a function of the Lode angle h in three-

dimensional stress space:

M ¼ Mc

2m4

1þ mð Þ4� 1� mð Þ4sin 3h

" #1=4
ð21Þ

In Eq. (21), the variable m is defined as m ¼ Me=Mc in

which Mc and Me are the critical state stress ratio for tri-

axial compression and triaxial extension, respectively.

According to Sheng et al. [39], the yield surface is convex

provided m� 0:6, and it coincides with the Mohr–Coulomb

hexagon at all vertices in the deviatoric plane, ifMc andMe

are computed according to the Mohr–Coulomb criteria

using the same friction angle. For discussions on the

employed yield surface in greater depths, we refer the

readers to existing literature (e.g., [3, 7, 16, 24]).

The isotropic hardening rule is used to control the size

of the yield surface through the internal variable pc. In line
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with the Cam-clay model, a volumetric hardening rule [37]

is adopted:

_pc ¼ pc _e
p
v 1þ e0ð Þ

	
ðk� jÞ ð22Þ

where _epv is the plastic volumetric strain rate; k is the slope

of the normal compression line in the e - lnp0 space.
Experimental evidence for Shanghai soft clay [16] and

Perno clay [18] suggests that the associated flow rule is a

reasonable approximation for natural clay. Thus, the yield

function of Eq. (20) also serves as the plastic potential in

this work. By considering the non-coaxial flow rule

described in Sect. 2, the total plastic strain rate finally can

be expressed as Eq. (15). Besides, substituting Eqs. (1), (2),

(14) and (18) into the consistency condition of the yield

surface, the plastic scalar factor can be determined by

_K ¼
oF
orst

De
stkl _ekl

HP þ oF
orst

De
stkl

oQ
orkl

þ 1� g
M


 �c
knn

non
kl

h i ð23Þ

where HP denotes the plastic hardening modulus.

3.3 Model parameters

The calibration of the proposed model requires constrain-

ing 8 parameters and knowing the initial void ratio. These

parameters can be categorized into three groups: (1) critical

state soil mechanics (k, j, Mc, Me, m), (2) shape of yield

surface (R) and (3) the evolution of non-coaxiality (c, kn).
All of these parameters can be obtained directly from

laboratory tests.

The classical Cam-clay-type parameters k and j are,

respectively, the slope of the normal compression line and

the swelling line in e-lnp0 space obtained from isotropic

consolidation tests. They may also be obtained from the

compression index Cc and swelling index Cs evaluated

from oedometer tests, where k ¼ Cc=2:303 and

j ¼ Cs=2:303. The critical state stress ratio Mc and Me can

be determined from the effective stress paths of triaxial

compression and extension tests or indirectly deduced from

the angle of internal friction /. The Poisson’s ratio m may

be specified as a constant and determined by empirical

methods such as the one proposed by Lade [19] that cor-

relates Poisson’s ratio with the plasticity index (PI) of clay.

The shape parameter R [16, 24, 60] controls the extent

of the accessible tensile stress region in the stress space

diagonal for R C 2.0 and also changes the shape of the

yield function. Larger values of R imply a flatter yield

surface. In the e-lnp0 space, the shape parameter R is

defined as follows [24, 60]:

R ¼ px
pf

ð24Þ

where px and pf denote the initial consolidation pressure of

current yield surface and corresponding critical state mean

normal effective stresses. According to this definition, the

shape parameter R can be obtained when knowing

parameters k, j and pf . As k and j have been obtained from

isotropic consolidation tests, effective stress path of

undrained triaxial shearing on normally consolidated clays

can be used to obtain the value of shape parameter R as

shown by Ling et al. [24]. The parameter R = 2.0 is a

typical value and recovers the yield surface of the modified

Cam-clay model.

The parameter c controls the diminishing rate of the

non-coaxial plastic flow as the current stress ratio approa-

ches the critical state one, while the non-coaxial parameter

kn governs the magnitude of the non-coaxiality. These two

parameters can be calibrated from monotonic shear tests

with fixed principal stress directions of ar (i.e., the angle

between the soil deposition direction and the major prin-

cipal stress direction, as depicted in Fig. 1) neither equal-

ing to 0� nor 90�. Otherwise, non-coaxial flow will not

occur according to the employed flow rule. According to

the definition of the non-coaxial flow rule [i.e., Eq. (14)],

epzh is supposed to denote the non-coaxial plastic strains in

hollow cylinder torsional shear tests. Hence, one can

approximately have

c ¼ ln
dep1zh
dep2zh

 !,
ln

1� g1=M
1� g2=M

� �
ð25Þ

where (dep1zh ,g1) and (dep2zh ,g2) are two different data points

from the depzh � g curve obtained from the torsional shear

tests described above (note that epzh is plastic shear strain

within the zh plane depicted in Fig. 1; g is the stress ratio).

After the parameter c is determined, the value of the

Fig. 1 Stress state of soil element in hollow cylinder torsional shear

tests
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constant kn can be determined by fitting the depzh � g curve

directly. Figure 2 shows the simulated evolution of the

strain direction angle ade (i.e., the angle between the

deposition direction and the principal strain increment

direction) within undrained monotonic shear test with fixed

principal stress directions. In this example, the initial

consolidation pressure p0 = 150 kPa, the intermediate

principal stress ratio b = 0.5 and the major principal stress

inclination ar = 30�. Figure 2a shows that the change of

the angle ade due to an increasing stress ratio is relatively

small when c = 0 (i.e., the influence of the current stress

ratio on the non-coaxial flow is neglected). When a non-

zero c is employed, the angle ade approaches gradually to

the stress direction angle ar (i.e., a diminishing non-coaxial

effect) as the stress ratio advances toward the failure.

Figure 2b shows that ade almost coincides with ar when

kn = 0 (i.e., the non-coaxial plastic strain is not consid-

ered), while the non-coaxial angle increases with the

increase of the material constant kn.

4 Model simulations

The model was calibrated and verified against two different

types of clay: Shanghai clay and Wenzhou clay. Undrained

hollow cylinder torsional shear tests were performed on

undisturbed Shanghai clay specimens. The calibration of

Shanghai clay parameters was based on the results of

oedometer tests, triaxial tests and monotonic shear tests

with fixed principal stress directions using hollow cylinder

apparatus. As for Wenzhou clay, testing data reported by

Wang et al. [51] were used to verify the proposed model.

Parts of model parameters are provided by Wang et al.

[51], while the rest is obtained by following the procedures

described above. In particular, the parameters k and j are

determined by using their correlations with the liquid limit

wL and plasticity index Ip [27, 37].

4.1 Experiments on Shanghai soft clay

A series of tests on Shanghai soft clay were conducted to

assess the proposed model. The test program includes the

oedometer test, triaxial test and hollow cylinder torsional

shear test. To determine essential critical state parameters

for the proposed model, oedometer tests and triaxial tests

were performed. The hollow cylinder shear tests are used to

obtain non-coaxial parameters and subsequently examine

the model capacity to represent the non-coaxial behavior of

clays.

In this study, undisturbed samples of Shanghai clay were

obtained from a deep excavation site at a depth of

18–20 m. The physical properties of the tested Shanghai

soft clay are shown in Table 1. The water table is

0.5–1.0 m below the ground surface, and the vertical

effective stress of the subsoil at 18–20 m is around

150 kPa.

(a)

(b)

Fig. 2 Simulated variation of strain direction angle with the stress

ratio under monotonic shearing with fixed principal stress directions:

a effect of the parameter c (kn = 100), b effect of the parameter kn
(c = 0.5)

Table 1 Physical properties of Shanghai soft clay

Natural water content

wn (%)

Plastic limit

wP (%)

Liquid limit

wL (%)

Plasticity index

IP

Liquidity index

IL

Specific gravity

Gs

Initial void ratio

e0

38.4 20.4 38.6 18.2 0.99 2.75 1.060
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4.1.1 One-dimensional consolidation characteristics
experiments

Figure 3 shows the results of a one-dimensional consoli-

dation test on Shanghai clay conducted in conventional

oedometer. Based on the test results, the pre-consolidation

pressure rp was determined to be 148.6 kPa using the

Casagrande method. The compression index and swelling

index (Cc and Cs) for one-dimensional consolidation are

0.484 and 0.092, respectively. The parameters k and j for

Shanghai clay are estimated from these two indexes (i.e.,

k ¼ Cc=2:303 and j ¼ Cs=2:303).

4.1.2 Consolidated undrained triaxial tests

Undrained triaxial compression tests were performed after

clay specimens were isotropically consolidated to initial

confining pressures of p00 = 150 kPa, 200 kPa and

300 kPa. These consolidation stresses are selected to

ensure that the clay samples are normally consolidated

before shearing. The Skempton’s pore pressure coefficient

B was checked to be greater than 0.98 before consolidation

to ensure the triaxial samples were fully saturated. The

effective stress paths in p0-q space and the stress–strain

response corresponding to the stress state at failure are

shown in Fig. 4. The slope of the critical state line, Mc, is

determined to be 1.32, which corresponds to an effective

angle of internal friction /c = 32.8�.

4.1.3 Undrained monotonic shear tests with fixed principal
stress directions

Undrained monotonic shearing with fixed principal stress

directions was performed by using the TJ-5 Hz hollow

cylinder apparatus (HCA) at Tongji University. The

equipment was described in detail by Qian et al. [30, 31].

The hollow cylindrical specimens used have an inner

diameter of 60 mm, an outer diameter of 100 mm and a

height of 200 mm. As shown in Fig. 1 [14], the four

external loads applied to clay samples are the axial load W,

torque T, inner cell pressure Pi and outer cell pressure Po.

The combination of these external loads results in inde-

pendent controls over four stress components induced in a

tested specimen: the axial stress rz, radial stress rr, cir-
cumferential stress rh and shear stress szh. They are con-

veniently converted into an equivalent set of stress

parameters, p, q, b and ar, shown in Fig. 1. The equations

used to calculate the stress and strain parameters can be

found in Qian et al. [30]. After sample preparation, a back

pressure of 50 kPa was applied to ensure the saturation of

the soils and the Skempton’s pore pressure coefficient B is

checked to be greater than 0.96 before proceeding to the

next stage. Subsequently, all samples were isotropically

consolidated to a mean effective stress of 150 kPa. Then,

the monotonic shearing was performed by monotonically

increasing the deviatoric stress q, while the other three

Fig. 3 Compression curve of undisturbed Shanghai soft clay in

e - log rv plane obtained from odometer test

(a)

(b)

Fig. 4 Results of undrained triaxial compression tests on undisturbed

Shanghai soft clay: a effective stress paths in p0 - q space, b stress–

strain response of eq - q/p0
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parameters were maintained constant, as shown in Fig. 5.

When q increases to certain values, non-uniform strain

occurs, strains increase sharply and q can no longer be

controlled. This instance is defined as failure, and

throughout this work we only report data before failure. In

total, 5 undrained element tests were conducted under

different fixed principal stress directions, as listed in

Table 2. It should be noted that the orientation relative to

the horizontal axis is 2ar in Fig. 5, and it is twice the

direction of the major principal stress relative to the

vertical.

In studying the non-coaxiality, the non-coaxial plastic

strain rate is related to the deviatoric plastic strain rate. It

should be noted that the rate of elastic volumetric strain

essentially has no influence to the degree of non-coaxiality.

By contrast, the rate of elastic shear strain definitely affects

the degree of non-coaxiality. However, compared to the

plastic shear strain rate, the elastic shear strain rate can be

ignored in dealing with the elastoplastic responses of soil.

For example, the original Cam-clay model assumes that the

elastic shear strain rate is equal to zero [37]. On the other

hand, with an increasing shear stress level up to ultimate

failure, the rate of elastic shear strain tends to take a

smaller proportion in the rate of total strain where the soil

behavior is totally governed by the plastic process. Besides,

it is hard to precisely separate the elastic shear strain rate

from the total strain rate. So the total strain rate instead of

the plastic strain rate is used in the analysis, which is

consistent with the conduct of experimental data by Cai

et al. [4], Lade and Kirkgard [20], Tong et al. [44] and

Wang et al. [51]. The stress path in the szh– rz � rhð Þ=2
plane and the strain increment vector are shown in Fig. 6.

The figure schematically shows the stress paths in the plane

of rz � rhð Þ= rz þ rhð Þ versus 2szh= rzþrhð Þ and the

induced strain increments superposed in the stress paths,

i.e., dez � dehð Þ=ds versus dczh
	
ds where ds is the stress

increment, as shown in Eq. (29). ar, adr and ade denote the
angle between the deposition direction and major principal

stress direction, major principal stress increment direction

and major principal strain increment direction, respec-

tively. The vectors AB (the scalar quantity is ds) denotes

the stress increment, and AC is the strain increment per

unit stress increment. The latter denotes the deformability

under the force which is physically related to the material

flexibility [31]. The quantities described above can be

related to the control variables of HCA as follows:

ar ¼ 1

2
arctan

2szh
rz � rh

� �
ð26Þ

adr ¼
1

2
arctan

2dszh
drz � drh

� �
ð27Þ

ade ¼
1

2
arctan

dczh
dez � deh

� �
ð28Þ

ABj j ¼ ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d

rz � rh
rz þ rh

� �� �2
þ d

2szh
rz þ rh

� �� �2s
ð29Þ

Fig. 5 Stress path in deviatoric stress space for monotonic shearing

with fixed principal stress directions

Table 2 Test program for Shanghai soft clay

Test number p (kPa) b ar (�)

M00 150 0.5 0

M30 150 0.5 30

M45 150 0.5 45

M60 150 0.5 60

M90 150 0.5 90

Fig. 6 Stress path and non-coaxial behavior between stress direction

and strain increment direction
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ACj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d ez � ehð Þ½ �2þ dczh

� 2q
ds

¼ de1 � de3
ds

ð30Þ

Figure 7 shows the effective stress path and stress–strain

curves of Shanghai clay subjected to undrained monotonic

shear with different fixed principal stress directions. As

shown in Fig. 7a, the undrained shear strength is dependent

on major principal stress direction. The undrained shear

strength decreases when ar is less than 45� and slightly

increases after ar = 45� with increasing ar, indicating

clearly strength anisotropy. Figure 8a presents strain

increment vectors of clay specimens under monotonic

shearing with fixed principal stress directions in szh–
rz � rhð Þ=2 plane. For a better view of the variation of

non-coaxial angle characteristics, the arrow only indicates

the direction of strain increment and does not indicate the

size of strain increment per unit stress increment. The

corresponding variation of the strain increment direction

angle with the deviatoric stress is shown in Fig. 9a. These

data show that the strain increment direction almost coin-

cides with the stress direction for ar = 0�, 90� (shearing

along the direction of rz � rhð Þ=2) and = 45� (shearing

along the direction of szh), whereas apparent non-coaxiality

exists for ar = 30� and 60�. Such observation suggests that

non-coaxial characteristics of soils may be attributed to the

coupling between loading along the directions of

rz � rhð Þ=2 and szh. The directional angle of strain incre-

ment is greater and less than that of stress for ar = 30� and
ar = 60�, respectively. The non-coaxial angle decreases

gradually with the increase of the deviatoric stress. More-

over, the direction of strain increments almost coincides

with that of stress when the failure surface is reached.

These observations described above are in agreement with

those observed for sand [11, 33, 43] and other types of clay

(a)

(b)

Fig. 7 Experimental and predicted results of effective stress path and

stress–strain relationship eq - q for Shanghai clay: a effective stress

path, b stress–strain relationship eq - q

(a)

(b)

(c)

Fig. 8 Non-coaxiality of strain increment vectors in szh - (rz - rh)/
2 plane under monotonic shearing with fixed principal stress

directions: a experimental results, b model simulations with non-

coaxial flow rule suggested by Qian et al. [32], c model simulations

based on the revised non-coaxial flow of this paper
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[51, 62] under monotonic shearing with fixed principal

stress directions.

4.2 Model simulations of Shanghai soft clay

The calibration of the proposed model for Shanghai clay is

based on the results of one-dimensional consolidation

experiments, consolidated undrained triaxial tests and

undrained monotonic shear tests with fixed principal stress

directions. Table 3 shows the value of model parameters

for Shanghai soft clay. These values e0 = 1.060,

pc0 = 150 kPa have been used in the following simulations.

It should be noted that due to the lack of appropriate

experimental data, we assume that the Poisson’s ratio for

Shanghai clay (also that for Wenzhou clay discussed in the

following) is 0.2. This value is consistent with those used

in previous studies regarding the same types of soils

[16, 59].

Figure 7 shows the measured and predicted effective

stress path and stress–strain relationship eq - q of Shang-

hai clay subjected to undrained monotonic shear with dif-

ferent fixed principal stress directions. As shown in Fig. 7a,

the computed effective stress paths under different stress

rotation angles ar are almost identical, whereas the mea-

sured effective stress paths are affected by ar. As shown in

Fig. 7b, the predicted stress–strain relationship eq - q at

relatively small strains is affected by ar (note that those for
ar = 0� and 90� are the same, whereas those for ar = 30�
and 60� are the same), but the final value is not affected by

the principal stress directions. This may result from that the

proposed non-coaxial flow rule employs a fabric-related

material axes [i.e., reference stress tensor spij in Eq. (11)] to

conduct orthogonal projection of the current stress rate,

thus defining the direction of non-coaxial plastic flow.

Accordingly, when the directions of principal stresses vary

with respect to this material axes, the computed non-

coaxial plastic strain rates will be different, thus the growth

rate of deviatoric stress with deformations being different.

Moreover, as shown in Fig. 7, there are some discrepancies

between test data and model simulations of the effective

stress path and stress–strain relationship. This might be

attributed to the presence of strength anisotropy [1, 2, 54]

of the tested nature clay (Fig. 7a). The strength anisotropy

might result from a combination of the inherent anisotropy

generated during soil depositions and induced anisotropy

formed by the anisotropic consolidation stress histories

[1, 2, 54]. It should be noted that the Lode angle effect

[Eq. (21)] and the plastic volumetric strain [Eq. (22)] have

been considered in the modeling. However, the non-coaxial

theory in the paper is only related to stress-induced ani-

sotropy to describe non-coaxiality under monotonic shear

loading, whereas the anisotropy reflects strength is not

considered in the modeling. Such that the model cannot

reproduce the development of the effective stress path and

stress–strain relationship along different ar.
Figure 8b, c presents the simulated variation of strain

increment vector directions using the proposed model with

the non-coaxial flow rule suggested by Qian et al. [32] and

the one given in this paper. Compared with the non-coaxial

(a)

(b)

(c)

Fig. 9 Variation of the strain increment direction angle with the

deviatoric stress: a experimental results, b model simulations

2166 Acta Geotechnica (2022) 17:2157–2172

123



flow rule suggested by Qian et al. [32], the one adopted in

this work reproduces coaxial plastic flow under principal

stress rotation of ar = 0�, 45� and 90�, whereas predicts

non-coaxial flow under the conditions of ar = 30� and 60�.
These phenomena are observed here for Shanghai clay as

well as for other types of clays [20, 51, 62]. The new non-

coaxial flow rule uses the tensor spij that is related to

material axes of natural clay and its fabric as a reference

framework, to which an orthogonal projection of the stress

rate is conducted, thus defining the direction of non-coaxial

flow. Under such flow rule, spij is parallel to stress rate when

ar = 0� or 90�, and the orthogonal projection of the stress

rate to spij is zero and so does the non-coaxial plastic strain

rate. On the other hand, when the stress direction rotation

angles take other values, the orthogonal projection of the

stress rate with respect to spij takes finite values and non-

coaxial plastic deformations take place. In addition, since

the hollow cylinder experiments were performed in a

stress-controlled manner, the vertical stress rate _rz and

circumferential stress rate _rh are zero and there is only

shear stress rate _szh under ar = 45�. This result in the

predicted _ez and _eh will be zero. So the predicted ade is

always equal to 45� which is coincident with ar. Thus it

predicts coaxial plastic flow under principal stress rotation

of ar = 45�. Lastly, it should be mentioned that certain

discrepancies between test data and model simulations can

also be observed, in particular at relatively high shear

stresses.

Figure 9b, c shows the simulated strain increment

direction angle using the proposed model with the non-

coaxial flow rule suggested by Qian et al. [32] and the one

given in this paper, respectively. It can be seen that the

model simulations follow the trends observed in the tests,

in that it reproduces the coupling between loading along

the direction of rz � rhð Þ=2 and szh. Moreover, the model

also correctly captures that the directional angle of strain

increment is greater than that of stress when ar = 30�, but
it is less than that of stress when ar = 60�. Nevertheless,
the simulated non-coaxial angle at higher shear stress

levels tends to be greater than that observed.

The differences between the test data and model simu-

lations, as depicted in Figs. 8 and 9, might be attributed to

three resources. The first one is the presence of strength

anisotropy of the tested clay as discussed above. For sim-

plicity, the non-coaxial theory in the paper is only related

to stress-induced anisotropy to describe non-coaxiality

under monotonic shear loading, whereas the anisotropy

reflects strength is not considered in the modeling and thus

cannot replicate such strength anisotropy. Second, the

model assumes a diminishing non-coaxiality as critical

state is approached [i.e., see Eq. (14)], as suggested by

experimental evidence [20, 51, 62]. On the other hand, the

anisotropy of natural clay (in particular, that is related to

the preferential deposition direction of soils) might not be

fully erased at critical state. Accordingly, the spatial dis-

tributions of soil fabrics might not be fully aligned with the

principal directions of the current stress states, thus a non-

coaxial angle existing between the material axes that are

related to soil fabrics and the loading direction. Conse-

quently, non-coaxial plastic flow can still be observed as

critical state is approached. The last factor of the mis-

matches between measured and computed soil response is

the potential development of non-uniform stress/strain

fields within soil specimens, due to the unequal inner and

outer cell pressures in a hollow cylindrical apparatus. This

phenomenon becomes increasingly significant as the

deviatoric shear stress increases to a higher level, because

the difference between inner and outer cell pressures

becomes bigger [14, 36].

Table 3 Model parameters for Shanghai soft clay and Wenzhou soft clay

Parameters Critical state parameters Shape parameter Non-coaxial parameters

k j Mc Me m R c kn

Shanghai clay 0.21 0.06 1.32 0.92 0.2a 2.0 0.5 100

Wenzhou clay 0.36 0.04 1.113 0.812 0.2b 2.0 0.5 50

aHuang et al.[16]
bYin et al.[59]

Table 4 Test program for Wenzhou soft clay

Test number p (kPa) b ar (�)

Series I T000 150 0 0

T030 150 0 30

T045 150 0 45

Series II T145 150 1 45

T160 150 1 60

T190 150 1 90
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4.3 Model simulations of Wenzhou soft clay

In addition to the verification program described above, the

proposed model is further examined against the published

experimental results of Wenzhou soft clay subjected to

monotonic shearing with fixed principal stress directions.

Wang et al. [51] performed a series of drained hollow

cylinder torsional shear tests on Wenzhou clay, where

various combinations of principal stress directions and

intermediate principal stress values were employed. The

loads were applied until the failure of the specimens. The

test program is summarized in Table 4, and the selected

stress paths are depicted in Fig. 5. Since the parameters k
and j were not reported, they are estimated from the liquid

limit wL and plasticity index Ip [48, 49] according to the

empirical relations given by Schofield and Worth [37] and

Nakase et al. [27]. Other model parameters including those

controls the non-coaxial plastic flow are determined by

matching the results of monotonic shearing with the

intermediate stress parameter b = 0.5. Accordingly, the

computed results for soil tests with b = 0 and 1 are referred

to as model prediction. The initial void ratio e0 = 1.570

(a)

(b)

(d)

(e)

(c) (f)

Fig. 10 Experimental and predicted results of the variation of strain components with the equivalent deviatoric stress for Wenzhou soft clay:

a b = 0, ar = 0�, b b = 0, ar = 30�, c b = 0, ar = 45�, d b = 1, ar = 45�, e b = 1, ar = 60�, f b = 1, ar = 90�
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and the initial consolidation pressure pc0 = 150 kPa [51]

have been used for the entire simulations.

Figure 10 compares the computed and measured stress–

strain responses of Wenzhou clays under drained shearing

with different combinations of b value and the rotations of

the principal stresses. Figure 11 shows the observed and

predicted axial and shear stress–strain relations for the

same series of tests. In both figures, the solid line repre-

sents the model prediction, while experimental data are

denoted by open symbols. It can be seen that, with a single

set of parameters, the proposed model very well predicts

the general shearing characteristics of Wenzhou clays

subjected to stress paths of varying principal stress direc-

tions and intermediate stress ratios. The peak deviatoric

stress in the experiment with b = 0 is slightly overesti-

mated by the model due to mild strain localization [15].

Figure 12 shows the experimentally measured and pre-

dicted evolution of strain increment direction angle with

the deviatoric stress. Unlike the simulations for Shanghai

clays, the simulated direction angle here is computed based

on the total strain increment. It can be seen that the model

reasonably represents the trend of the non-coaxial plastic

flow as observed from the experiments, although the

agreement between the simulated and experimental non-

coaxial angle is less than perfection for ar = 30�, 60�. The
latter might be attributed to the same resources as discussed

for the simulations of Shanghai clay.

5 Conclusions

A simple critical state-based constitutive model is devel-

oped for describing the non-coaxial plastic deformations of

saturated soft clay subjected to monotonic shearing with

fixed principal stress directions. Such material behavior has

been extensively reported in experimental studies but not

adequately addressed by constitutive modeling. For this

purpose, this work introduces a revised non-coaxial flow

rule, which assumes any plastic strain rate that is not

coaxial with the stresses will be colinear with a non-coaxial

stress rate orthogonal to a reference deviatoric stress tensor

instead of the current deviatoric stress tensor. The latter is

often adopted in existing non-coaxial flow rules. By doing

so, non-coaxial plastic deformations can be modeled even

when the stress rate is coaxial with the current stress state

(i.e., during monotonic loading with fixed principal stress

directions). Compared with the modified Cam-clay model,

the proposed model only requires one more parameter to

characterize the yield surface and another two new

parameters for controlling the non-coaxial flow behavior.

The latter can be straightforwardly calibrated from hollow

cylinder torsional shear tests.

Undrained hollow cylinder shear on undisturbed

Shanghai clay specimens shows clay can exhibit non-

coaxial deformations when stress paths involve coupling

between shearing along rz � rhð Þ=2 and szh. The test

results for Shanghai clay, combined with a complementary

test data reported for Wenzhou clay, are used to validate

the proposed model. The comparison shows that the pro-

posed model can reasonably represent non-coaxial plastic

flows of clays during monotonic shears characterized by

different fixed principal stress directions and various

intermediate principal stress levels.

Lastly, it should be noted that to clarify the roles of the

new non-coaxial flow rule, we have deliberately to keep the

adopted constitutive modeling platform simple. Conse-

quently, factors such as strength anisotropy, which contains

inherent anisotropy (i.e., that generated during soil depo-

sitions) and induced anisotropy (i.e., that formed by the

anisotropic consolidation stress histories and the loading

histories), and soil structure that can significantly affect the

non-coaxial behavior of clay, are currently not considered.

The theoretical work including the strength anisotropy in

the modeling should be done in the future. Moreover, the

(a)

(b)

Fig. 11 Experimental and predicted results of stress–strain relation-

ship for Wenzhou soft clay: a axial stress–strain curve, b shear stress–

strain curve
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presented model, constructed within conventional elasto-

plastic framework, is not suitable for exploring the non-

coaxial behavior of clay subjected to cyclic loading and the

continuous change of principal stress orientation. These

represent important steps introducing additional mecha-

nisms and more advanced constitutive platforms that are or

will be undertaken to enhance the proposed model.
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