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Abstract
Macroscopic frictional behavior of granular materials is of great importance for studying several complex problems

associated with fault slip and landslides. The main objective of this study is to model the macroscale frictional behavior of

granular soils under monotonic and cyclic loadings based upon micromechanical determination of dissipated energy at

particle contacts. This study is built on the general observation that the externally computed energy dissipation should be

equal to the total internal energy dissipation derived from inter-particle sliding and rolling, energy losses from inter-particle

collisions, and damping. For this purpose, the discrete element method is used to model a granular soil and determine the

stored, dissipated, and damping energies associated with shear loading for applied monotonic and cyclic velocities. These

energies are then related to the friction by an application of the Taylor-critical state power balance relationship. Also, the

contributions of the different modes of energy dissipation (normal, shear, and rolling) to the total frictional resistance were

studied. By changing the inter-particle friction, the simulations showed that the macroscopic friction was nearly constant,

the slip friction increased almost linearly with increasing inter-particle friction, and the difference between the two was

attributed to the non-energy dissipating dilatancy component. By providing a clear relationship between energy dissipated

by micro-scale mechanisms versus the traditional engineering definition based on macro-scale (continuum) parameters, this

study provides a means to develop a better understanding for the frictional behavior of granular media.
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1 Introduction

The frictional behavior of granular systems is critical to

engineering behavior for many rock and soil mechanics

applications. In particular, frictional behavior is a key

mechanism in understanding the initiation of fault motions

leading to earthquakes where energy is released quickly

from shearing motion in localized zones. The mechanical

properties of rocks in gouge zones play a crucial role in the

source mechanisms of earthquakes, in particular the fric-

tional properties of the fault gouge [4]. Such problems

involve not only the mechanical role of friction, but also

the thermo-mechanical coupling associated with rapid

shearing in localized zones. A number of laboratory

experiments have been conducted to observe macro-scale

friction for earthquakes (e.g., [1, 13, 14, 23, 24, 32]).

Similar problems emerge in understanding the role of

friction in relative motion between soils and construction

materials [8, 29, 42, 55, 57, 67, 70] and in landslides [6].

For granular materials, the macroscale frictional behavior

is of great importance and is shown to relate to microscale

energy dissipation [2, 19, 22, 30, 36, 45, 46, 53, 58, 61, 66].
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Observations thus far stress the complexity and diversity of

friction phenomena in rock and soil mechanics [4].

The majority of constitutive models for granular mate-

rials, such as Mohr–Coulomb and rate-and-state frictional

models, are based on the macroscopic frictional charac-

teristics of granular materials [15]. The relationship

between the macroscopic frictional behavior and the inter-

particle friction has been investigated extensively through

experiments [49] and numerically using the discrete ele-

ment method (DEM) (e.g., [27, 50, 54]). A general finding

emerging from these studies is a seeming lack of corre-

spondence between the measured macroscale frictional

behavior and the inter-particle friction. The main challenge

in such studies is the difficulty in relating microscale

parameters such as contact friction and damping to the

measured macroscale parameters. For example, DEM

simulations of the direct shear tests show that the macro-

scale friction of spheres depend on inter-particle friction

for values of less than 0.35. However, for interparticle

friction values greater than 0.35, the macro-scale response

is not sensitive to inter-particle friction [9, 54]. Similarly,

several studies (e.g., [33, 34, 44]) showed that the macro-

scopic frictional behavior depends on the shape of parti-

cles. In addition to the Coulomb friction shearing granular

zones dilate, thus causing resistance to shear through a

transfer of stress to the direction normal to shearing

motion. The distinction between the two resistance mech-

anisms becomes important when considering heat genera-

tion within the zone because whereas heat is generated by

frictional energy dissipation, the resistance derived from

dilatancy is through an energy transfer between shear and

normal deformation modes that does not contribute to

energy dissipation. To fully understand important energy

mechanisms, therefore, special attention must be paid to

particle-scale mechanics.

For continuum constitutive models, such as rate-and-

state friction models, macroscopic frictional behavior is a

key parameter. For example, for fault slip modeling, the

macroscopic friction coefficient was shown to greatly

depend on the rate of fault slip. In certain cases, the

magnitude of the friction coefficient could greatly increase

(velocity-strengthening) or decrease (velocity-weakening),

depending on the slip rate [43]. Rate and state friction

models have been used in the area of frictional weakening

of slip interfaces [63]. Comparisons between microphysical

models and rate and state models have been studied

[7, 11, 20]. The DEM has the potential for a microphysical

interpretation of rate-and-state friction as described by van

den Ende et al. [12], who investigated effects on the tran-

sient and steady state macroscopic frictional behavior of a

system. The DEM has also been used to study energy

dissipation in soil samples and other granular materials

(e.g., [17, 62, 68, 69]). Additionally, in recent works, the

DEM has been coupled with fluid solvers to model the

micromechanics involved in piping erosion [51], seepage

induced erosion [16], and hydraulic fracturing of rocks

[28, 56]. Alternatively, the DEM was used to understand

the effects of details such as the effect of size and shape of

the grains on the macroscopic frictional behavior [33] and

the effect of inter-particle friction on the macroscopic

frictional behavior [27]. Additionally, Morgan [35] used a

particle dynamics method to investigate the sliding friction,

slip friction, and inter-particle friction for shear slip.

This study focused on DEM simulations using spherical

unbonded particles. However, the general approach

described here can be extended to different settings

including non-spherical particles, bonded particles, contact

degradation, and particle breakage. These mechanisms can

change the frictional behavior of the particle contacts [26].

As a group, methods involving localized slip in earthquake

and landslide mechanics are characterized by very large

strains, in contrast to the majority of engineering applica-

tions for granular media occurring at small strains, espe-

cially for motion in fault gouges (e.g., [35]), landslides

(e.g., [66]) and shear-thickening fluid (e.g., [5]). The strain

can be as great as 150% for the commonly used two-di-

mensional (2D) idealizations (e.g. [35]).

The main objective of this study is to predict the mac-

roscale frictional behavior of granular soils under static and

cyclic loading based upon micromechanical determination

of dissipated energy at particle contacts. The study is built

on the general observation that the externally computed

energy dissipation should be equal to the total internal

energy dissipation derived from inter-particle sliding and

rolling, energy losses from inter-particle collisions, and

damping. For this purpose, we use the DEM to model a

granular soil and determine the stored, dissipated, and

damping energies associated with shear loading for static

and cyclic loading conditions. The relationship between the

internal energy dissipation and macro-scale friction is

determined through a simple interpretation of the critical

state power relationship [47, 52, 65]. One unique aspect of

the study is use of a detailed accounting of the energy

balance at the particle scale, thus providing context to the

relationship between measured internal dissipation rate and

the friction inferred from boundary measurements. The

ability to measure energy dissipation based on local mea-

surements is important in future thermodynamic analysis of

heat flow within shearing granular masses. Given the

independent determination of macroscale friction caused

by particle-scale forces, the effect of dilation is described

by observing the differences in the macroscale friction and

the slip friction that is measured based on stresses mea-

sured at the boundaries. Also, the contributions of the

different modes of energy dissipation (normal, shear, and

rolling) are studied. The following sections briefly discuss
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the DEM, the energy method being used, the numerical

model boundary conditions and initial parameters. Fol-

lowing the numerical model, the results are presented and

then discussed.

2 Theory and formulation

2.1 Frictional components and energy
dissipation in granular media

Monitoring the amount of energy in a system improves the

understanding of how the particles at the microscale

interact and affect the behavior at the macroscale. The

macroscopic friction generated by particle interaction is

proportionate to the amount of energy the system dissipates

with respect to the applied stresses. The slip friction of the

system is defined by the ratio of the shear stress and normal

stress at the loading boundary. Since the outer boundaries

of the system are allowed to move, the system can either

dilate or compress, which leads to a dilative component of

friction. Figure 1 provides a visual description of the

variables used in the energy calculations.

For simple shear loading, the slip friction of the system

can be defined in terms of the stresses at the limit state as:

ls ¼
s
rn

ð1Þ

where ls is the slip friction, s is the shear stress, and rn is
the normal stress, both stresses acting on the top boundary

of the specimen. The total work rate (power) input to the

layer is given unambiguously as the product of the surface

velocities and forces:

_Ws ¼ Fsvs þ Fnvn ð2Þ

where _Ws is the total power to the system, Fs is the shear

force, vs is the shear velocity, Fn is the normal force, and vn
is the normal velocity. The power can be expressed as a

specific power, or power per volume of specimen, as:

_Wv ¼
1

hAs

Fsvs þ Fnvnð Þ ¼ s _cþ rn _�n ð3Þ

where _Wv is the total power per volume of the system, h is

the thickness, As is the cross-sectional area, _c is the average
shear strain rate, and _�n is the average normal strain rate.

The specific power can be related to the internal energy

dissipated though a computation of the total energy balance

in the layer of discrete elements taking into account the

kinetic energy of the particles and the energy stored and

dissipated at particle contacts. In that case, _Wv is a mea-

sured quantity. The internal dissipation rate can also be

expressed as a phenomenological law, as in the case of the

Taylor [52] energy law used in the Critical State Soil

Mechanics theory [47, 52, 65]:

_Wv ¼ lern _c ð4Þ

where le is the frictional component of macroscopic

dissipated energy. By combining Eqs. (3) and (4) and

rearranging terms, the stress-dilatancy equation is obtained:

_�n
_c
¼ le �

s
rn

ð5Þ

Equation (5) states that the rate of dilation/contraction is

the difference of the stress ratio, s/rn, and the macroscopic

friction, le. The characteristic stress ratio, le, can also be

obtained from the internal energy rate in light of Eq. (4):

le ¼
1

rn

dWv

dc
ð6Þ

The friction resistance observed externally is given by ls-
= s/rn, and the dilation/contraction friction can be

expressed by ld ¼ _�n= _c. These terms can be applied to the

stress-dilatancy equation (Eq. 4) to obtain:

le ¼ ld þ ls ð7Þ

where ld is the dilative component of friction. Note, that

with the compression-positive sign convention used in this

work, ld is negative when the granular layer is dilating.

Equation (7) implies when the rate of volume change is

zero, such as at the critical state, le = ls. Use of Eq. (4) is
a foundational idea of Critical State Soil Mechanics. In this

work, application of Eq. (6) is based on computing dWv/dc
internally as the summation of contribution of all particle

contacts.

Fig. 1 Domain showing applied boundary conditions where rn is the
normal stress applied, s is the shear stress applied, vs is the velocity in

the horizontal direction, and vn is the velocity in the vertical direction.

The cross-sectional area in Eq. (3) is defined as, As = L 9 b. Note the
in-depth (z-direction) has a plane strain boundary condition applied,

and the shear direction has a periodic boundary condition
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2.2 Energy calculations in DEM

The DEM [10] is a numerical method used for simulating

interacting bodies by integrating the equations of motion

for each body. Contact laws define forces and moments

created by relative motions of the particles describe the

interactions between particles. These forces are based on

the relative displacement of the bodies (particles) at the

point of their contact. The particles are assumed to be rigid.

The DEM is designed to simulate granular media in large

assemblages, ranging from a few thousand particles to

millions of particles. To simplify the contact detection in

the DEM, the particles are considered to be spherical in the

current study. Spherical particles are used as a computa-

tional expedient; non-spherical particles can be modeled,

although at the expense of added memory usage to describe

particle geometry and added computational time for con-

tact detection. By using the rolling resistance parameter,

the spherical particles can better approximate the behavior

of non-spherical particles and more realistically simulate

the microstructure of shear bands [21]. Peters et al. [39]

provide a general philosophy of using spherical particles

with rolling resistance for prototype-scale simulations.

DEM models are shown to provide robust tools for

micromechanical and prototype-scale simulations of com-

plex phenomenon in granular media (e.g., [39]). Among

others, DEM modeling has been used for energy dissipa-

tion calculations for granular soils such as dissipated

energy of the system for cyclic loading cases [48]. More

recently, the DEM has been used to study fracture growth

[59]. To expand these previous DEM energy works, this

study calculates each specific mode of energy dissipation

(normal, shear, rolling, and damping) to determine the

macroscopic friction. After determining these energies, the

macroscopic friction of the system is determined by using

Eq. (6), whereWv is determined by the dissipated energy of

the system.

The particle acceleration is computed from the sum-

mation of contact forces acting on each particle combined

with external forces. The motion of each particle that

results from the net forces and moments is obtained by

integrating Newton’s laws. The evolution of particle

velocity, mi and rotational rate xi are given by:

m
ovi
ot

¼ mgngi þ
XNc

c¼1

f ci ð8Þ

and

Imq
oxi

ot
¼

XNc

c¼1

eijkf
c
j r

c
k þ

XNc

c¼1

Mc
i ð9Þ

where m and Im are the particle mass and moment of inertia

respectively, gngi is the acceleration of gravity, f ci and Mc
i

are the forces and moments applied at the contacts, q is the

particle density, r is the particle radius, eijk is the permu-

tation tensor, and Nc is the number of contacts for the

particle.

Particle forces are accumulated from pairwise interac-

tions between particles. Two particles with radii RA and RB

make contact when the distance, d, separating the particles

satisfies

d\RA þ RB ð10Þ

The contact forces and moments arise from relative

motion between contacting particles. The motion of each

individual particle is described by the velocity of the par-

ticle center and the rotation about the center. The branch

vector between sphere centers, xAi � xBi is also the differ-

ence between the respective radii vectors that link the

particle centers to the contact rAi � rBi . With this nomen-

clature, the relative motion at contact c between particles A

and B is given by:

Dc
i ¼ uAi � uBi þ eijk rAj h

A
k � rBj h

B
k

� �
ð11Þ

where Dc
i is the displacement of the contact, u is the dis-

placement of each particle, r is the radius of the particle,

and h is the angular displacement, and the repeated indices

indicate summation. The contact moments are generated by

the difference in rotations, Dxc
i , between the particles A

and B,

Dxc
i ¼ xA

i � xB
i ð12Þ

where x is the angular velocity of the particle. The contact

forces and moments for cohesionless materials are given by

the contact laws in terms of their normal and shear com-

ponents, fn, and f si and the moment term Mc
i ,

f n ¼ KnDn

ErK
n Do � Dnð Þ; Dn\Do

�
ð13Þ

f si ¼ KsDs
i

f n tan/nsi ; f si
�� ��� f n tan/

�
ð14Þ

Mc
i ¼

KrDxc
i

f n tan/mn
m
i ; mc

i

�� ��� f n tan/m

�
ð15Þ

where Kn, Ks, and Kr are stiffness constants, where the unit

of Kr is N-m; Er is a factor to control energy dissipation

through stiffening the unload response [60]; Dn and Ds
i are

the normal and shear components of the contact displace-

ment; nsi and nmi are the unit vectors in the direction of the

shear force and moment; Do is the greatest value of pene-

tration in the history of Dn; and / and /m are friction

angles. The inter-particle friction (lp) and rolling friction

(lr) parameters are directly determined from / and /m,

respectively. At the microscale, the static and dynamic

frictions are not distinguished in the application of the
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friction coefficient. The sliding and rotational modes

amount to an elastic–plastic law that dissipates energy

through Coulomb friction. In all three modes, there can be

force–displacement states that lie on the unload-reload

portions of the response. These are not easily damped by

hysteretic mechanisms without adding complexity and

additional internal variables. For this unload–reload state

damping is invoked that eliminates high-frequency vibra-

tions, but without introducing significant rate-dependence.

For Eq. (14), the condition f si � 0 is invoked. Interested

readers are referred to Johnson et al. [25] for further details

about the DEM formulations used in this study.

It is well known that forces are transmitted through

meso-scale structures referred to as force chains. Peters

et al. [40] provide an objective statistical technique for

identifying particles participating in force chains. In this

work force chains will be subjectively identified through

looking at patterns of particle stress. The particle stress

tensor and the average continuum stress in the solid frac-

tion are defined as [31, 37, 38]:

rpij ¼
1

Vp

XNc

c¼1

rci f
c
j ð16Þ

rij ¼
1

V

XNp

p¼1

Vpr
p
ij ¼

Vs

V
rpij ð17Þ

where V is the total volume, Vp is the volume of each

particle, Vs is the total particle volume, Nc is the number of

contacts, Np is the number of particles, f ci is the ith com-

ponent of the force acting at the contact, and rcj is the jth

component of the radius vector from the center of the

particle to the contact. The particle stresses can be used to

identify the particles transmitting higher than average loads

through force chains. A visual inspection of particles

groups having high principal stresses is a simple way to

subjectively identify force chains.

We calculate different types of energy including the

kinetic, stored, dissipated, and damping energies. The

stored and kinetic energies represent the current energy

state of the particles; whereas, the dissipated and damping

values represent a rate of energy leaving the system

through contact interactions. For each simulation, an

energy balance was conducted to verify that the output

energy and input energy were equal at all times. For this,

the output energy is a summation of the kinetic, dissipated,

and damping energy, and the input energy is determined

based on the applied strain rate to the boundary of the

shearing layer. It should be noted that in these simulations,

the stored energy component was much smaller than the

other components and considered negligible. In addition,

the dissipated and damping energies have components of

normal, shear, and rolling.

Figure 2 shows an example of the force–displacement

curves for individual contacts. The hysteretic components

of dissipated energy are determined by finding the area of

the shaded region under the curves, as expressed in

Eqs. (18–24). Considering the normal contact, the stored

normal energy is determined by the area in Fig. 2a, the

dissipated normal energy is determined by the area in

Fig. 2b, and the damped normal energy is determined

similar to the dissipated energy. For the normal contact

shown in Fig. 2a, the contact response is essentially that of

an elastic–plastic mechanism in which the inelastic strains

occur during the loading increase, making the unloading

an elastic response. Accordingly, the stored energy is that

retrieved when unloading is given by the area of the tri-

angle made by the unload curve. This reasoning is illus-

trated clearly for the shear and rotational response shown in

Fig. 2c, where, again, the stored energy represents the

energy that would be recovered upon unloading. Therefore,

the normal and shear components of the stored energy can

be given by:

En
Stored ¼

1

2
d2t Kt ¼

1

2
dtfn ð18Þ

Es
Stored ¼

1

2
d2sKs ¼

1

2
dsfs ð19Þ

where fn is the normal force, fs is the shear force, dt is the
unload/reload displacement, ds is the shear displacement,

Kt is the unload/reload spring stiffness (Kt ¼ ErK
nÞ, and Ks

is the shear spring stiffness.

The dissipated energy is a measure of how much energy

has been lost, which is only known in an incremental sense.

The dissipated energy for the shear and rotational mecha-

nisms is the rectangular area under the force–displacement

curve, as shown in Fig. 2d, for the case where the entire

step is in the limit range. For the case where the load step

includes both elastic and limit states, as in Fig. 2e, the step

is broken into the elastic and limits increments.

For the normal load increment shown in Fig. 2b, the

dissipated energy is thus given by:

En
Diss ¼

1

2
f 2n � f 1n
� �

d2n � d1n
� �

þ f 1n d2n � d1n
� �

; d2n [ d1n

ð20Þ

where f 2n is the updated normal force, f 1n is the previous

normal force, d2n is the updated normal displacement, and

d1n is the previous normal displacement. The dissipated

energy due to the normal mode can also be called the

collisional mode.

The dissipated energy for the shear mode is determined

differently for when the shear force (fs) is beyond the

limiting friction force (Fig. 2d) or below that force

(Fig. 2e) and expressed as:
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Es
Diss ¼

flimit d
2
s � d1s

� �
; d1s [ des

1

2
flimit � f 1s
� �

des � d1s
� �

þ f 1s des � d1s
� �

; d1s\des

8
<

:

ð21Þ

where flimit is the limiting friction force, d2s is the updated

shear displacement, d1s is the previous shear displacement,

and des is the elastic limit of the displacement. The second

part of Eq. (21) is for unloading of the contact. The energy

dissipated for the rolling mode is determined similarly by:

Er
diss ¼ Mr

chs ð22Þ

where Mr
c is the contact moment due to rolling, as shown in

Eq. (15), and hs is the rotation of the particle.

The intent of damping for most DEM simulations is to

reach a nearly static state. In this study, the contact laws

accomplish this by including both hysteretic and viscous

damping components. The viscous damping force is only

applied during the unload-reload portion of the response in

lieu of adding a complex hysteretic damping model. The

dissipated energy due to damping for the normal and shear

modes are calculated by:

En
damp ¼

1

2
d2n � d1n
� �

f ndamp ð23Þ

Es
damp ¼

1

2
d2s � d1s
� �

f sdamp ð24Þ

where f ndamp is the normal component of the damping force

and f sdamp is the shear component of the damping force. The

damping forces, f ndamp and f sdamp, are functions of a prede-

fined damping factor and the rate of displacement for the

contact.

3 Numerical model

For the numerical model, a confined system of particles

was simulated under a shear loading condition. The initial

configuration, shown in Fig. 1, includes 17,500 particles of

various sizes consolidated by a vertical confining pressure

of 700 kPa. The system is sheared by applying a pre-de-

termined velocity to the top layer of particles for up to 25%

shear strain. The system was created by consolidating 2500

particles with 200 lm radius, 5000 particles with 150 lm
radius, and 10,000 particles with 100 lm radius. Table 1

shows the contact parameters used in the DEM simulations.

The applied velocity conditions are illustrated in Fig. 1.

After compression, the top-most group of particles is

Fig. 2 Force–displacement curves for various types of particle contacts. a Stored normal energy. b Dissipated normal energy. c Stored shear and

rotational energy. d Dissipated shear energy exceeding elastic limit. e Dissipated shear energy less than elastic limit

Table 1 DEM parameters used in simulations

Property Units Base value

Normal stiffness (KN) N/m 12,000

Shear stiffness (KS) N/m 2400

Rolling stiffness (KR) N/m 1.0E-2

Torsional stiffness (Kmt) N/m 1.0E-2

Energy dissipation factor (ER) – 2.0

Inter-particle friction (lp)
a – 0.4

Rolling friction (lr)
a – 0.4

Initial height (H) mm 10

Initial length (L) mm 10

Initial width (w) mm 3.5

aThe inter-particle friction and rolling friction are varied with ranges

from 0 to 0.8
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rigidly displaced with a defined velocity to create the shear

deformation. Similarly, the bottom-most particles are

constrained to have zero horizontal velocity. Periodic

boundary conditions are used in the horizontal direction.

Both the top and bottom boundaries can move vertically to

permit volume change. In addition to monotonic loading,

cyclic loading simulations were conducted in which the

system was strained to ± 20% strain for up to 1000 cycles.

4 Results and discussion

To study the internal consistency of the model, first the slip

friction was determined for the base values shown in

Table 1. The consistency of the energy calculations was

verified by plotting the energy input along with the energy

output. After this step, a parametric study was completed

on the rolling resistance friction (lr) and the inter-particle

friction (lp). Following this, a rate dependence study was

completed to see if the system exhibited a velocity

strengthening or weakening behavior. To better visualize

the causes of the frictional behavior, each mode of energy

was analyzed for varying inter-particle friction and applied

strain rate. The study was concluded by looking at the

effects of cyclically loading the system.

To demonstrate that energy balance is achieved by

Eqs. (18–24), the total energy input to the system and the

total energy output from the system were compared as seen

in Fig. 3. The input energy was calculated by determining

the forces and displacements of the top layer of particles

that had a prescribed boundary condition, and the total

output energy was a summation of the dissipated energy,

which is the sum of hysteretic and viscous damping energy.

Note that the stored energy component was negligible in

these experiments, so the stored energy is not shown in

Fig. 3. A similar procedure to determine input energy was

used by Vora and Morgan [59]. As seen, the total energy

input to the system is equal to the total energy out of the

system. This step was important to verify that the energy

calculations were implemented correctly, and additionally

shows that the DEM model is accurately determining the

specified energies. After verifying the dissipated energy,

the macroscopic friction was determined using Eq. (6).

Figure 4 shows the slip friction for an inter-particle

sliding friction value of 0.4 and demonstrates the oscilla-

tory nature of the slip interactions. The applied strain of

25% was sufficient for the slip friction of the system to

reach a steady state. While the results are not presented

here, a set of 2D and 3D simulations were performed up to

150% strain, which supported our reasoning for choosing

25% shear strain as the strain level where steady state is

reached. Although, significant fluctuations may still occur

once the peak stress has been reached. In Fig. 4, the slip

friction shows a steady behavior after about 5% strain,

where it begins to oscillate as for a stick–slip behavior. The

oscillations are attributed to the formation and breakdown

of force chains within the shear zone. The strain is com-

puted based on the entire specimen length; however, the

shearing occurs in a small zone roughly 10–12 particles in

length.

The total macroscopic friction, le, was calculated using

Eq. (6) and is shown in Fig. 5. As can be seen, the mean

friction value is around 0.54, which is reasonable when

compared to values for sands under simple shear tests [65],

where the data showed a constant value of 0.575. Inter-

estingly, the value for friction using this macroscopic

approach is much lower than the slip friction. This can be

explained by calculating the dilative friction component.

To further investigate this, multiple simulations were

completed for different rolling resistance frictions and

inter-particle frictions. The first DEM parameter to be

studied was the rolling resistance friction (lr). The results

for this study are shown in Fig. 6. The study for lr was
completed for two different values of inter-particle friction,

0.2 and 0.4.

Fig. 3 Comparison of the total input energy and the total output

energy of the system of particles to show conservation of energy Fig. 4 Time evolution of slip friction with applied strain
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As can be seen in Fig. 6, the value of slip friction (ls)
quickly saturates to a steady value from lr = 0.1 to lr-
= 0.8. At zero rolling friction, the value of slip friction

drops considerably. The effect of rolling friction can be

seen by the fact that the slip friction increases going from a

value of lr = 0.0 to lr = 0.1. The contribution of the

rolling friction is somewhat substantial depending on lp.
For example, with lp = 0.4 and lr = 0.0, the slip friction is

nearly half of the value for ls at lr[ 0.1. However,

increasing lr any more than 0.1 does not affect the fric-

tional behavior.

Next, the inter-particle friction parameter was investi-

gated for both slip friction (ls) and macroscopic friction

(le). By changing the value of inter-particle friction (lp),
the slip friction of the system, determined by Eq. (1), can

be varied dramatically, as seen in Fig. 7, which shows the

strong dependence of the sliding friction of the system on

the friction between individual particles.

Interestingly, le remains nearly constant across the array

of inter-particle friction values. Binaree et al. [3] found that

the effective macroscopic friction saturates as the local

(inter-particle) friction is increased. Additionally, Huang

et al. [18] found that the sliding mode is affected drastically

at lower values of lp, but the effect diminishes at higher

levels of lp. Figure 7 shows that the macroscopic frictional

behavior is not affected very much by changing the inter-

particle friction. A possible explanation for this behavior is

that once the inter-particle friction is high enough to form

stable force chains, increasing it any further does not

increase the stability of the chain, therefore does not

increase the friction. The trends for the mean slip friction,

macroscopic friction, and dilative friction are similar to

those behaviors by Kruyt and Rothenbrug [27], for the peak

shear strength, the steady-state shear strength, and the

dilatancy rate. Also, at zero inter-particle friction, ls is a

non-zero value around 0.05 for the 3D case, even though

there is no sliding resistance. Therefore, the remaining

resistance comes from the normal forces, via the contact

moments. Another example of this interpretation is from

the particle collision interactions noted by Peyneua and

Roux [41], where frictionless bead packs showed macro-

scopic friction due to collisional interactions. It is noted

that energy is dissipated by collisional contacts even when

the particles are frictionless.

As shown in Eq. (7), the difference between ls and le is
the dilative friction, as shown in Fig. 7 by summing ls and
ld. As shown for lp = 0.0, the system showed very little

compression or dilation; therefore, ls is approximately

equal to le. Figure 7 implies that increasing the inter-par-

ticle friction causes an increase in the dilation of the sys-

tem. The dilative component of friction is non-dissipative;

it increases the resistance to shear by performing work

against the normal stress rather than dissipation at particle

contacts. In traditional soil mechanics terminology, the

friction must be corrected for dilation [64]. This becomes

of great importance if the interest is computing heat loss

because the dilative component of resistance does not

generate heat. Using the DEM eliminates the need to

separate out the apparent friction (that includes dilation)

Fig. 5 Coefficient of friction by energy dissipation versus strain. The

coefficient of friction le was calculated using Eq. (6)

Fig. 6 Slip friction (ls) as a function of rolling resistance friction (lr)
for two values of inter-particle friction (lp)

Fig. 7 Mean slip friction (ls), macroscopic friction (le), and the

dilative friction (ld) as a function of the inter-particle friction (lp)
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from the true friction when working at the particle-scale

behavior.

Figure 8 shows the effects of strain rate on friction. By

changing the applied velocity of the selected region of

particles at the top of the domain, the strain rate of the

system can be varied. For lower values of inter-particle

friction (lp), the mean slip friction shows little to no

change with increasing strain rate. In fact, it shows a slight

velocity-weakening behavior. However, as the inter-parti-

cle friction is increased, a velocity-strengthening behavior

can be observed, and with further increase in inter-particle

friction, the increase in mean slip friction with increasing

strain rate is even more drastic. This type of behavior is

similar to that of the frictional behavior in fault slip, where

at very high rates of fault slip, the friction coefficient was

shown to increase [43].

The weakening and strengthening of the system, shown

in Fig. 8, can be explained because at lower inter-particle

friction values, the particles cannot hold the force chains.

The weakening and strengthening of the system, shown in

Fig. 8, can be explained by the role of force chains. At

lower inter-particle friction values, the particles cannot

hold the force chains because the normal forces must make

angles with the contact normals less than the particle

friction angle to be stable. That is, the force resultants must

lie within the so-called friction cone. Contacts are

stable only if the contact force is nearly aligned with the

contact normal. However, when the friction is increased,

the friction cones expand making it easier to create

stable contacts, thus allowing more force chains to form.

Once a large portion of the contacts are stable, increasing

the friction does not proportionately increase the number of

stable contacts. The increased force chain formation con-

tributes to the large increase in friction as the rate is

increased, shown in Fig. 8. Despite the microscale friction

coefficients being independent of rate, Fig. 8 shows that

the model captures the rate effect on the macroscale fric-

tional behavior.

Figure 9 visualizes the formation and break down of

force chains by showing the progression of maximum

principal stress for each particle at various strains. As seen

in Fig. 9, strain localization is observed in a small subset of

particles near the top boundary. However, the strain

localization does not invalidate the key contribution of this

study, which is establishing a link between the dissipated

energy measured at the microscale and that observed at the

macroscale. The principles employed in this study for

calculating different components of energy dissipation are

valid in the presence of complex strain patterns including

localization.

Each mode of dissipated energy (shear, rolling, and

normal) was then analyzed by normalizing the value by the

total dissipated energy. Three different values of inter-

particle friction were studied as shown in Fig. 10. As

shown, for the lowest value of inter-particle friction,

Fig. 10a, the dissipated energy is dominated by the normal

collisional energy, as expected, and then as the inter-par-

ticle friction is increased the shear and normal components

seem to settle out to average values around 0.4 and 0.6,

respectively, with very little rotational components.

Although the contribution of the rotational resistance to the

energy dissipation is small, the rotational resistance plays a

large role in stabilizing the force chains.

The different modes of dissipated energy were analyzed

for varying applied shear rates (Fig. 11). Interestingly, as

the applied strain rate was increased, the amount of dissi-

pated energy for the shear mode decreased and the normal

mode conversely increased. The average value for shear

dissipation decreased from 0.45 to 0.25, where the normal

dissipation increased from 0.55 to 0.7. The rolling com-

ponent seemed to vary. These results suggest the normal

(collisional) mode is responsible for the drastic increase in

macroscopic friction behavior seen in Fig. 8. It should be

noted that the normal mode would provide resistance even

if the shear component is small, similar to how frictionless

particles can resist the shear as seen in Figs. 6–7. The

results presented in Fig. 11 were obtained for the given set

of parameters. The contribution of each component of

energy dissipated may change based on particle shape,

particle stiffness, particle contact law, and the rate of

loading, among others. For instance, energy dissipation by

normal contacts is probably greatest in spheres whereas

non-spherical particles may exhibit a different behavior.

Whereas the application is demonstrated for one set of

loading conditions and particle properties, the presented

methodology can be used for different particle attributes.

Cyclical simulations were completed where the system

was strained to values of ± 20% strain for N number of

cycles. Figure 12 shows the resulting coefficient of friction

Fig. 8 Mean slip friction as a function of the velocity in the horizontal

direction (vs) for varying inter-particle friction (lp) values of 0.1, 0.4,
and 0.8
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versus the number of steps for an inter-particle friction

value of 0.6. For the cyclical simulations, the coefficient of

friction averages to 0.24, where the normally loaded sys-

tem was 0.25 for the same properties. The breaking and

reforming of the force chains is evident in the oscillatory

nature of the plot. For example, as the particles reach ?

20% strain, the loading is then reversed resulting in the

breaking of load resisting force chains that were formed.

Then, the particles begin to form new force chains that

resist the new motion.

In this study, the Taylor model [52] was used because it

is both simple and has historical context. Based on the

Fig. 9 Maximum principal stress for each particle at a 0% strain, b 5% strain, c 15% strain, and d 20% strain. Note that the stress shown is in

kPa, and this is for a slice of the 3D domain

Fig. 10 Different modes of dissipated energy normalized by the total dissipated energy for a lp = 0.3, b lp = 0.6, and c lp = 0.8
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results of this study, the Taylor method is also consistent

with the micro-scale model presented, which is likewise

simple and lacks provision for particle shapes, contact

degradation, and particle breakage.

5 Conclusion

Energy dissipated in a granular layer subjected to mono-

tonic and cyclic simple shear loading was investigated

based on DEM simulations. The simulations results were

interpreted in the context of traditional Critical State Soil

Mechanics but using internally measured energies. Inde-

pendent computation of internal energy dissipation using

the DEM inter-particle contact laws is a unique contribu-

tion that allows the internal consistency of the model to be

investigated. In is also the first step in a thermal analysis of

the granular layer during shear. In addition, the individual

contribution of dissipation mechanism to the total energy

budget could be assessed. The simulation results showed

that the macroscopic friction, determined from internal

energy dissipation, was essentially constant throughout

loading and differed from the slip friction by an amount

equal to the non-energy dissipating dilatancy component.

Thus, the use of internally computed energies obviates the

need to remove the dilatancy component of resistance. The

results also showed that although a small amounts of inter-

particle rolling and sliding friction resistances are needed

in the DEM model, there are threshold values beyond

which increasing neither the rolling resistance parameter

nor the inter-particle sliding friction affected the macro-

scopic friction. These observations suggest that forces are

applied through contiguous chains of particles, favoring

energy dissipation through the collisional mode of particle

interaction. A study on applied strain rate showed that the

macroscopic friction increased for higher values of applied

velocity. The framework presented in this study can be

extended to include non-spherical grains and more

Fig. 11 Different modes of dissipated energy normalized by the total dissipated energy for a vs = 0.1 lm/s, b vs = 5 lm/s, and c vs = 10 lm/s

Fig. 12 Coefficient of friction versus number of cycles for lp = 0.6

for 200 cycles
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complex contact laws, including contact bonding, degra-

dation of contacts and particle breakage. Further, the pro-

posed model can be coupled to multiphysics solvers in

future studies to describe the frictional behavior of granular

media subject to processes including heat transfer, fluid

flow, and chemical interactions.
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68(5):421–433

18. Huang X, Hanley KJ, O’Sullivan C, Kwok CY (2014) Exploring

the influence of interparticle friction on critical state behaviour

using DEM. Int J Numer Anal Meth Geomech 38(12):1276–1297

19. Hungr O (1995) A model for the runout analysis of rapid flow

slides, debris flows, and avalanches. Can Geotech J

32(4):610–623

20. Ikari MJ, Carpenter BM, Marone C (2016) A microphysical

interpretation of rate-and state-dependent friction for fault gouge.

Geochem Geophys Geosyst 17(5):1660–1677

21. Iwashita K, Oda M (1998) Rolling resistance at contacts in

simulation of shear band development by DEM. J Eng Mech

124(3):285–292

22. Jiang S, Shen L, Guillard F, Einav I (2020) The effect of cement

material properties on the fracture patterns developing within

cement-covered brittle sphere under impact. Acta Geotech

16:1–11

23. Johnson PA, Jia X (2005) Nonlinear dynamics, granular media

and dynamic earthquake triggering. Nature 437(7060):871

24. Johnson PA, Savage H, Knuth M, Gomberg J, Marone C (2008)

Effects of acoustic waves on stick–slip in granular media and

implications for earthquakes. Nature 451(7174):57

25. Johnson DH, Vahedifard F, Jelinek B, Peters JF (2017)

Micromechanical modeling of discontinuous shear thickening in

granular media-fluid suspension. J Rheol 61(2):265–277

26. Kasyap SS, Senetakis K, Coop MR, Zhao J (2020) Microme-

chanical behaviour in shearing of reproduced flat LBS grains with

strong and weak artificial bonds. Acta Geotech 16:1–22

27. Kruyt NP, Rothenburg L (2006) Shear strength, dilatancy, energy

and dissipation in quasi-static deformation of granular materials.

J Stat Mech Theory Exp 2006(07):P07021

28. Kwok CY, Duan K, Pierce M (2020) Modeling hydraulic frac-

turing in jointed shale formation with the use of fully coupled

discrete element method. Acta Geotech 15(1):245–264

29. Liu J, Lv P, Cui Y, Liu J (2014) Experimental study on direct

shear behavior of frozen soil–concrete interface. Cold Reg Sci

Technol 104:1–6

30. Lucas A, Mangeney A, Ampuero JP (2014) Frictional velocity-

weakening in landslides on Earth and on other planetary bodies.

Nat Commun 5:3417

31. Luding S (1997) Stress distribution in static two-dimensional

granular model media in the absence of friction. Phys Rev E

55(4):4720

32. Marone C, Raleigh CB, Scholz CH (1990) Frictional behavior

and constitutive modeling of simulated fault gouge. J Geophys

Res Solid Earth 95(B5):7007–7025

33. Matsushima T (2005) Effect of irregular grain shape on quasi-

static shear behavior of granular assembly. Powders Grains

P&G05 2:1319–1323

34. Mirghasemi AA, Rothenburg L, Matyas EL (2002) Influence of

particle shape on engineering properties of assemblies of two-

dimensional polygon-shaped particles. Geotechnique

52(3):209–217

35. Morgan JK (2004) Particle dynamics simulations of rate-and

state-dependent frictional sliding of granular fault gouge. In:

3038 Acta Geotechnica (2021) 16:3027–3039

123



Computational earthquake science part I. Birkhäuser, Basel,
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