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Abstract
Displacement softening has shown to be an effective ingredient to overcome common deficiencies associated with DEM

modeling based on bonded spherical particles (Ma and Huang in Int J Rock Mech Min Sci 104:9–19, 2018b). By

incorporating a softening path in the normal force–displacement contact law, we show that the softening contact model can

not only yield a realistic compressive over tensile strength ratio as high as about 30, but also capture the highly nonlinear

failure envelope at the confined extension stress range, typical for quasi-brittle materials such as rocks and concretes. In our

previous model, bond breakage at the particle scale is governed by the normal bond strength only. Here, we generalize the

model by removing the restriction on the shear bond failure. Formulation of the displacement-softening model is first

introduced. Novel features from modeling the behaviors of Berea sandstone without considering shear bond failure are

summarized. How material behaviors at both the micro- and macroscale are affected by the inclusion of shear bond failure

is then analyzed. Finally, implications of the numerical results in the context of how to calibrate material properties for

DEM modeling in general is discussed.
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List of symbols
b Reciprocal of the softening coefficient v
v Softening coefficient

v� Critical value of v
gsc Percentage of shear micro-cracks at 80% of the

post-peak loading level in the uniaxial com-

pression test

gst Percentage of shear micro-cracks at 80% of the

post-peak loading level in the direct tension test

gs Percentage of shear micro-cracks at the peak

stress level

j Normal over shear stiffness ratio of the point

contact

l Coulomb’s friction coefficient

x ratio between the limiting confining stress

where the tension cutoff ends and the uniaxial

tensile strength

d� Normal bond stretch when the bond breaks (m)

dc, d2 Critical stretch (m)

dn Normal bond stretch (m)

j Area contact (bond) stiffness ratio

rc Normal bond strength

sc Shear bond strength

h relative angle of rotation between the particles

Ec Area contact (bond) modulus (GPa)

Fnmax Maximum normal bond force (N)

Fn Normal bond force (N)

Fs Shear bond force (N)

k‘ Normal bond stiffness of the elastic loading

path (N/m)

ku Normal bond stiffness of the softening path (N/

m)

M
n Twisting moment (N m)

R Bond radius (m)

Ub Nominal energy loss density associated with

one bond breakage (MPa)

r1 Maximum principal stress (MPa)
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r3 Minimum principal stress (MPa)

rc, UCS Uniaxial compressive strength (MPa)

rt, UTS Uniaxial tensile strength (MPa)

- Shear over normal bond strength ratio

A Cross-sectional area of the bond (m2)

D Diameter of the cylindrical assembly (mm)

Ec Point contact modulus (GPa)

H Height of the cylindrical assembly (mm)

J Polar moment of inertia (m4)

N Total number of micro-cracks at the peak stress

1 Introduction

Failure in many engineering problems involves more than

one mechanism. For example, in landslide, shear slip may

occur after development of tensile cracks in the crest of a

slope [26]; in drilling or mechanical excavation, damage

induced right underneath the tool combined with rock

chipping and fragmentation contributes to the total volume

removal [6]; both breakout and drilling-induced fracturing

are possible scenarios associated with borehole instability

[7]. Discrete element method (DEM) [4] has a unique

advantage over continuum mechanics based numerical

methods in modeling this class of problems, where multiple

modes of failure may occur. In DEM, both brittle fracture

and plastic flow can be modeled simultaneously within the

same constitutive framework defined by the contact laws at

the microscale. In general, no continuum-scale constitutive

model is required as direct input for a DEM model. The

obvious drawback is that calibration of the material prop-

erties between the micro- and macroscale becomes a

prerequisite.

It is natural to ask which macroscale material properties

a DEM model need to be calibrated against before it can be

considered an adequate representation of a real material.

The answer is obviously problem specific. In the literature,

the calibration process for quasi-brittle materials such as

rocks and concretes is often limited to elastic constants and

the uniaxial compressive strength. This could be sufficient

if the material of interest is mostly linear elastic prior to

reaching the strength and the problem involves only com-

pressive shear failure. However, for the class of problems

involving both tensile fracture and plastic shear failure,

with the premise that macroscale failure mechanisms can

be reproduced by the DEM model, tensile strength or the

compressive over tensile strength ratio UCS/UTS, the full

failure envelope and the mode I fracture toughness become

the additional elements necessary for the DEM model to be

validated against.

UCS/UTS can be viewed as a measure of material

brittleness. If the material is in a confined extension stress

state, a low UCS/UTS means that the material is more

likely to fail in shear at the macroscale, while a high UCS/

UTS means that brittle tensile failure is more likely to

occur. For example, in the Brazilian tensile test, a low

UCS/UTS could result in plastic shear failure near the

loading platens with the development of the tensile center

crack being suppressed [5, 16]. Diametrical splitting

caused by tensile crack growth from the center of the

specimen occurs only if the UCS/UTS is relatively high.

The strength ratio therefore directly affects the macroscale

failure mechanisms and the transition between the ductile

and brittle failure modes if both are present in the problem

of interest.

For DEM with bonded spherical particles, UCS/UTS

� 4–5 is about the maximum that a dense bonded particle

assembly can attain if the interaction between the spherical

particles is limited to short-range, elasto-perfectly brittle

and frictional [11, 22]. Moreover, the corresponding failure

envelope in the confined extension region is rather linear.

In comparison, the strength ratio for rocks and concretes is

in the range of 10–30 [9, 10] and the failure envelope

generally exhibits highly nonlinear characteristics. This

issue of the low strength ratio has been one of the major

hurdles for effective DEM application in modeling rock

behaviors.

A few numerical strategies, e.g., clumping/clustering

particles, increasing the particle interaction range or using

multiscale representation of the grain structure and rock

fabric, have been suggested in the literature to address the

issue of the low strength ratio [3, 19–21, 25]. Nevertheless,

DEM modeling with spherical particles having only short-

range interactions has its appeal in its computational effi-

ciency. Our recent development of a displacement-soften-

ing contact model [17] shows that incorporating

displacement softening into the contact law is effective in

not only overcoming the issue of low strength ratio, but

also accurately capturing the high nonlinearity in the fail-

ure envelope of rocks in the confined extension range. Most

notably, the DEM model gives an excellent match with the

experimental data [1] for the full failure envelope of Berea

sandstone up to the confinement around r3 ’ 100MPa,

beyond which compaction failure is known to take place

[29]. However, in this DEM model, bond failure is gov-

erned exclusively by the normal bond strength. Failure due

to shear bond strength is not considered.

Basic elements in contact laws for bonded particles

models usually include elastic components characterized

by contact stiffnesses and inelastic components, which are

often described by normal and shear bond strengths,
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interparticle frictional coefficient, etc. (e.g., [22]). While it

is relatively straightforward to determine the contact

parameters for the elastic components with dimensional

analysis and rule of mixtures serving as the starting point

[13, 23], there is ambiguity in the choice of the parameters

for the inelastic components, for example, how to deter-

mine the ratio between the shear and normal bond

strengths. Experimental evidences suggest that even in tests

such as hydraulic fracturing in granite, where mode I brittle

failure is typically observed at the macroscale, source

mechanisms of acoustic emission (AE) events still indicate

there are small percentages of shear and mixed modes

events [8]. Though the AE source mechanisms, which

characterize the deformation modes of the microscale

failure events, do not equate to the bond failure mecha-

nisms dictated by the bond strengths in DEM modeling, it

is reasonable to ask how the shear bond failure affects the

micro- and macroscale material behaviors within the

framework of the displacement-softening contact model.

The present study is a continuation of our numerical

development in Ma and Huang [17] in search of contact

laws for bonded spherical particles to realistically model

rock behaviors. The work in Ma and Huang [17] is

extended here with the restriction on shear bond failure

removed. Effects of the shear bond failure on the strength

ratio UCS/UTS and the associated failure mechanisms are

examined for the linear softening contact model. The rea-

son we focus on UCS/UTS is because for a finely dis-

cretized particle assembly, the strengths can be made

mostly particle size independent and scale linearly with

respect to the bond strengths [15, 17]. Since fracture

toughness of a particle assembly can be considered a

function of the tensile strength and the particle size, once

the strengths of a DEM model are properly calibrated,

fracture toughness can be adjusted through the particle size.

For these reasons, UCS/UTS is the most critical aspect in

the material properties calibration process for DEM mod-

eling. In this work, we limit the scope to the case when the

normal bond component follows the linear softening law

and the shear bond component remains elasto-perfectly

brittle, however, with the shear bond strength being such

that both normal and shear bond failures are possible.

Consequently, the strength ratio UCS/UTS is now pri-

marily affected by both the shear over normal bond

strength ratio and the softening coefficient in the contact

model.

Formulation of the contact model is first introduced.

Numerical results from modeling Berea sandstone without

considering shear bond failure are summarized. Numerical

simulations are then conducted to investigate the effects of

the shear over normal bond strength ratio as well as the

softening coefficient on the uniaxial compressive and ten-

sile strengths and the corresponding micro- and macroscale

failure mechanisms. Finally, implications of the numerical

results in the context of how to choose contact parameters

for constructing a high-fidelity DEM model for materials

such as rocks are discussed.

2 Contact model formulation

The displacement-softening model is developed by modi-

fying the parallel bond model in the DEM code PFC 5

[14]. The original parallel bond model has two contact

components, a particle–particle point contact and an area

contact through the bond in between the particles. The

contact forces are superimposed from the two components.

Bending and twisting moments can be transmitted through

the area contact. The point contact is elastic and frictional,

while the area contact is elasto-perfectly brittle. The nor-

mal and shear stiffnesses for the contact components are

prescribed through the contact moduli and the stiffness

ratios. The input parameters for the point contact include,

point contact modulus Ec, the normal over shear stiffness

ratio j and Coulomb’s friction coefficient l. Similarly, the

elastic force–displacement relationships for the area con-

tact are described through the area contact modulus Ec and

the stiffness ratio j. Detailed formulation of the parallel

bond model can be found in Potyondy and Cundall [22].

In the displacement-softening contact model [17], a

linear softening path is incorporated in the force–dis-

placement law in the normal bond component, see Fig. 1.

Here, compression and stretch of the bond are taken as

positive. For a bond in stretch, onset of softening occurs if

the normal bond force reaches its maximum,

Fnmax ¼ �rcA, where rc is the normal bond strength and

A ¼ pR
2
is the cross-sectional area of the bond of radius R.

The softening path is defined by the softening coefficient v,

o

k�
1

ku
1

Fnmax

Fn

δ2δ1 δ∗ δn

A

B

E′

E

k�
1

Fig. 1 Force–displacement contact law for the normal bond
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a ratio between the normal stiffnesses along the elastic

loading and softening paths, v ¼ k‘=ku. The perfectly

brittle parallel bond model is recovered if v ¼ 0. If v is

large, it means that the normal bond contact is nearly

elasto-perfectly plastic.

The bond fails if one of the criteria below is met at the

contact,

dn þ R h
�
�
�
�� dc ð1Þ

Fs

�
�

�
�

A
þ

M
n�

�
�
�R

J
� sc ð2Þ

where Fs is the shear bond force; M
n�

�
�
� is the twisting

moment; J is the polar moment of inertia; dn is the normal

bond stretch; h is the relative angle of rotation between the

particles; sc is the shear bond strength; and dc is the critical
stretch defined according to,

dc � d2 ¼
rcA

k‘
1þ vð Þ ð3Þ

If we make an analogy between the bond and a beam cross

section, the failure criterion for the normal component,

Eq. 1, is essentially equivalent to state that a bond breaks

when the stretch at the outer edge of the bond reaches a

critical value. In other words, dn is the stretch on the

neutral plane of the bond; when the normal bond breaks,

dn ¼ d� ¼ dc � R h
�
�
�
�. Once a failure condition is reached,

both the normal and shear contact forces in the bond are

immediately reduced to zero and the contact is active only

through the point contact component. Bond breakage is

termed here a micro-crack event, tensile according to Eq. 1

and shear according to Eq. 2. The contact model formu-

lated above is implemented as a user-defined model in PFC

5.

When shear bond failure is not considered, the failure

mechanism is tension-governed. The uniaxial strengths are

affected by not only the normal bond strength rc, but also
the nominal energy loss density Ub associated with one

bond breakage,

Ub ¼ 1þ vð Þ r
2
c

Ec

ð4Þ

If rc remains constant, Ub increases with v. Consequently,
the uniaxial strength is expected to increase with v. How-
ever, as shown in our previous work [17], when v is smaller

than a threshold value, v.0:286 or 1=v > 3:5 for 2D

simulations with the parameter set in Ma and Huang [17],

the soften coefficient v has little effect on both UTS and

UCS and the strength ratio remains nearly constant,

UCS/UTS ’ 3:7, see Fig. 2. This could be explained by the

fact that when a bond softens, the unloading process is

controlled by the softer one between the bond and the local

domain outside of the bond. When v is small, softening at a

contact is basically dominated by the outside domain, not

the softening bond itself, which makes the unloading

behavior effectively the same as that of a perfectly brittle

model. Meanwhile, when vJ0:286, the strength ratio

increases with v. The trend from the 2D simulations can be

fit according to,

UCS/UTS ¼ �35:3626� 16:5274 ln b ð5Þ

where b is the reciprocal of the softening coefficient,

b ¼ 1=v. At b ¼ 0:015 (v ¼ 66:67), UCS/UTS ¼ 35:35 is

about the upper limit for most rocks.

Compared with the original parallel bond model, the

softening coefficient v is the only additional parameter

introduced in the contact model. It follows from dimen-

sional analysis that for a given particle assembly, after the

elastic properties are determined, the nature of bond failure

is controlled by rc, sc and v or in the dimensionless form,

- and v, where - ¼ sc=rc is the shear over normal bond

strength ratio. Our analysis next therefore focuses on the

effects of the bond strength ratio - and the softening

coefficient v on UCS/UTS and the failure behaviors of a

particle assembly through numerical simulations of

unconfined tests. We limit the range of v to 0:286\v 6

100 with the case of v ¼ 0 serving as a reference.

3 Modeling of Berea sandstone

We start first with a baseline case where the microscale

parameters yield macroscale properties similar to those of

Berea sandstone reported in the literature [1, 28, 30]. A

cylindrical sample of diameter D ¼ 40mm and height H ¼
80mm is employed for the compression and direct tension

tests. The particle assembly is randomly generated with

10−2 10−1 100 101 102 1030

5

10

15

20

25

30

35

β

σ c
/σ

t

2D
3D

Fig. 2 Variation of the strength ratio with the reciprocal of the

softening coefficient, b ¼ 1=v [17]
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particle radii following a uniform distribution, R = 0.8–1.66

mm, and density q ¼ 2630 kg=m3. The total number of

particles in the domain is about 13,000. The compression

test is modeled with the boundary conditions applied

through rigid wall elements, while direct tension is simu-

lated by applying the velocity to the layers of particles that

are gripped together at the top and bottom of the sample.

To eliminate the lateral confinement near the loading sur-

faces, frictionless ball–wall contact is applied to the com-

pression test and only axial movement of the gripped

particles is restrained in direct tension. The contact

parameters for the baseline case are listed in Table 1. Both

the shear and normal bond strengths follow Gaussian dis-

tributions. Here, the shear bond strength sc is set to be more

than 20 times the normal bond strength rc. At the micro-

scale, the bonds all break according to the normal failure

condition in Eq. 1.

We choose this set of contact parameters by first

determining the stiffnesses from the elastic constants. The

softening coefficient v is determined next based on UCS/

UTS of Berea sandstone with Eq. 5 and Fig. 2, though

mostly from 2D simulations, serving as our guide. Finally,

the mean normal bond strength rc is set based on the

proportionality between the strengths at the macro- and

microscale, i.e., UCS / rc.
The complete stress–strain curves from the uniaxial

compression and direct tension simulations are shown in

Fig. 3. Due to scarcity of the stress–strain curves for direct

tension in the literature, only the curve from uniaxial

compression is compared with the data from a laboratory

experiment [27]. The numerical result misses the nonlinear

portion at small strain, which can be attributed to closure of

the space between the specimen and the loading platen in

the experiment as well as closure of pre-existing micro-

cracks and flaws. Apart from that, the two stress–strain

curves for uniaxial compression are in reasonable agree-

ment. Young’s modulus and the peak stress are E ’
17:27GPa and rc ’ 87:16MPa from the simulation and E ’ 13:96GPa and rc ’ 65MPa from the experiment.

Overall, the mechanical properties between the numerical

simulations and experimental results [1, 27, 28, 30] are in

good agreement, see Table 2. Strength ratio of the

numerical model, rc=rt ¼ 12:63, is about the mean of the

range of 10–16 from laboratory experiments [1].

The corresponding failure mechanisms from the

numerical simulations are shown in Fig. 4. Though the

micro-cracks all result from bond failure in tension, coa-

lescence of micro-cracks yields macroscale failure patterns

which can be interpreted as shear localization in the

compression test and a very well defined mode I tensile

crack in direct tension. Here, a micro-crack corresponds to

a broken bond and is represented by a circle perpendicular

to its contact axis. In general, the macroscale failure

Table 1 Microscale contact parameters for the Berea sandstone

model

Parameter Value

Particle contact modulus Ec (GPa) 20

Particle stiffness ratio j ¼ kn=ks 4.0

Friction coefficient l 0.5

Bond modulus Ec (GPa) 20

Bond stiffness ratio j ¼ kn=ks 4.0

Shear bond strength sc (MPa) 320±32

Normal bond strength rc (MPa) 15±1.5

Softening coefficient v 6.67

(a)

(b)

Fig. 3 Stress–strain curves from the baseline simulations with

v ¼ 6:67; a uniaxial compression, experimental data digitized from

Tarokh and Fakhimi [27], b direct tension
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mechanisms from the numerical simulations are similar to

the observations from laboratory experiments [1].

Failure envelope obtained from the numerical triaxial

extension and compression tests in Ma and Huang [16] is

compared with those from the experiments on Berea

sandstone in Bobich [1]. As shown in Fig. 5, the full failure

envelope from the experiments is very well captured by the

numerical simulations up to a confinement about

r3 ’ 100MPa. The fitting functions in form of Hoek–

Brown criteria are nearly identical between the two. The

discrepancy at r3J100MPa is likely due to the fact that

Berea sandstone undergoes shear enhanced compaction

[29], a failure mechanism not considered in this DEM

model.

The most surprising aspect of this comparison is that the

numerical simulations seem to agree with the experimental

observations that in the confined extension range, the

failure envelope may be approximated by a maximum

tensile strength criterion if the magnitude of the confining

stress is below a threshold, r1.60MPa in this case. To the

best of our knowledge, this is the first numerical evidence

suggesting that the use of a tension cutoff in combination

with a shear failure criteria for continuum mechanics based

numerical modeling is justified.

Experimental research on rock behaviors under confined

tension has been scarce. The seminal work by Brace [2] is

the primary source that provided experimental support for

using a tension cutoff. Out of twenty triaxial extension tests

conducted with dog-bone shaped specimens of five rock

types, i.e., granite, quartzite, diabase and two dolomites,

seven samples fail at axial stresses close to their uniaxial

tensile strengths and with the failure planes more or less

normal to the axial direction. The experimental work by

Ramsey and Chester [24] with Carrara marble also seems

to affirm the legitimacy of a tension cutoff.

Both the simulations and experiments show that the

compressive strength is somewhat affected by the test

configuration, as expected. At r3 ’ 0, out of the three

Table 2 Comparison of the mechanical properties between numerical simulations and experimental results from Berea sandstone

Simulation Experiment

Bobich [1] Tarokh and Fakhimi [27] Zietlow and Labuz [30] Teufel and Clark [28]

rc (MPa) 87.16 79 65 55–65 80

rt (MPa) 6.90 4.9–7.3 8.6 (bending) 4:9� 0:2

rc=rt 12.63 10–16

E (GPa) 17.27 13.96 14 24

m 0.3 0.32 0.28

Fig. 4 Distributions of micro-cracks from the baseline simulations at

80% of the post-peak loading level; a uniaxial compression, b direct

tension; blue for tensile micro-cracks

-10 -5 0 5 10 15 20 25
0
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200
experiment
simulation
experiment - fitting
simulation - fitting

0 100 200
0

200
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Fig. 5 Comparison of the failure envelopes between the simulations

and the experiments of Berea sandstone [1]; fitted by Hoek–Brown

criteria
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experimental data points in Fig. 5, the smallest one is from

triaxial compression while the larger two are from triaxial

extension. Between the two numerical data points, the

larger one, rc ¼ 108:35MPa, is obtained from the triaxial

compression setup with the lateral servo-controlled wall

subjected to a very small nominal confining stress, whereas

the smaller one is obtained from the uniaxial test setup with

the lateral wall removed.

4 Effect of the bond strength ratio

Though we have modeled Berea sandstone successfully,

from the point of view of contact model development, it is

necessary to address the question of how the material

behaviors are affected if the shear bond failure is consid-

ered within the context of the displacement softening

model. We therefore perform a series of numerical simu-

lations to analyze the effect of shear bond failure by

varying the shear bond strength sc while keeping the nor-

mal bond strength rc and the softening coefficient v con-

stant. As mentioned earlier, the nature of bond failure is

governed by two dimensionless parameters: - ¼ sc=rc and
v. In addition to the softening coefficient v ¼ 6:67 used in

the Berea sandstone model, two sets of simulations with

v ¼ 0 and 2 are conducted for comparison purposes. v ¼ 0

is the perfectly brittle contact case. In each set, the shear

bond strength sc decreases from 320� 32 to 5� 0:5MPa.

This corresponds to a range of the mean bond strength ratio

- ¼ 21:33� 0:33. The Berea sandstone model corresponds

to - ¼ 21:33 and v ¼ 6:67. For each combination of v and

-, uniaxial compression and direct tension tests are per-

formed to obtain the uniaxial strengths and the corre-

sponding strength ratio UCS/UTS. All other parameters

remain the same as those listed in Table 1.

Dependence of UCS/UTS on the bond strength ratio - is

shown in Fig. 6. For a given softening coefficient v, UCS/
UTS first increases nearly linearly when the bond strength

ratio - is relatively small, but then reaches a plateau as -
becomes large. The plateaus, UCS/UTS ¼ 5:07, 8.95,

12.63, are reached at - ¼ 2, 6.67, 10 for v ¼ 0, 2, 6.67,

respectively. It can be seen that when -.1 or sc.rc, UCS/
UTS is independent of v. This means when sc.rc, bond
breakage is mostly controlled by sc. Therefore, the soft-

ening law in the normal component is ineffective. On the

other hand, when - is large, i.e., sc 	 rc, failure of the

bonds is governed by the softening law. Consequently,

increase in the softening coefficient v alone is effective in

raising the upper limit of UCS/UTS for a given set of

parameters.

Dependence of UCS/UTS on - could also be analyzed

from the perspective of the shear and tensile micro-crack

percentages in the uniaxial tests. Denote gsc and gst as the

percentages of shear micro-cracks measured at 80% of the

post-peak loading level in the uniaxial compression and

direct tension test, respectively. Subscript c refers to

compression and t tension. Percentages of the tensile

micro-cracks in the uniaxial tests are therefore 100%� gsc
and 100%� gst. If the micro-cracks are all of tensile origin,

gsc ¼ gst ¼ 0. The choice of the 80% post-peak loading

level is arbitrary, but is based on the observation that at this

loading level, the macroscale failure patterns are well

developed. In the present work, all the results pertaining to

the micro-cracks are obtained at this loading level.

Variations of gsc and gst with - for v ¼ 0, 2 and 6.67 are

shown in Fig. 7. Only shear micro-cracks are present when

the bond strength ratio - is relatively small. As -
increases, the percentage of shear cracks decreases in both

Fig. 6 Compressive over tensile strength ratio UCS/UTS as a function

of the bond strength ratio - for v ¼ 0, 2 and 6.67

Fig. 7 Variations of the shear micro-crack percentage with the bond

strength ratio - at 80% of the post-peak loading level from the

uniaxial compression and direct tension tests
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the compression and tension tests. Both gsc and gst decrease
to zero as - is above some threshold values and gst
decreases to zero at a smaller - than gsc. For a given v, the
threshold - above which gsc ¼ gst ¼ 0 coincides with the

critical value of - where UCS/UTS reaches a plateau, e.g.,

- ¼ 10 for v ¼ 6:67. This suggests that when - is large,

there are only tensile micro-cracks in both the compression

and tension tests and UCS/UTS reaches its maximum and

becomes independent of -. On the other hand, for small -
(- ¼ 0:33), all the micro-cracks fail in shear

(gsc ¼ gst ¼ 100%) and UCS/UTS reaches its minimum.

Though no additional simulations are conducted for

-\0:33 as this is not the range of interest to us, we could

expect that since there will be only shear micro-cracks at

-\0:33, UCS/UTS is to remain constant at its minimum

as shown in Huang and Detournay [12] for an elasto-per-

fectly brittle point contact model.

Additional insights into the relationships between the

UCS/UTS and - can be gained by examining the failure

mechanisms at both the macro- and microscale. The mac-

roscale failure mechanisms as reflected by the distribution

of the micro-cracks from the uniaxial tests at 80% of the

post-peak loading level are shown in Figs. 8 and 9 for v ¼
6:67 and - ¼ 0:33 and 3.33. Blue color denotes tensile

micro-cracks and green for shear. Compared with the Berea

sandstone model (- ¼ 21:33) in Fig. 4, the overall mac-

roscale failure patterns in form of shear localization and

tensile fracturing do not seem to be strongly affected by -.
However, the failure planes in direct tension become

notably more tortuous when - decreases. At - ¼ 0:33,

coalescence of the micro-cracks seems to form a non-pla-

nar feature in a spiral shape, an indication of hybrid tension

and shear failure at the macroscale. Furthermore, as shown

in Fig. 10, orientation of the micro-cracks, as measured by

the angle between the normal to a micro-crack plane and a

horizontal plane, is primarily subhorizontal at - ¼ 3:33,

namely nearly perpendicular to the loading direction.

Meanwhile, at - ¼ 0:33, orientation of the micro-cracks

are mainly subvertical, i.e., nearly parallel to the loading

direction. These evidences suggest that as far as the mac-

roscale failure mechanisms are concerned, the DEM model

becomes less brittle rock-like at - ¼ 0:33.

5 Effect of the softening coefficient

Effect of the softening coefficient v is examined with four

sets of simulations where the mean shear bond strength for

the first three is sc ¼ 50, 150, 300 MPa, i.e., - ¼ 3:33; 10,

20. In each set, v varies from 0 to 100. The fourth set,

denoted in the plots as - 	 20, is the limiting case. The

value of sc is chosen to ensure that only tensile micro-

cracks occur and the results no longer change with any

further increase in -.
Variation of the uniaxial compressive strength with v is

shown in Fig. 11a. UCS increases with v and reaches

horizontal asymptotes as v becomes large for - ¼ 3:33 and

10. Indeed, UCS remains constant when vJ20 and

Fig. 8 Distributions of the micro-cracks from the uniaxial compres-

sion tests with v ¼ 6:67; blue for tensile micro-cracks and green for

shear (color figure online)

Fig. 9 Distributions of the micro-cracks from the direct tension tests

with v ¼ 6:67; blue for tensile micro-cracks and green for shear (color

figure online)
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- ¼ 3:33. For the case of - 	 20, UCS increases nearly

proportionally with v and the curve serves as an envelope

that bounds the other three cases. In all the cases, UCS is

not affected by - when v.1.

Similar trends are also observed for the tensile strength,

see Fig. 11b. It should be noted that for a given v, UTS no

longer increases when - > 10. Results from the cases with

- ¼ 20 and - 	 20 are identical to those with x ¼ 10 and

are therefore not plotted. It can be seen that UTS is inde-

pendent of - when v.20.

The overall trends in the strength variations with v can

be explained by the microscale failure mechanisms. When

the displacement softening law is active (vJ0:286), the

microscale failure mechanisms evolve from tension-gov-

erned to shear-governed as v increases, see Fig. 12. v.1

for UCS and v.20 for UTS in these simulations show they

are governed by normal bond failure only. Note that for the

tensile tests with - ¼ 3:33, though Fig. 12 shows gst [ 0

when 5.v.20, most of the shear micro-cracks occur after

the peak; there are only tensile micro-cracks at the peak of

these tests. Uniaxial strengths in these cases are therefore

primarily affected by both the bond strength rc and the

nominal energy loss density Ub associated with one bond

breakage. With rc being fixed in this series of simulations,

Ub increases with v as shown in Eq. 4. Consequently, the

uniaxial strengths increase with v, but are independent of

-. The near-linear trend in the UCS when shear bond

failure is neglected (- 	 20) suggests that UCS�NUb

where N is the total number of micro-cracks at the peak

stress.

Meanwhile, when both shear and normal bond failures

are involved, the nominal energy loss density Ub can be

revised according to,

Ub ¼ 1� gsð Þ 1þ vð Þ r
2
c

Ec

þ gs
s2c
Ec

ð6Þ

where gs ¼ gsc for uniaxial compression and gs ¼ gst for
direct tension at the peak stress level. Since gs (either gsc or
gst) increases with v, the contribution from the first term is

expected to gradually diminish as gs approaches unity and

Ub becomes constant, Ub ¼ s2c=Ec. This explains why the

rates of strength increase decrease with v in Fig. 11a, b and

at - ¼ 3:33 and 10, UCS becomes constant when v is large

as the failure mechanism now involves predominantly

shear bond breakage, see Fig. 12.

Variation of the strength ratio UCS/UTS with v is shown
in Fig. 13. In the limiting case (- 	 20), UCS/UTS

increases monotonically with v. However, at - ¼ 3:33 and

10, dependence of UCS/UTS on v is nonmonotonic, since

the rates of strength increase with respect to v are different

in uniaxial compression and direct tension. Denote v� as

the critical value that yields the peak UCS/UTS. The peak

values are UCS/UTS = 10.64 at v� ’ 5 for - ¼ 3:33 and

UCS/UTS = 18.63 at v� ’ 20 for - ¼ 10. Indeed, v� is in

fact the threshold that marks the transition from gst ¼ 0 to

gst [ 0 if v increases, see Fig. 12 and Table 3. In other

words, if v[ v�, shear bond failures appear in direct ten-

sion and UCS/UTS starts to observe a descending trend

with v. Since the shear micro-cracks in direct tension are

less likely to occur at a larger -, v� at - ¼ 10 is larger than

that from - ¼ 3:33.

When - ¼ 20, though shear bond failures occur in

uniaxial compression, the microscale failures in direct

tension are all tension-governed for v 6 100. It is thus

expected that v� [ 100. Nevertheless, as v increases from

50 to 100, UCS/UTS increases only slightly from 23.01 to

(a) (b)

Fig. 10 Histograms for the orientation of the micro-cracks as measured by the angle between the normal to a micro-crack plane and a horizontal

plane; direct tension tests with v ¼ 6:67; a x ¼ 3:33 and b x ¼ 0:33
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23.59. It is also noted that the curve for a given - departs

from this envelope when gsc at the peak becomes non-zero,

namely, when shear bond failure occurs in the compression

test. The departure occurs at about v ¼ 15 for - ¼ 10 and

v ¼ 20 for - ¼ 20.

Within the range of v explored in this study

(0
 v
 100), we may consider - ’ 20 as a critical case.

Dependence of UCS/UTS on v is nonmonotonic if -\20,

but is monotonically increasing if -[ 20.

6 Discussions

If the shear bond failure is neglected, there are only two

primary microscale bond strength parameters, i.e., the

normal bond strength rc and the softening coefficient v.
Given a realistic set of uniaxial strengths, we can determine

the softening coefficient v based on UCS/UTS from the

limiting case (- 	 20) in Fig. 13. After that, we can

determine the normal bond strength rc as it is proportional
UTS (or UCS) when all other parameters remain constant.

However, if the shear bond strength sc is effective, there
are now three bond strength parameters, sc, rc and v (or rc,
-, v), for the displacement-softening contact model. The

choice of the microscale parameters becomes nonunique if

only the uniaxial strengths are used for calibrating the

material strength characteristics.

Results from the above simulations indicate that UCS/

UTS depends on both the bond strength ratio - and the

softening coefficient v, but the correspondence between

UCS/UTS and the combination of - and v is nonunique.

For example, for cases marked A and B in Fig. 13, though

their strength ratios are about the same, v is not; v ¼ 11:76

(a)

(b)

Fig. 11 Variations of the uniaxial compressive strength (a) and tensile
strength (b) with v

Fig. 12 Variation of the percentage of shear micro-cracks with v at

80% of the post-peak loading level; - ¼ 3:33 and 10

Fig. 13 Variations of the strength ratio UCS/UTS with the softening

coefficient v
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for case A and v ¼ 50 for case B. In case A, rc ¼
129:58MPa and rt ¼ 8:18MPa; and in case B, rc ¼
241:5MPa and rt ¼ 15:59MPa. The strengths in case B

are about 1.9 times of those in case A. Note that the

magnitude of the strengths can be scaled by adjusting the

normal bond strength rc while keeping - and v constant

and is therefore not the main concern here.

One main difference between these two cases lies in the

microscale failure mechanisms. In case A, the micro-cracks

are mostly in tension, gsc ¼ 0:83% and gst ¼ 0% at 80% of

the post-peak loading level; the ratios between the number

of shear vs. tensile micro-cracks are 49:5837 and 0:458,

respectively. Meanwhile, in case B, the shear micro-crack

percentage increases to gsc ¼ 65:26% in uniaxial com-

pression and gst ¼ 1:8% in direct tension; the ratios of the

number of shear vs. tensile micro-cracks change to

1313:699 and 8:423. While the total numbers of the micro-

cracks are comparable between the two cases in direct

tension, the total number in case A is nearly three times of

that in case B in uniaxial compression. The overall mac-

roscale failure mechanisms are still comparable between

the two cases, see Figs. 14 and 15.

Another difference between the two cases is in the shape

of the stress–strain curves in direct tension, see Fig. 16. In

uniaxial compression, the shapes of the two stress–strain

curves are nearly identical. Nevertheless, in direct tension,

the stress–strain curve from case B agrees with that from

case A only when the strain is relatively small. Due to the

relatively large v, case B observes substantial strain hard-

ening in direct tension. Since we are not attempting to

calibrate the parameters for a specific material, we will

reserve our judgment on whether such a shape is realistic or

not. Stress–strain curves from direct tension tests are hard

to find in the literature. Based on very limited data set [18],

if we are modeling quasi-brittle materials such as rocks and

concretes, the axial strain magnitude at the peak tensile

stress in case B appears to be rather excessive. Parameters

for case A are more reasonable choices.

Comparison between these two cases shows that to

uniquely determine both - and v, UCS/UTS alone is

Table 3 Strength ratio and the percentage of shear micro-cracks from

80% of the post-peak loading level with - ¼ 10

v UCS (MPa) UTS (MPa) UCS/UTS gsc gst

0.001 18.66 3.67 5.08 0 0

1 34.51 4.60 7.50 0 0

4 64.39 5.84 11.03 0 0

6.67 87.16 6.90 12.63 0.02 0

10 114.99 7.76 14.82 0.33 0

11.76 (A) 129.58 8.18 15.84 0.83 0

15 148.82 8.72 17.07 3 0

20 185.52 9.96 18.63 7.50 0

25 201.81 11.00 18.35 15.90 0.24

50 (B) 241.50 15.59 15.49 65.26 1.86

100 254.80 20.12 12.66 91.00 10.15

v & 20 is the threshold that marks the transition from gst = 0 to gst[0

Fig. 14 Distribution of micro-cracks from uniaxial compression from

cases A (a) and B (b); blue for tensile micro-cracks and green for

shear (color figure online)

Fig. 15 Distribution of micro-cracks from direct tension from cases A

(a) and B (b); blue for tensile micro-cracks and green for shear (color

figure online)
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insufficient. The main reason that this displacement-soft-

ening contact model could increase the UCS/UTS to real-

istic values is due to the fact that displacement softening at

the contact level results in progressive failure and conse-

quently strain hardening in both the uniaxial compression

and direct tension test. Therefore, the stress–strain curves,

in particular, the axial strains when the peak stresses are

reached in the uniaxial tests could be an important piece of

information for calibration against a specific rock. More-

over, microscale failure characteristics such as the source

mechanisms associated with the micro-crack events could

also be the additional aspects for consideration. It is

however important to make the distinction among the

macroscale failure mechanisms, microscale bond breakage

and the acoustic emission source mechanisms since both

the macroscale failure mechanisms and the AE source

mechanisms describe the deformation modes while the

microscale breakages are associated with bond strengths.

An alternative approach is to include the full failure

envelope in the parameter calibration. Though in this work,

only the full failure envelope for the Berea sandstone

model is shown, we could still deduce the effects of - and

v on the shape of the failure envelope by comparing the

result in Fig. 5 with the linear failure envelope obtained

from the perfectly brittle contact model (v ¼ 0) in Huang

et al. [13]. We may approximate the failure envelope of the

numerical sample by a Mohr-Coulomb criterion with a

tension cutoff. Denote x as the ratio between the limiting

confining stress where the tension cutoff ends and the

uniaxial tensile strength. The shape of the failure envelope

can then be characterized by x and the internal friction

angle /. When there is no shear bond failure (- 	 20), the

friction angles from the Berea sandstone model with v ¼
6:67 and the model with v ¼ 0 in Huang et al. [13] are

comparable about 35� � 36�. Therefore, the effect v is to

increase x so that the tension cutoff becomes more

prominent. Meanwhile, as shown in Figs. 6 and 11,

between the two series of - ¼ 3:33 and 10, the tensile

strength is not affected by - when v ranges from 0 to 20,

but the compressive strength and UCS/UTS increases with

-. This means increase in the percentage of shear bond

failure causes the friction angle / as well as ratio x to

decrease.

In general, we are often limited by the availability of

data, especially, data from direct tension and triaxial

extension tests. Assuming shear bond failure could be

neglected is therefore a reasonable starting point as a

friction angle about 35� � 36� is typical for realistic rocks.

The softening coefficient v can then be determined based

on the strength ratio from the bounding curve in Fig. 13.

For modeling rocks with a relatively low friction, intro-

ducing shear bond failure is likely necessary. However, it

should be noted that for rocks with a rather high friction

angle, e.g., the Lac du Bonnet granite, though this contact

model is able to reproduce a realistic strength ratio, the

friction angle from the 3D numerical model is not as high

[17]. The current model will need to be improved to con-

sider factors such as grain angularity and intragranular

failure which are critical in the failure behaviors of rocks

such as granite.

7 Conclusions

Displacement softening as an ingredient to increase the

compressive over tensile strength ratio to realistic values

for DEM modeling is investigated in this study. In partic-

ular, we focus on the case where the force–displacement

law for the normal bond component has a softening path

(a)

(b)

Fig. 16 Stress–strain curves from cases A and B; (a) uniaxial

compression and (b) direct tension
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and the shear bond component remains elasto-perfectly

brittle. Effects of both the softening coefficient v and the

bond strength ratio - on the compressive over tensile

strength ratio, the macro- and microscale failure mecha-

nisms are analyzed. The main findings can be summarized

as follows:

• Realistic compressive over tensile strength ratio can be

effectively produced by the displacement-softening

contact model. Both the uniaxial compressive strength

and the tensile strength can be calibrated

simultaneously.

• For a given softening coefficient v, UCS/UTS decreases

if shear bond failure becomes involved. UCS/UTS is

the smallest if the micro-cracks all fail in shear in both

uniaxial compression and direct tension test. UCS/UTS

increases with shear over normal bond strength ratio -
only when both shear and tensile micro-cracks are

present. When - is larger than a threshold value, shear

micro-cracks are no longer present and UCS/UTS

reaches its maximum.

• For 0
 v
 100, given a bond strength ratio -,
dependence of UCS/UTS on v is nonmonotonic if

-\20. The maximum value of UCS/UTS is obtained at

a critical value of v�. At v[ v�, shear micro-cracks

start to appear in direct tension. However, for -[ 20,

UCS/UTS increases with v monotonically. UCS/UTS

becomes independent of - when - becomes large.

• If shear bond failure occurs at the microscale, the three

primary bond strength parameters, rc, -, and v, can no

longer be uniquely determined based on the uniaxial

strengths alone. For practical purposes, as we are

usually limited by the availability of data, assuming the

role of - could be neglected is a reasonable starting

point. The softening coefficient v can then be deter-

mined based on the bounding curve in Fig. 13.

• Future work is needed to examine additional aspects of

the failure characteristics at both the macro- and

microscale in order to establish a reliable material

property calibration procedure. In addition, it could also

be worthwhile to include displacement softening in the

shear bond component, which of course will make the

calibration procedure even more complicated, but could

potentially give the flexibility to model the material

behaviors with higher fidelity.
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25. Scholtès L, Donzé FV (2013) A DEM model for soft and hard

rocks: role of grain interlocking on strength. J Mech Phys Solids

61:352–369

Acta Geotechnica (2021) 16:2629–2642 2641

123



26. Stead D, Eberhardt E, Coggan JS (2006) Developments in the

characterization of complex rock slope deformation and failure

using numerical modelling techniques. Eng Geol

83(1–3):217–235

27. Tarokh A, Fakhimi A (2014) Discrete element simulation of the

effect of particle size on the size of fracture process zone in quasi-

brittle materials. Comput Geotech 62:51–60

28. Teufel LW, Clark JA (1981) Hydraulic-fracture propagation in

layered rock: experimental studies of fracture containment.

Technical report, Sandia National Labs., Albuquerque, NM

(USA)

29. Wong TF, David C, Zhu W (1997) The transition from brittle

faulting to cataclastic flow in porous sandstones: mechanical

deformation. J Geophys Res Solid Earth 102(B2):3009–3025

30. Zietlow WK, Labuz JF (1998) Measurement of the intrinsic

process zone in rock using acoustic emission. Int J Rock Mech

Min Sci 35(3):291–299

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

2642 Acta Geotechnica (2021) 16:2629–2642

123


	Effect of shear bond failure on the strength ratio in DEM modeling of quasi-brittle materials
	Abstract
	Introduction
	Contact model formulation
	Modeling of Berea sandstone
	Effect of the bond strength ratio
	Effect of the softening coefficient
	Discussions
	Conclusions
	References




