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Abstract
Tunnel face is important for shallow tunnels to avoid collapses. In this study, tunnel face stability is studied with soft

computing techniques. A database is created based on the literature which is used to train some broadly adopted soft

computing techniques, ranging from linear regression to the artificial neural network. The soil dry density, cohesion,

friction angle, cover depth and the tunnel diameter are used as the input parameters. The soft computing techniques state

whether the face support is stable and predict the face support pressure. It is found that the artificial neural network

outperforms the other techniques. The face support pressure is predicted with the artificial neural network for statistically

distributed samples, and the failure probability is obtained with Monte Carlo simulations. In this way, the stability of the

tunnel face can be reliably assessed and the support pressure can be estimated fairly accurately.
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Abbreviations
ANN Artificial neural network

CMT Centrifuge model test

DEM Discrete element method

DTR Decision tree regressor

FDM Finite difference method

FEM Finite element method

KNR K-Nearest neighbours

LIR Linear regression

LSL Limit state line

LOR Logistic regression

LRM Load reduction method

MAE Mean absolute error

ML Machine learning

MD Monitoring data

MC Monte Carlo

NA Numerical analysis

NATM New Austrian tunnelling method

PSO Particle swarm optimisation

RFR Random forest regressor

RMSE Root mean squared error

SVR Support vector regressor

TBM Tunnel boring machine

VR Voting regressor

XGB Extreme gradient boosting

1gMT 1g model test

List of symbols
C Soil cover

Cf Cost function

COV Coefficient of variation

D Euclidean distance, tunnel diameter

Fn Number of false negatives

Fp Number of false positives

Id Density index

L Layer of the ANN

K Covariance matrix

K0 Coefficient of earth pressure at rest

Nc Bearing factor

Nq Bearing factor

Nc Bearing factor

Pf Probability of failure of the reliability method

fPf
Probability of failure of the MC method

R2 Coefficient of determination

Sr Degree of saturation

Tn Number of true negatives

Tp Number of true positives

X Features
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X0 Scaled features

a Activation function

b Bias term

c0 Effective cohesion

e Void ratio

emax Maximum void ratio

emin Minimum void ratio

n Number of data points, porosity

q Surcharge load acting at the ground level

w Weight term

x Vector of the random variables

y Label

�y Mean observed label

yi Observed label

ŷi Predicted label

U Cumulative distribution function of a standard

normal variable

bi Coefficients of the parametric models

bHL Hasofer and Lind reliability index

u Friction angle

c Soil unit weight, kernel coefficient

c0 Effective unit weight

cd Dry unit weight

cs Soil particle unit weight

csat Saturated unit weight

cw Unit weight of water

l Vector of the mean values of the random

variables

lc Mean values of the cohesion

lu Mean value of the friction angle

qcu Coefficient of correlation between cohesion

and friction angle

qs Soil particle density

rc Standard deviation of the cohesion

ru Standard deviation of the friction angle

rT Support pressure at the tunnel axis

r̂T ;1, r̂T ;2 Normalised support pressure at the tunnel axis

r̂T ;3 Support pressure ratio at the tunnel axis

r0T Effective support pressure at the tunnel axis

r̂0T ;3 Effective support pressure ratio at the tunnel

axis

rW Pore water pressure at the tunnel axis

1 Introduction

Most tunnels are excavated either with the New Austrian

Tunnelling Method (NATM) or with the Tunnel Boring

Machine (TBM). For deep tunnels, the essence of NATM is

to allow some ground deformation to reduce the pressure

on the tunnel lining. For shallow tunnels in soft ground,

however, the deformation should be minimised to maintain

the inherent strength of the ground and to avoid damage to

surface structures. Moreover, the stability at the tunnel face

is important for shallow tunnels to avoid collapses. In

principle, the face stability can be improved either by

enhancing the strength of the surrounding ground or by

providing support measures such as supporting cores,

shotcrete sealing, horizontal anchors and forepoling. The

strength enhancement at the tunnel face can be achieved by

either grouting or by lowering the groundwater level. In

mechanised tunnels, the face support is provided by the

TBM, e.g. slurry shield or EPB shield. An estimate of the

support pressures is required for safe and efficient

construction.

The problem of face stability can be solved with ana-

lytical, numerical and experimental approaches. The ana-

lytical methods are mainly based on the limit state analysis.

Alternatively, the problem can also be studied by 1 g

model tests and centrifuge model tests. The face stability

can also be studied by numerical analysis, e.g. the Finite

Element Method (FEM), the Finite Difference Method

(FDM) and the Discrete Element Method (DEM).

Recently, soft computing (SC) has emerged as a

promising technique for predictive assessment in geotech-

nical engineering. Until now, little has been done to apply

SC to the tunnel face stability and failure probability.

Compared with the aforementioned deterministic approa-

ches, SC is particularly appealing in view of the natural

variability of the soil properties. This paper focuses on the

application of SC methods based on four datasets: 1 g

model tests, centrifuge tests, monitoring data and numeri-

cal analysis. The face stability is considered both as a

classification and as a regression problem. While the

classification deals with the question of whether a face

support is necessary, the regression answers the question of

how much support is needed. For the classification, the

Logistic Regression (LOR) is considered. For the regres-

sion, the Linear Regression (LIR) is used as a benchmark

and some Machine Learning (ML) techniques are critically

assessed, such as the Decision Tree Regressor (DTR), the

K-Nearest Regressor (KNR) and the Support Vector

Regressor (SVR). The combinations of various ML meth-

ods—the so-called ensembles—such as the Random Forest

Regressor (RFR), Voting Regressor (VR) and Extreme

Gradient Boosting (XGB), are also considered. Finally, the

Artificial Neural Network (ANN) is assessed.

Then, the most accurate SC technique is selected and its

predictive capacity is augmented within a probabilistic

framework. To estimate the failure probability, two statis-

tical distributions of the shear parameters (i.e. normal and

log-normal) and the correlation within the parameters are

compared.
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This paper is organised as follows. In the next section,

the relevant literature is reviewed. In Sect. 3, the dataset,

the SC techniques and the probabilistic simulations used in

this study are presented. Section 4 presents the results

which are discussed in Sect. 5. Finally, Sect. 6 concludes

the paper.

2 Tunnel face stability

Different approaches to tunnel face stability can be found

in the recent guidelines [14]. The effective support pressure

can be written in the following form which resembles

Terzaghi’s bearing capacity of shallow foundations:

rT ¼ cDNc þ qNq � cNc ð1Þ

where c is the soil unit weight, D is the tunnel diameter, q

is the surcharge load at the ground level and c is the

cohesion (Fig. 1). Nc, Nq and Nc are the bearing capacity

factors. The contribution of water is equal to the pore water

pressure rW acting at the level of the tunnel face [14].

Therefore, the two contributions, i.e. that of earth and of

water pressure, are expressed as

rT ¼ r0T þ rW ð2Þ

where r0T is the effective support pressure.

Analytically, either limit equilibrium or limit analysis is

used. In limit equilibrium approaches, a failure mechanism

is defined and the equilibrium equations for the forces

acting onto or within the failure volume are solved. The

recent guidelines for engineering practice [14] are based on

this approach. The limit equilibrium mechanisms for tun-

nels were first developed by [22]. These methods were

applied to TBM tunnels by Anagnostou and Kovári [5, 6]

and Jancsecz and Steiner [25]. Recent developments

include the works of Anagnostou [4], Chen et al. [11] and

Hu et al. [23].

Within limit analysis, various solutions have been for-

mulated. In this framework, two types of solutions exist:

upper and lower bounds [15, 32, 43, 56].

Other than analytically, face stability can be also

assessed experimentally. Two classes of experiments exist

in the literature: 1g and centrifuge model tests. 1g model

tests are easier to carry out and allow a more sophisticated

instrumentation. Ahmed and Iskander [2] evaluated face

stability with transparent soils. Chen et al. [12] validated

their FDM tests with 1g-tests. Kirsch [30] studied the

development of the failure mechanism and the support

force at the face in dry sand. Liu et al. [35] developed a

model test device for shield excavation with ideal slurry

film to validate 2D FDM tests. Lüe et al. [38] carried out 1g

model tests under seepage conditions. Lüe et al. [37]

studied the failure of shield tunnel face in cross-anisotropic

granular media with 1 g model tests and DEM. Sterpi and

Cividini [55] performed 1g model tests and FEM to clarify

the phenomenon of strain localisation.

Under their augmented gravity field, centrifuge model

tests can mimic the level of stress of real world tunnels.

Experimental results validate analytical formulations. For

instance, Messerli et al. [41] validated the limit equilibrium

method of Anagnostou and Kovári [5]; centrifuge model

tests [10, 40] validated the model of Davis et al. [15] and

Leca and Dormieux [32]. Lüe et al. [39] carried out cen-

trifuge tests to validate their FEM tests, which also con-

sidered seepage forces. Centrifuge tests under unsaturated

conditions were provided by Soranzo and Wu [53].

Finally, the problem of tunnel face stability can also be

solved by numerical analysis. Mostly, the tunnel support

pressure is obtained with the FEM [3, 18, 55, 57, 58, 68],

but also the FDM is largely adopted [12, 34, 61]. Thanks to

the ever increasing computational speed of modern com-

puting, the DEM is recently gaining momentum

[13, 37, 59, 60, 69].

2.1 Soft computing techniques

Soft Computing is a collective term for various disciplines

of computer science that deal with approximate solution

methods that are similar to natural information processing.

Various methods explored in this study belong to a subsets

of SC techniques, namely Machine Learning (ML).

According to two state-of-the-art reviews of SC applica-

tions [17, 64], the adoption of SC techniques in geotech-

nical engineering is growing exponentially. ANN is the

leading technique and represents about half of the studies

in this field. Most geotechnical engineering applications

deal with the soil and rock properties, slope stability and

deep foundations.

A comprehensive review of the state-of-the-art appli-

cation of SC techniques to underground excavations can be

found in [66]. In the following, some of the studies related

to tunnel excavations in soil are recalled. The studies focus

on few different aspects such as prediction of the lining

stability [33, 65], of the convergence of the cavity [1, 46],

of the magnitude of ground settlements [31, 62, 70] and of

the occurrence of the overbreak [26]. Studies on TBM

performance [8, 45] and steering [63] are also found in the

literature. These studies applied ANN [8, 31], RFR [67, 70]

and SVR [45, 46, 68]. One study considers also LIR and

KNR [66].

One formal attempt to address the tunnel face stability

problem with SC techniques was made by [48]. The

authors applied ML and defined a Face Vulnerability Index

(FVI) to assess the stability conditions of tunnels based on

a database of 36 case histories. This objective of the
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defined index—which varies between 0 and 100—is to

represent the instability potential of a tunnel [48]. How-

ever, the authors made no attempt to predict the support

pressure. The present study is poised to fill this knowledge

gap.

2.2 Probabilistic methods

For engineering structures, failure is defined as the condi-

tion for which load equals resistance. Semi-probabilistic

approaches overcome uncertainties by multiplying load

and resistance by partial safety factors. However, building

standards acknowledge that this is a simplification and

allow the probabilistic approach [9]. Probabilistic methods

account for the uncertainties associated with the variables

at play. Therefore, failure is not defined by a binary vari-

able, such as stable/unstable, but rather by its probability of

occurrence. In a deterministic framework, geotechnical

parameters are fixed; within probabilistic methods, instead,

they are defined by a statistical distribution. Typically, a

statistical distribution is assumed for the shear parameters

only, but other parameters can also be considered.

The second ingredient in every probabilistic method is

the definition of a failure domain. The failure and safety

domains are separated by the Limit State Line (LSL). The

shape of the LSL can be defined by considering an ana-

lytical solution. However, if the solution is not explicit, the

shape of the LSL is unknown a priori. This situation occurs

in practice because of the complexity of the problem

(number of variables involved, non-linear behaviour, etc.).

In this case, the LSL can be found tentatively by numerical

analysis [20]. Eventually, a closed-form LSL can be

interpolated based on the numerical results.

Once the LSL is retained, failure probability can be

computed according to the procedure outlined in Low and

Tang [36] and depicted in Fig. 2. In Fig. 2, a normal dis-

tribution is assigned to the shear parameters. In doing so,

the normal dispersion ellipse is obtained according to [16].

bHL ¼ min
x2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� lÞTK�1ðx� lÞ
q

ð3Þ

where b is the [21] reliability index, F is the failure region,

x and l are the random variables and their mean values and

K is the covariance matrix. The failure probability is

approximated with Eq. 4.

Pf ¼ Uð�bHLÞ ð4Þ

where U is the cumulative distribution function of a stan-

dard normal variable. Low and Tang [36] also outline the

procedure to deal with log-normally distributed variables.

Alternatively, a Monte Carlo (MC) simulation can be

performed. With MC, samples are generated with their

chosen probability distribution functions. Then, the

structural response (failure/safety) is calculated for each

point. The failure probability is calculated with the fol-

lowing equation:

fPf ¼
1

n

X

n

i¼1

IðxiÞ ð5Þ

where IðxÞ ¼ 1 if the point is inside the failure domain. In

Fig. 3, for example, a normally correlated sample with n =

Fig. 1 Problem statement

Fig. 2 Limit State Line and normal dispersion ellipse
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100 data points is generated. Three points fall within the

failure zone. Therefore, the failure probability is 3%

(Fig. 4).

Probabilistic methods for tunnel face stability

[42, 44, 50] rely on limit analysis to determine the LSL.

Pan and Dias [49] employed SC techniques to enhance

computational efficiency in their probabilistic method,

which is ultimately based on a complex analytical formu-

lation of the LSL. Goh and Kulhawy [20] do not apply any

aprioristic definition of the LSL, but rather employ SC

techniques to determine the LSL based on numerical

results.

In this paper, the LSL is neither calculated analytically,

nor predicted via SC techniques based on numerical anal-

ysis. A third way is explored, in which the structural

response is calculated for each point in the sample with SC

techniques and the LSL is the ideal boundary separating the

stable from the unstable points.

3 Methodology

In this section, the methodology is presented. It consists of

the dataset preparation (Sect. 3.1), the classification and

regression methods (Sects. 3.3 and 3.4) and the MC sim-

ulations (Sect. 3.5).

3.1 Dataset preparation

A dataset is constructed based on the available literature in

Scopus. The keywords ‘‘Tunnel’’, ‘‘Face’’ and ‘‘Stability’’

are used. The keywords ‘‘Rocks’’, the analytical methods

(‘‘Limit Analysis’’ and ‘‘Limit Equilibrium’’) and seepage

are excluded. The results are limited to the English lan-

guage and irrelevant disciplines are neglected (‘‘Business’’,

‘‘Medicine’’, etc.). With this approach, the authors were

able to collect 658 documents as to 01.10.2020. Within

these documents, 21 have been selected, which present data

on tunnel face stability. These papers are listed in Table 1.

The data originate from 1g Model Tests (1gMT), Cen-

trifuge Model Tests (CMT), Numerical Analysis (NA) and

Monitoring Data (MD).

In data science parlance, independent and dependent

variables are called ‘‘features’’ and ‘‘labels’’, respectively.

In this dataset, the features are the dry unit weight cd, the
cohesion c, the friction angle u, the soil cover C and the

diameter D. The label is the effective support pressure r0T .
Obviously, if the soil is dry, rW ¼ 0 and r0T ¼ rT . Data are
not always in the wished form. Therefore, feature engi-

neering (the practice of adapting the variables based on

domain knowledge) is performed as follows. The values of

the features and labels are taken at the tunnel axis, except

for the data of Zhang et al. [68]. In Zhang et al. [68], two

layers of soil are present at the tunnel face. Therefore, the

Fig. 3 Monte Carlo simulation

Fig. 4 Workflow of the proposed SC techniques
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weighted average values are taken for the features. In most

sources listed in Table 1, the dry soil unit weight cd is given
directly. In some others [28, 68], the soil is saturated and cd
is back-calculated with Eq. 6.

csat ¼ cd þ n � cw ð6Þ

The porosity is obtained with Eq. 7.

n ¼ 1� cd
cs

ð7Þ

where cs ¼ qs � g is the soil particle unit weight and qs is

the soil particle density which is assumed equal to 2.65 kg/

mÂ3 for sand and silt. In Kirsch [30], the density index Id
and the minimum and maximum void ratios emin, emax are

given. The void ratio e is calculated with Eq. 8.

e ¼ emax � Id � ðemax � eminÞ ð8Þ

In this case, the dry unit weight cd is obtained with Eq. 9

which is derived from Eq. 7.

cd ¼
cs

1þ e
ð9Þ

The same procedure is followed to obtain the dry density

from the data of Lüe et al. [37] and Zhang et al. [69]. One

reference [57] is neglected in further calculations, given the

impossibility of obtaining the soil dry unit weight. The

support pressure is sometimes given as a ratio. The nor-

malised support pressure is defined with Eq. 10a in Ahmed

and Iskander [2] and with Eq. 10b in Kirsch [30] and Liu

et al. [35].

r̂T ;1 ¼
rT

cd � ðC þ D
2
Þ ð10aÞ

r̂T ;2 ¼
rT

cd � D
ð10bÞ

The support pressure ratio [61, 69] is given in Eq. 11.

r̂T ;3 ¼
rT

K0 � cd � ðC þ D
2
Þ ð11Þ

where K0 and cd are the coefficient of earth pressure at rest

and the dry unit weight, respectively (Tables 2, 3). The

effective support pressure ratio [28] is given in Eq. 12.

r̂0T ;3 ¼
r0T

K0 � c0 � ðC þ D
2
Þ ð12Þ

The descriptive statistics of the dataset are shown in

Table 4; 1829 data points are retrieved from the dataset.

Table 4 shows the mean value, standard deviation, mini-

mum and maximum values, and percentile of the features

and the label.

Their frequency distributions are shown along the

diagonal of the pairplot in Fig. 5. The non-diagonal ele-

ments of Fig. 5 depict the correlation between the

variables.

In quantitative terms, correlation can be efficiently

resumed by the correlation matrix in Fig. 6. As expected,

the support pressure correlates negatively with the cohe-

sion and friction angle. It correlates positively with soil

cover and tunnel diameter. Therefore, it appears that the

soil cover, diameter and cohesion have the major impact on

the results. Also, the cohesion and friction angle in the

dataset correlate negatively with each other.

Table 1 Dataset references

Reference Test typea Soil typeb

Ahmed and Iskander [2] 1gMT Sac

Alagha [3] NA N/A

Chambon and Corté [10] CMT Sa

Chen et al. [13] NA Sa

Chen et al. [12] 1gMT Sa

Eshragi and Zare [18] MD Cl, Gr, Sa

Idinger et al. [24] CMT Sa

Kim and Tonon [28] NA Cl, Sa

Kirsch [30] 1gMT Sa

Li et al. [34] Na N/Ad

Liu et al. [35] 1gMT Sa

Lüe et al. [38] 1gMT Sa

Lüe et al. [37] 1gMT Sae

Lüe et al. [39] CMTf Sa

Soranzo et al. [54] CMT sa Si

Ukritchon et al. [57] NA Cl

Wang [59] NA Sa

Wang et al.[60] NA N/A

Zhang et al. [68] MDg Sa

Zhang et al. [61] NA Cl, Sa

Zhang et al. [69] NA Cl

a1gMT = 1 g Model Tests, CMT = Centrifuge Model Tests, MD =

Monitoring Data, NA = Numerical Analysis

bFor NA, the soil type is implicit in the soil parameters. For the

purpose of this table, the soil type is reported as stated in the corre-

sponding reference, unless no soil type is explicitly given, for which

this feature is not applicable (‘‘N/A’’)
cThe authors use a transparent soil with ‘‘similar stress-strain char-

acteristics to sand.’’ [2]

dThe authors do not state what type of soil they simulate. However,

they consider a purely cohesionless soil
eThe authors use rice grains to simulate Toyura sand [37]

fIn this paper, centrifuge test results are back-analysed with numerical

analysis. Only the centrifuge test data points are retained in this

dataset
gIn this paper, monitoring results are back-analysed with numerical

analysis. Only the monitoring data points are retained in this dataset
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Table 2 Hyperparameters tuning

Regressor Hyperparameters Subset Tuning procedurea

Individual SC techniques

DTR max depth 1–10 Grid search

max features 1–5

KNR n neighbours 0–50 Grid search

SVR C 0–1000 Particle Swarm optimisation

c 0.001–1

Ensemble learning

RFR max depth 1–10 Grid search

max features 1–5

n estimators 1–10

VR w1 0–3 Particle Swarm optimisation

w2 0–3

w3 0–3

with w1 þ w2 þ w3 ¼ 3

XGB max depth 1–10 Grid search

max features 1–5

n estimators 100–1000

aLOR, LIR and ANN are parametric techniques. Therefore, no hyperparameter tuning is performed

Table 3 Parameters of the Monte Carlo simulations

Dry soil Cohesion Friction angle Soil cover Diameter

Unit weight

cd c u C D

(kN/m3) (kPa) ð�Þ (m) (m)

Deterministic/random variable Deterministic Random Random Deterministic Deterministic

Mean value 20 5 30 10 10

Standard deviation – 1 3 – –

COV (%) – 20 10 – –

Table 4 Descriptive statistics of the dataset

Dry soil unit weight Cohesion Friction angle Soil cover Diameter Effective support pressure

cd c u C D r0T
(kN/m3) (kPa) ð�Þ (m) (m) (kPa)

No. of values 1829 1829 1829 1829 1829 1829

Mean value 13.323 36.513 28.768 20.248 8.830 21.491

Standard deviation 0.893 33.082 6.508 14.467 3.525 28.488

Minimum value 7.000 0.000 8.770 0.038 0.025 0.000

25% percentile 13.160 5.000 25.000 10.000 5.000 0.000

50% percentile 13.160 30.000 30.000 14.000 7.000 10.878

75% percentile 13.160 60.000 35.000 28.000 10.000 32.633

Maximum value 21.300 100.000 45.000 56.000 15.430 168.805
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3.2 Workflow

The workflow depicted in Fig. 4 is carried out with the

general-purpose programming language Python. First, the

columns of the dataset are assigned to either the features X

or to the label y. Then, the dataset is split into the training

and the test sets, as explained in Sect. 3.2.1. The data scaler

is fitted on the training data only, but both the training and

the test sets are scaled (Sect. 3.2.2). The hyperparameters

are optimised (‘‘tuned’’) by maximising the mean cross-

validated R2 (Sect. 3.2.3) calculated on fivefold of the

training data, as explained in Sect. 3.2.4. Once the model is

trained, predictions are made for both the training and the

test set. Finally, feature importance is calculated, as shown

in Sect. 3.2.5. The same random state is selected for all

models to compare the results.

Fig. 5 Pairplot of the features and the label. Histograms of the statistical distribution and dot plots of the correlation between the variables

Fig. 6 Correlation matrix
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3.2.1 Train–test split

70% of the data (1280 data points) is used to train the

models; 30% of the data (549 data points) is used to

evaluate the model (testing). The 70%-30% split is a

common choice among data scientists. The splitting task is

performed by the function Train Test Split from the Sci-

kit-learn library [51].

3.2.2 Scaling

Scale differences across features jeopardise model perfor-

mance. Large feature values determine large weight values,

leading to numerical instability, poor learning performance

during training and sensitivity to feature values. Not all

models are equally affected by the scale difference. Models

that use a weighted sum of input variables (LIR, LOR and

ANN) or distance between predictors (KNR and SVR) are

affected; DTR, RFR and XGB are unaffected. In this study,

data are scaled using the StandardScaler preprocessing

transformer from the Scikit-learn library, according to

X0 ¼ X � l
r

ð13Þ

where l and r are the mean value and the standard devi-

ation of the feature X.

3.2.3 Hyperparameter tuning

SC techniques can be parametric or nonparametric. Tech-

niques that select a form for the predictor are parametric.

These techniques learn the function coefficients from the

training data. LOR and LIR belong to this class. Other

techniques, such as the DTR, KNR, RFR, SVR and XGB,

do not assume the form of the function and are called

‘‘nonparametric’’. ANN are parametric in nature, but, given

their adaptive training procedure, they operate as non-

parametric. The term ‘‘nonparametric’’ does not imply that

models are without parameters. In fact, their architecture is

defined by so-called ‘‘hyperparameters’’ whose values are

selected with the procedure called ‘‘hyperparameter tun-

ing’’. This procedure aims at minimising an objective

function. In this study, the objective function is 1� R2,

where R2 is the mean value of the coefficient of determi-

nation of the cross-validated folds, as explained in

Sect. 3.2.4. Depending on the SC technique chosen, two

tuning strategies are used, namely Grid Search (Sect. 3.2.3)

and Particle Swarm Optimisation (Sect. 3.2.3). The tuning

procedures for each SC technique are listed in Table 2.

Grid Search is used when the hyperparameters have dis-

crete values (DTR, RFR, KNR and XGB), Particle Swarm

Optimisation for continuous values (SVR and VR). Since

both find the global minima, the consistency of algorithms

comparison is ensured.

Grid Search Grid Search fits the model with all the

possible combinations of the given subset of hyperparam-

eters. By fitting every combination one by one, this pro-

cedure is computationally expensive. However, it is

effective for discrete values of the hyperparameters.

Particle Swarm OptimisationCommon optimisation

algorithms such as Gradient Descent perform best for

convex functions in a low-dimensional space. Since these

conditions are seldom verified, Particle Swarm Optimisa-

tion (PSO) is often adopted in SC. PSO is based on the

social behaviour exhibited by birds or fish when striving to

reach a destination. In optimisation terms, the destination is

the global minimum. In practice, random particles are

generated, which search the minimum of the objective

function (i.e. the function to be minimised) in their vicinity.

At the end of each iteration, the particles communicate the

value of the objective function and their locations to the

swarm. Then, the particles move towards the best indi-

vidual position and the procedure is repeated until the

termination criterion is met. In this study, PSO is used to

optimise the hyperparameters of the SVR and VR which

are continuous variables. The Python library pyswarms

[47] is used. 1000 and 100 particles are chosen for the SVR

and VR, respectively. As explained in Sect. 3.4.2, VR is

built on three regressors. Since these regressors are already

optimised, a lower quantity of particles than for SVR is

sufficient for the tuning procedure.

3.2.4 Cross-validation

In order to train SC algorithms with the maximum amount

of available data, validation sets are often neglected in data

science. In this study, no validation set is present, but just

the training and the test set. Instead, cross-validation is

performed on the training set. In cross-validation, the

training set is split into several subsets of the same size,

which are called folds. In this study, fivefold cross-vali-

dation is chosen. For a given set of hyperparameters, the

model is trained on four folds and tested on the remaining

one. At each iteration, the mean cross-validated score R2 is

computed.

3.2.5 Feature importance

Feature importance calculates the contribution rate of each

feature to the results. Different methods yield different

feature importances. However, their values are generally

comparable. In Python, DTR, RFR and XGB have their

built-in feature importance algorithms which are based on

Gini importance, i.e. the probability of misclassifying a

Acta Geotechnica (2022) 17:1219–1238 1227

123



data point if it were randomly labelled. For the remaining

models, permutation importance is used which randomly

shuffles each feature and computes the corresponding

variation in the performance of the model.

3.2.6 Performance metrics

Four performance metrics are calculated for classification,

namely Precision, Recall, F1-Score and Accuracy. They are

defined according to Eqs. 14, 15, 16, 17.

Precision ¼ Tp
Tp þ Fp

ð14Þ

Recall ¼ Tp
Tp þ Fn

ð15Þ

F1-Score ¼
2ðPrecision � RecallÞ
Precisionþ Recall

ð16Þ

Accuracy ¼ Tp þ Tn
n

ð17Þ

Tp is the number of true positives (the number of correctly

classified positive labels), Tn is the number of true nega-

tives, Fp is the number of false positives, Fn is the number

of false negatives and n is the number of data points.

Three performance metrics are calculated for regression,

namely the coefficient of determination (R2), the Root

Mean Squared Error (RMSE) and the Mean Absolute Error

(MAE). They are computed as shown in Eqs. 18, 20, 20.

R2 ¼ 1�
Pn

i¼1ðyi � ŷiÞ2
Pn

i¼1ðyi � �yÞ2
ð18Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i¼1

ðyi � ŷiÞ2

n

s

ð19Þ

MAE ¼
Pn

i¼1 yi � ŷij j
n

ð20Þ

where yi and ŷi are the observed and predicted labels,

respectively, and �y is the mean observed label.

3.3 Classifier

At first, tunnel face stability is framed as a classification

problem. As mentioned before, this problem corresponds to

that of NATM tunnelling: the objective is to determine

whether the tunnel face is stable. If the support pressure is

equal to or lower than zero, the tunnel face is stable. For

the classification, the values of the support pressure in the

dataset greater than zero are changed to 1. In doing so, the

support pressure becomes a binary value equal to:

• 0 when no support is required (the tunnel face is stable)

• 1 when a support is required (the tunnel face is

unstable)

If the tunnel face is unstable, some type of support must be

provided.

Classification is performed with Logistic Regression. In

this study, LOR models the probability of failure which

ranges between 0 (stability) and 1 (failure). For any given

value of the features, a prediction can be made according to

Eq. 21.

log
pðXÞ

1� pðXÞ

� �

¼ b0 þ
X

n

i¼1

biXi ð21Þ

The model is fitted with the method of maximum likeli-

hood, i.e. estimates for the model parameters bi are sear-

ched such that the predicted probability pðXiÞ of failure for
each data point corresponds as closely as possible to the

observed status.

3.4 Regressors

Regression is used to predict the support pressure. Eight

methods, four individual SC techniques (Sect. 3.4.1) and

four ensemble methods (3.4.2) are considered.

3.4.1 Individual SC techniques

Linear Regression The objective of LIR is to find a

hyperplane that models the data points the best according

to Eq. 22.

ŷ ¼ b0 þ
X

n

i¼1

biXi ð22Þ

The coefficients in Eq. 22 are found by minimising the

error between the predicted and observed values.

Decision Tree Regression Decision Tree Regression

segments the features domain. In each segment, predictions

are made based on their mean value. The name Decision

Tree comes from the set of splitting rules used to segment

the features domain which resembles a tree. In DTR, there

are three types of nodes: root, interior and leaf nodes. The

root node is the initial node (the entire dataset), the interior

nodes represent the features, and the leaf nodes represent

the label. The branches represent the decision rules. In this

study, two hyperparameters are tuned, namely max depth

(the maximum depth of the tree) and max features (the

number of features to consider when looking for the best

split). DTR is a straightforward method. However, it typ-

ically underperforms most methods.

K-Nearest Regression The objective of KNR is to find a

certain number k of data points close to another point and

to predict its label based on its neighbours. The number of

nearest neighbours k is a hyperparameter. The nearest
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neighbours are defined based on their distance from the

new point. In this study, the Euclidean distance is consid-

ered, as defined in Eq. 23.

DðX;XjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i¼1
ðXi � XjÞ2

q

ð23Þ

Xj is the new point and Xi are the neighbours. Despite its

simplicity, KNR is a moderately accurate method.

Support Vector Regression SVR is a supervised learning

method that is effective in high dimensional spaces. It uses

a subset of training points (‘‘support vectors’’) in the

decision function (‘‘kernel function’’). The underlying idea

of SVR is to retain the error within a given margin (‘‘e-
tube’’).

In this study, the hyperparameter e is set equal to 0.1 and
the tolerance is equal to 10�3. The Radial Basis Function

kernel (RBF) is considered. The penalty parameter C and

the kernel coefficient c are the hyperparameters to be

optimised.

Artificial Neural Network The underlying idea behind

ANN is to artificially mimic biological intelligence [52].

Within the ANN framework, a function f(X) of the data X is

approximated by a neural network. Neurons represent the

input features X and the output label y. The features and the

labels are indirectly connected by one or more hidden

layers. The function f(X) is expressed as in Eq. 24.

ŷ ¼ f ðXÞ ¼
X

n

i¼1

xi � wi þ bi ð24Þ

where wi are the weights and bi the bias terms. In a single

neuron, the function f(x) can be constrained by using an

activation function. Let z ¼ x � wþ b, the REctified Linear

Unit (RELU) activation function is used in this study

according to Eq. 25.

a ¼ f ðzÞ ¼ maxð0; zÞ ð25Þ

The weights and biases of the network are updated by

minimising the cost function of Eq. 26. This process is

called backpropagation.

Cf ¼
1

2n

X

x

kyðxÞ � aLðxÞk2 ð26Þ

L represents the model layers. The cost function is min-

imised using Adam, a method for stochastic optimisation

[29] with the step size (‘‘learning rate’’) of 0.001. In this

study, the input and the output layers consist of five and

one neuron, respectively. The optimal model architecture

(number of hidden layers and their neurons) are found by

trial and error in order to maximise the performance on the

test data and minimise the model complexity. The number

of epochs (the process of passing the entire dataset forward

and backward through the ANN) and the batch size (the

chunk of data fed to the ANN at each substep) are selected

in the same way.

3.4.2 Ensemble techniques

Ensemble techniques combine predictions from multiple

models to improve performance. In this study, three classes

of ensembles are considered: averaging, bagging and

boosting. In averaging, predictions from different models

are averaged. A weighted average can also be considered.

VR is an example of averaging (Sect. 3.4.2).

Bagging combines the predictions of multiple models.

These models are trained on subsets of the dataset (with

replacement). This segmentation of the training dataset is

called bootstrapping. A base model (weak model) is cre-

ated on each of these subsets. The models run in parallel

and are independent of each other. The final predictions are

determined by averaging the predictions of the models.

With boosting, a sequence of models is considered, in

which each model corrects the predictions of the previous

one. This ensemble technique works as follows. First, a

subset of the training data is considered and equal weights

are assigned to the data points. Then, a base model is

created on this subset, which is used to make predictions on

the whole dataset. The error is calculated using the actual

values and predicted values, and the observations with

higher errors are given higher weights. At this point,

another model is created which tries to correct the errors

from the previous one. In doing so, several models are

created, the final model (‘‘strong learner’’) being the

weighted mean of all the models (‘‘weak learners’’).

RFR (Sect. 3.4.2) and XGB (Sect. 3.4.2) are examples

of bagging and boosting, respectively.

Random Forest Regressor RFR is a bagging method that

applies several decision trees to the training data. Every

decision tree is trained with a different data subset. In

doing so, the prediction of every tree is different. The final

output is the average prediction.

In this study, the maximum depth of the three

(max depth), the number of features to consider when

looking for the best split (max features) and the number of

trees in the forest (n estimators) are optimised with Grid

Search.

Voting RegressorVR can combine different algorithms

by averaging their predictions. This ensemble enhances the

strength and downsizes the weakness of the individual

components. Hereto, we combine DTR, KNR and SVR.

The average prediction can be the ordinary arithmetic mean

of the predictions or their weighted mean. In this study, the

second approach is considered and the weights are opti-

mised via PSO.

Extreme Gradient BoostingXGB was formulated by

Friedman [19]. Within the boosting framework, decision
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trees are added one at a time to the XGB ensemble and fit

to correct the prediction errors made by the prior models by

optimising the loss function with a gradient descent algo-

rithm (hence the name ‘‘gradient boosting’’). Given its

computational efficiency and high performance, XGB

enjoys a well-established reputation, especially for struc-

tured datasets.

In this study, the learning rate of the XGB algorithm is

set to 0.01. The least squared error is chosen as the loss

function. The maximum depth of the three (max depth),

the number of features to consider when looking for the

best split (max features) and the number of trees in the

forest (n estimators) are optimised with Grid Search.

3.5 Description of the Monte Carlo simulations

In order to show that the SC techniques can be efficiently

employed to infer the failure probability, an example

application is described in this section. In fact, by coupling

the SC techniques and MC simulations, the failure proba-

bility is calculated with a number of data points up to 106.

Applications relying on the combination of numerical

analysis and MC simulations with comparable sample size

would be computationally unfeasible. Instead, the proposed

method calculates the failure probability within few min-

utes even for the largest sample sizes. For this reason,

crude MC simulations are carried out instead of more

advanced methods such as Latin hypercube sampling or

importance sampling.

MC simulations are carried out for a tunnel with

parameters according to Table 3. In Table 3, the shear

parameters are random variables with given mean value

and standard deviation. Their coefficients of variation

COVc ¼ rc=lc and COVu ¼ ru=lu are commonly used

values [44]. Both correlated and uncorrelated shear

parameters are considered. The coefficient of correlation is

considered as qcu ¼ �0:5. The covariance matrix is cal-

culated with Eq. 27.

K ¼
r2c �qcu � rc � ru
qcu � rc � ru�r2u

" #

ð27Þ

Both normally and log-normally distributed samples are

considered with variable sample size up to 106. The sup-

port pressure is predicted by using the SC technique with

the best performance on the test dataset. It is shown in

Sect. 4 that the best SC technique is ANN. Based on the

mean values of the shear parameters, ANN predicts the

support pressure of 32 kPa. The support pressure in the MC

simulation is set to an arbitrary higher value of 36 kPa and

the corresponding failure probability fPf is computed. The

failure probability is estimated as follows:

1. The support pressure is calculated for every data point

in the sample

2. If the calculated support pressure of the data points is

higher or equal to 36 kPa, the points are labelled as

stable

3. If the calculated support pressure of the data points is

lower than 36 kPa, the points are labelled as unstable

The failure probability is calculated as the number of

unstable data points divided by the total number of points

(Eq. 5). This value varies with the assumed distribution

(normal/log-normal) and correlation among the features.

Also, in order to achieve a stable failure probability, the

sample size must be adequate. Therefore, a sensitivity

analysis is performed by varying the sample size from 1 to

106.

4 Results

In the following sections, the results are presented for Soft

Computing (Sect. 4.1), Feature Importance (Sect. 4.2) and

for the MC simulations (Sect. 4.3).

4.1 Soft computing techniques

In this section, the results for various SC techniques are

graphically depicted (Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15).

The diagrams are shown in terms of predicted versus

measured support pressure. The bisector indicates a perfect

match between data and prediction. The closest the points

are to the bisector, the better the predictions. The predic-

tions are shown both for the training and for the test data

for each SC technique. The coefficient of determination is

shown on each graph.

The optimal architecture for ANN is shown in Fig. 14. It

consists of two hidden layers, one with three and one with

four neurons. The chosen number of epochs is 500 and the

batch size is 16.

All performance metrics are resumed in Tables 5 and 6

for classification and regression, respectively. The indi-

vidual techniques are sorted based on their performance on

the test data. LOR performs perfectly for the classification

problem for all metrics considered. For this reason, no

other technique is assessed for the classification. For

regression, the best performance is achieved with ANN, the

worst with LIR.

The optimised (hyper)parameters are listed in Table 7.

4.2 Feature importance

Feature importance is shown in Fig. 16 for various indi-

vidual techniques. In accordance with the exploratory data
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analysis (Sect. 3.1), soil cover, cohesion and diameter have

the major impact on the results. For soil cover and diam-

eter, there are some differences in feature importance

among the individual techniques. For instance, the depth of

the soil cover and tunnel diameter are more important for

LIR and DTR, respectively, than for the other techniques.

(a) (b)

Fig. 7 Linear regressor

(a) (b)

Fig. 8 Decision tree regressor

(a) (b)

Fig. 9 Support vector regressor
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(a) (b)

Fig. 10 Random forest regressor

(a) (b)

Fig. 11 K-Nearest regressor

(a) (b)

Fig. 12 Voting regressor
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In general, however, the feature importance is generally

consistent among different techniques.

4.3 Results of the Monte Carlo simulations

Figures 17 and 18 show the results of the MC simulations

performed with 104 data points for the correlated and

uncorrelated samples. The stable and unstable points are

shown in green and red, respectively. The Limit State Line

is implicitly obtained as the ideal boundary separating the

stable and unstable points. The probability of failure is

calculated based on the number of unstable points divided

by the total. An accurate estimation of the failure proba-

bility calculation requires that the sample be large enough.

Therefore, the sensitivity analysis of Fig. 19 is carried out.

(a) (b)

Fig. 13 Extreme gradient boosting regressor

Fig. 14 Chosen architecture for the artificial neural network

(a) (b)

Fig. 15 Artificial neural network, results

Table 5 Overview of the results for classification

Classifier Training dataset Test dataset

Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy

LOR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Performance metrics
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The four cases of Figs. 17 and 18 with sample size ranging

from 1 to 106 are considered. The probability of failure

converges to a stable solution with sample sizes of 2� 104

and 5� 103 for the normally and log-normally distributed

samples, respectively. With a sample size of 106, the

probabilities of failure for the normally distributed sample

are 0.69% and 0.82% for the correlated and uncorrelated

cases, respectively. For the log-normally distributed sam-

ples, these values drop to 0.26% and 0.34%, respectively.

5 Discussion

Abundant data for the assessment of face stability of tun-

nels are available in the literature. Most features vary in a

range close to the one encountered in nature, although the

dry soil unit weight is concentrated around its mean value

(Table 4). This is due to the fact that the numerical study of

[28] keeps the value of this feature constant while varying

the others. However, based on the calculated feature

importances (Sect. 4.2), the dry soil unit weight is the least

significant feature (Fig. 16). The effective support pressure

shows a smooth probability distribution in the typical range

applied to tunnels excavated in soil (Fig. 5). The dataset

shows a negative correlation between the cohesion and

friction angle of qcu ¼ �0:21 (Fig. 6), which complies

with the values found in the literature [27]. The positive

and negative correlations—shown by the soil cover and

tunnel diameter on the one hand, and by dry soil unit

weight, cohesion and friction angle on the other hand—

with the effective support pressure are also supported by

previous findings [7, 58].

Classification, performed with simple Logistic Regres-

sion, delivers statistically impeccable results (Table 5).

Table 6 Overview of the results for regression

Regressor Training dataset Test dataset

R2 RMSE MAE R2 RMSE MAE

LIR 0.667 16.142 11.659 0.689 16.540 11.391

DTR 0.769 13.429 8.400 0.736 15.221 9.609

SVR 0.788 12.862 6.088 0.751 14.781 7.845

RFR 0.804 12.393 7.683 0.756 14.653 8.913

KNR 0.782 13.060 8.141 0.770 14.212 8.813

VR 0.801 12.542 7.427 0.777 13.915 8.380

XGB 0.808 12.243 7.730 0.792 13.528 8.342

ANN 0.797 12.608 7.695 0.795 13.425 8.027

Performance metrics

Table 7 Overview of the results

Classifier Best parameters

LOR b0 ¼ 1:589, b1 ¼ �2:271, b2 ¼ �1:164, b3 ¼ �1:881,
b4 ¼ �0:840, b5 ¼ �1:310

Regressor Best parameters

LIR b0 ¼ 21:110, b1 ¼ 0:0093, b2 ¼ �13:738, b3 ¼ �4:252,
b4 ¼ 18:002, b5 ¼ 2:572

Regressor Best hyperparameters

DTR max depth = 6, max features = 3

KNR n neighbours = 17

SVR C ¼ 293:349, c ¼ 0:567

RFR max depth = 5, max features = 4, n estimators = 9

VR w1 ¼ 0:658, w2 ¼ 1:629, w3 ¼ 0:713

XGB learning rate = 0.01, n estimators = 900, max depth =

3, max features = 1

Chosen parameters and hyperparameters of all the SC techniques

(a) (b)

Fig. 16 Feature importance
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Given its outstanding results, the authors need not apply

any more sophisticated method.

As for the regression, the model performance generally

increases alongside complexity: LIR and ANN show the

lowest and the highest performance, respectively (Table 6).

As expected, LIR underperforms the nonparametric meth-

ods. The ensemble methods (RFR, VR and XGB) outper-

form individual SC techniques, the exception being KNR

which outperforms RFR on the test dataset. Finally, the

ANN outperforms all the other methods. All in all, given

the limited number of features considered and the fact that

all the available data were retained, the achieved perfor-

mance in the order of magnitude of R2 = 0.80 is more than

satisfactory.

Monte Carlo simulations coupled with SC techniques

are a convenient way to obtain the LSL implicity, as shown

in Fig. 17 and 18. The failure probability depends on the

sample distribution adopted, the correlation between the

features and the sample size. The normally distributed

samples yield a higher failure probability than the log-

normally distributed ones. Also, the uncorrelated samples

(a) (b)

Fig. 17 Stable and unstable experimental points for a normally distributed sample

(a) (b)

Fig. 18 Stable and unstable experimental points for a log-normally distributed sample

Fig. 19 Failure probability versus sample size
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yield a higher failure probability than the negative corre-

lated ones. These results confirm the findings of [44]. The

sample size plays a pivotal role. As shown in Fig. 19 for

the normally distributed sample, the probability of failure

skyrockets from zero to a considerable value with the

sample size increasing from 1 to 20. Then, it decreases and

finally converges to a much lower value. For the log-nor-

mally distributed sample, this sudden increase occurs with

the sample size equal to 200 and is much less sharp.

Therefore, care must be taken in the choice of the sample

size for these simulations.

6 Conclusions

Traditional approaches to tunnel face stability include

analytical methods, numerical simulations and physical

modelling. Based on the results from this body of knowl-

edge, this study takes a different route, i.e. a soft computing

approach. The prerequisite of this approach is data abun-

dance: 658 peer-reviewed publications were found in the

literature at the time of this study. The authors narrowed

down this body of knowledge to 21 papers from which

1829 data points were retrieved. These studies are multi-

faceted, covering numerical analysis, physical modelling

(1 g and in the centrifuge) and monitoring data.

The problem of face stability is framed both as classi-

fication (is the tunnel face stable?) and regression (what

support pressure is needed?). The classification problem is

efficiently solved with the Logistic Regression. The

regression problem is more intricate. The nonparametric

regression techniques are found to outperform parametric

ones; ensemble learning outperforms the individual SC

techniques. The artificial neural network shows the best

performance with R2 ¼ 0:795 on the test data.

A viable and quick method to determine the probability

of failure is established with Monte Carlo simulations and

the effect of sample distribution, size and features corre-

lation is shown.

With this study, the authors are confident that the SC

techniques have demonstrated their applicability to the

tunnel face stability problem and to the calculation of the

probability of failure.
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15. Davis EH, Gunn MJ, Mair RJ, Seneviratne HN (1980) The sta-

bility of shallow tunnels and underground openings in cohesive
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Zürich, Switzerland

42. Mollon G, Dias D, Soubra A (2011) Probabilistic analysis of

pressurized tunnels against face stability using collocation-based

stochastic response surface method. J Geotech Geoenviron

137(4):385–397

43. Mollon G, Dias D, Soubra A (2011) Rotational failure mecha-

nisms for the face stability analysis of tunnels driven by a pres-

surized shield. Int J Numer Anal Met 35(12):1363–1388

44. Mollon G, Dias D, Soubra A (2009) Probabilistic analysis and

design of circular tunnels against face stability. Int J Geomech

9(6):237–249

45. Mahdevari S, Shahriar K, Yagiz S, Shirazi MA (2014) A support

vector regression model for predicting tunnel boring machine

penetration rates. Int J Rock Mech Min 72:214–229

46. Mahdevari S, Haghighat HS, Torabi SR (2013) A dynamically

approach based on SVM algorithm for prediction of tunnel con-

vergence during excavation. Tunn Undergr Sp Tech 38:59–68

47. Miranda LJV (2017) PySwarms: a research toolkit for Particle

Swarm Optimization in Python

48. Naghadehi MZ, Thewes M, Alimardani LA (2019) Face stability

analysis of mechanized shield tunneling: an objective systems

approach to the problem. Eng Geol 262:1–15

49. Pan Q, Dias D (2017) An efficient reliability method combining

adaptive support vector machine and Monte Carlo simulation.

Struct Saf 67:85–95

50. Pan Q, Dias D (2017) Probabilistic evaluation of tunnel face

stability in spatially random soils using sparse polynomial chaos

expansion with global sensitivity analysis. Acta Geotech

12:1415–1429

51. Pedregosa F, Gramfort Varoquaux GA, Michel V, Thirion B,

Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,

Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M,

Duchesnay E (2011) Scikit-learn: machine learning in python.

J Mach Learn Res 12(85):2825–2830

52. Rosenblatt F (1958) The perceptron: a probabilistic model for

information storage and organization in the brain. Psychol Rev

65(6):386–408

53. Soranzo E, Wu W (2013) Centrifuge test of face stability of

shallow tunnels in unsaturated soil. In: Proceedings of the 5th biot
conference on poromechanics, Vienna, Austria

54. Soranzo E, Tamagnini R, Wu W (2015) Face stability of shallow

tunnels in partially saturated soil: centrifuge testing and numer-
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