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Abstract
This paper presents an exact, analytical solution to the boundary value problem of the anti-plane (SH) waves scattering by

an isosceles triangle hill on an elastic half-space by using the wavefunction expansion method. An appropriate region-

matching technique is introduced to divide the half-space containing a triangle hill into two subregions. Then, the wavefield

expression of each subregion is constructed in terms of an infinite series in two coordinate systems, respectively. Fur-

thermore, a Graf’s addition formula is derived to unify the coordinate system and solve the unknown coefficients in the

wave functions. Finally, numerical results are calculated to illustrate the effects on ground motion due to the existence of

an isosceles triangle hill. This paper revises the existing analytical methods, and aims to provide a benchmark for numerical

method verification and a reference for engineering practice.
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1 Introduction

The impact of local topography on ground motion is one of

the key topics of concern in the field of earthquake engi-

neering. It is indicated by theoretical research and damage

experience that the ground motions of canyons or hills are

stronger than that of the plane. The ground motion

responses of different forms of topography are diverse

when an earthquake occurs, so a remarkable amount of

work has been done on the scattering of seismic waves

from local topography of various shapes.

To reveal the amplification effects due to topography of

the canyon, semi-cylindrical canyon was the first form to

be considered in terms of analytical solution [16]. The

research on the scattering of SH wave by semi-circular

canyon provided convenience for the following studies on

other shaped canyons. By introducing a Graf’s addition

formula and combining with the expression of scattering

wave excited by the circular arc boundary, the ground

motion of the circular arc canyon topography could be

further studied [24]. For the concave topography with more

complex geometry, it is difficult to give the scattered wave

field excited by the terrain boundary. The introduction of

auxiliary boundary is an effective way to solve this kind of

problem. Based on the region-matching technique (RMT),

Tsaur and Chang [17] adopted the wave function expansion

method and the fractional Bessel function to give the

analytical solution of the scattering of SH wave by a

shallow symmetrical V-shaped canyon. The combination

of fractional-order Bessel function and RMT had been

proved to be feasible in the ground motion investigation of

the canyon topography with complex shapes

[3, 4, 6, 7, 19, 27]. In addition to analytical methods, many

methods such as semi-analytical method [5], boundary

element method [23] and hybrid method [13] can be

adopted to analyze the influence of canyon and valley

topography on seismic wave propagation.

Compared with the concave topography, there are much

fewer analytical methods to study the ground motion of

hills. Yuan and Men [26] had proposed an analytical
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method to solve the scattering problem of SH waves by a

semi-cylindrical hill. Although an effective partitioning

method is proposed, the results are only applicable to low-

frequency incident SH waves due to solving errors. To get

high precision numerical results, Lee et al. [10] proposed

an improved analytical series solution adopting a cosine

half-range expansion to meet the boundary conditions. For

convex topography with circular arc cross section, Tsaur

and Chang [18] found that series solution of [25] was in

error due to unsuitable connection between the domain

decomposition and the expression of corresponding

wavefield and rederived the wave field expressions based

on the RMT by introducing a semi-circular auxiliary

boundary. Similarly, by establishing the elliptic coordinate

system and introducing the Mathieu function, the ground

motion of a semi elliptical hill under incident SH waves

was studied [2, 9, 11]. In addition to the hills with circular

and elliptical boundaries, ground motions for hills with

slopes had also been considered. Hayir and Todorovska [8]

attempted to get the series solution for the isosceles triangle

topography by wavefunctions expansion method. Unfor-

tunately, their calculated results did not coincide with the

numerical results of Sánchez-Sesma et al. [15]. By intro-

ducing fractional Bessel function, Qiu and Liu [12] con-

structed the displacement field expression which satisfies

the stress-free condition of triangle boundary rigorously.

However, the numerical results [9, Sect. 5] were correct

just under very low wave frequency incidence and could

only be applied to the case of shallow hill.

In this paper, the analytic solution of SH wave scattering

by an isosceles triangular hill is presented. The proposed

method is not only applicable to hills of any height, but also

can be used to calculate the numerical results of good

convergence in the case of high incident wave frequency.

Although the ground motions of more geometrically com-

plex hill have been studied analytically [14, 22], it is nec-

essary to give exact analytical results for the triangular hill

as a typical convex topography, which can provide refer-

ences for engineering practice and serve as a benchmark for

comparison of numerical methods. In addition, investigat-

ing simple local topography under inhomogeneous geo-

logical conditions has been a hot topic in recent years

[20, 21, 28, 29]. The research methods and solution ideas

proposed in this paper provide a theoretical basis for sub-

sequent studies combining complex geology. Furthermore,

by changing the medium parameters, the mechanical model

can be established to study the rock-soil interaction, and the

dynamic response of dam foundation and soil can be studied

by changing the form of triangular bottom boundary.

In Sect. 2 of this paper, the isosceles triangle hill is

modeled and the partition method of this problem and the

related parameters are explained. We rederived the wave

field expressions in each subregion and establish the infinite

algebraic equations for programming in Sect. 3. Then, in

Sect. 4, the convergence and correctness of the results are

verified, and the steady-state responses with different

parameters are analyzed. Finally, themethods adopted in this

paper and some important results are summarized in Sect. 5.

2 Model

The two-dimensional model studied in this paper is shown

in Fig. 1 which represents an elastic, isotropic and homo-

geneous half space (with shear modulus l and shear wave

velocity c) supporting an isosceles triangle hill of height h

and half-width a. The origin of the global coordinate sys-

tems x1; y1ð Þ and r1; h1ð Þ is set at the hill top, while that of
the local coordinate systems x2; y2ð Þ and r2; h2ð Þ is set at

the center of the hill bottom. The angle h1 and h2 are

measured anticlockwise from the vertical y1-axis and y2-

axis, respectively. The angles between the hillsides and the

vertical y1-axis are �b and b, which means the central

angle of the hill top is 2b, ranging from 0 to p. Based on

the region-matching technique, a circular arc auxiliary

boundary Sa is introduced to divide the half-space into two

subregions. Region I involves an enclosed sector area and

region II is a semi-infinite region with a circular arc can-

yon. Half of the hill span is a, which means the radius of

the circular arc auxiliary boundary Sa is a=sinb.

3 Theoretical formulation

All the displacement wj (j = 1, 2) within region I and

region II must satisfy the two-dimensional wave equation

o2wj

or2j
þ 1

rj

owj

orj
þ 1

r2j

o2wj

oh2j
¼ 1

c2
o2wj

ot2
ð1Þ

Fig. 1 Model of the isosceles triangle hill
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By letting

w rj; hj; t
� �

¼ w rj; hj
� �

exp �ixtð Þ ð2Þ

and omitting the term exp �ixtð Þ, the steady-state anti-

plane wave motion equation can be obtained

r2wj þ k2wj ¼ 0; ð3Þ

where r2 is the Laplacian and k ¼ x=c is the shear wave

number.

The zero-stress boundary conditions on the horizontal

ground surface and the hill surface are

s 1ð Þ
h1z1

¼ l
r1

ow1

oh1
¼ 0; h1 ¼ �b; 0� r1 � b ð4Þ

s 2ð Þ
h2z2

¼ l
r2

ow2

oh2
¼ 0; h2 ¼ � p

2
; r2 [ a ð5Þ

Since the auxiliary boundary is introduced to divide the

model into two regions, the continuity conditions of dis-

placement and stress at the auxiliary boundary must also be

satisfied. The matching conditions on the auxiliary

boundary can be written as

w1 r1; h1ð Þ ¼ w2 r1; h1ð Þ; r1 ¼ b; �b� h1 � b; ð6Þ

s 1ð Þ
r1z

r1; h1ð Þ ¼ s 2ð Þ
r1z

r1; h1ð Þ; r1 ¼ b; �b� h1 � b; ð7Þ

where s 1ð Þ
r1z

r1; h1ð Þ ¼ l ow1

or1
and s 2ð Þ

r1z
r1; h1ð Þ ¼ l ow2

or1
.

The total wave in region II can be split into the scattered

wave ws by the circular arc auxiliary boundary Sa and the

free-field displacement wf , that is

w1 ¼ wf þ ws; ð8Þ

where the free-field displacement wf is expressed as

wf r2; h2ð Þ ¼ exp �ikr2 cos h2 þ að Þ½ �
þ exp ikr2 cos h2 � að Þ½ �; ð9Þ

Note that this expression is written in the coordinate

system r2; h2ð Þ, and for later computation, it should be

converted to the coordinate system r1; h1ð Þ. According to

the transformation relationship between the two coordinate

systems, x1 ¼ x2 and y1 ¼ y2 þ h, Eq. (9) can be re-ex-

pressed in the coordinate systems r1; h1ð Þ as
wf r1; h1ð Þ ¼ exp ikh cos að Þ exp �ikr1 cos h1 þ að Þ½ �

þ exp �ikh cos að Þ exp ikr1 cos h1 � að Þ½ �
ð10Þ

Employing the Jacobi–Anger expansion [1],

Fig. 2 Convergence of displacement amplitudes at five positions with increasing N: a five selected positions; b g ¼ 5:0; c g ¼ 10:0; d g ¼ 15:0
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expð�ikr cos hÞ ¼
X1

n¼0

enð�iÞnJnðkrÞ cos nh; ð11Þ

where en is the Neumann factor (e0 ¼ 1; en ¼ 2; n[ 0)

and Jn �ð Þ is the Bessel function with order n. Equation (10)

is expressed as

wfðr1; h1Þ ¼
X1

n¼0

Jnðkr1Þ an cos nh1 þ bn sin nh1ð Þ;

� b� h1 � b

ð12Þ

in which

an ¼ en �ið Þnexp ikh cos að Þ þ in exp �ikh cos að Þ½ � cos na
ð13Þ

bn ¼ en � �ið Þnexp ikh cos að Þ þ in exp �ikh cos að Þ½ � sin na
ð14Þ

Due to the existence of auxiliary boundary Sa, there is

scattered wave in region I. It is given as

ws r2; h2ð Þ ¼
X1

n¼0

AnH
ð1Þ
2n kr2ð Þ cos 2nh2

þ
X1

n¼0

BnH
ð1Þ
2nþ1 kr2ð Þ sinð2nþ 1Þh2; ð15Þ

where An and Bn are unknown complex coefficients, H 1ð Þ
n �ð Þ

denotes the Hankel function of the first kind with order n.

It is convenient further on to represent ws also in the

coordinate system r1; h1ð Þ. The application of the Graf

addition formula [1] gives

ws r1; h1ð Þ ¼
X1

n¼0

An

X1

m¼0

Icm;2nH
1ð Þ
m kr1ð Þ cosmh1

þ
X1

n¼0

Bn

X1

m¼0

Ism;2nþ1H
1ð Þ
m kr1ð Þ sinmh1; ð16Þ

where

Fig. 3 Comparison between our results for different hill height at g ¼ 0:5 and those of Qiu and Liu: a a ¼ 0�; b a ¼ 45�

Fig. 4 Surface displacement amplitude versus x/a with h/a = 1.0 at g ¼ 5:0: a a ¼ 0�; b a ¼ 30�. The solid lines show the results from the series

solution and the scatter points show the results from the FEM
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Icm;n ¼ �1ð Þnem
2

�1ð ÞnJm�n kdð Þ þ Jmþn kdð Þ½ � ð17Þ

Ism;n ¼ �1ð Þnþ1em
2

Jmþn kdð Þ � �1ð ÞnJm�n kdð Þ½ � ð18Þ

In the enclosed region II, the standing wave expression

w2 is given by

w2 ¼ wt r1; h1ð Þ

¼
X1

n¼0

CnJ2np kr1ð Þ cos 2nph1

þ
X1

n¼0

DnJ 2nþ1ð Þp kr1ð Þ sinð2nþ 1Þph1 ð19Þ

in which Cn and Dn are unknown complex coefficients,

p ¼ p= 2bð Þ is a fractional factor missed to consider in Ref.

[8], which is used to make the expression of standing wave

automatically satisfy the stress-free condition of hill

surface.

Notice that the unknown coefficients An, Bn, Cn and Dn

need to be determined according to Eqs. (6) and (7).

Multiplying both sides of Eqs. (6) and (7) by cosine/sine

functions, and integrating over the range of �b; b½ � gives

�
X1

n¼0

An

X1

m¼0

Icm;2nH
1ð Þ
m kbð ÞUm;l þ

X1

n¼0

CnJ2np kbð ÞU2np;l

¼
X1

n¼0

anJn kbð ÞUn;l; l ¼ 0; 1; . . .;

ð20Þ

�
X1

n¼0

An

X1

m¼0

Icm;2nH
ð1Þ0
m kbð ÞUm;l þ

X1

n¼0

CnJ
0
2np kbð ÞU2np;l

¼
X1

n¼0

anJ
0
n kbð ÞUn;l; l ¼ 0; 1; . . .;

ð21Þ

�
X1

n¼0

Bn

X1

m¼0

Ism;2nþ1H
1ð Þ
m kbð ÞVm;l

þ
X1

n¼0

DnJ 2nþ1ð Þp kbð ÞV 2nþ1ð Þp;l

¼
X1

n¼0

bnJn kbð ÞVn;l; l ¼ 0; 1; . . .; ð22Þ

Fig. 5 Amplitudes of surface displacement versus x=a at g ¼ 1:0 for various incident angles: shallow hill
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�
X1

n¼0

Bn

X1

m¼0

Ism;2nþ1H
ð1Þ0
m kbð ÞVm;l

þ
X1

n¼0

DnJ
0
2nþ1ð Þp kbð ÞV 2nþ1ð Þp;l

¼
X1

n¼0

bnJ
0
n kbð ÞVn;l; l ¼ 0; 1; . . .; ð23Þ

where

Um;l ¼
Z b

�b
cosmh cos lhdh

¼

2b; m ¼ l ¼ 0

sin 2mbð Þ
2m

þ b; m ¼ l 6¼ 0

sin mþ lð Þb
mþ l

þ sin m� lð Þb
m� l

; m 6¼ l

8
>>>>><

>>>>>:

ð24Þ

Vm;l ¼
Z b

�b
sinmh sin lhdh

¼

0; m ¼ l ¼ 0

� sin 2mbð Þ
2m

þ b; m ¼ l 6¼ 0

� sin mþ lð Þb
mþ l

þ sin m� lð Þb
m� l

; m 6¼ l

8
>>>><

>>>>:

ð25Þ

All necessary formula derivation has been completed.

By truncating the infinite term, the matrix is established to

solve the unknown coefficients in the wave field expres-

sion, so as to carry out the subsequent case analysis.

4 Numerical results

We define the dimensionless frequency of incident waves

as

g ¼ 2a=k ¼ ka=p; ð26Þ

where k is the wavelength of the incident waves. The

dimensionless frequency k can be used not only to

Fig. 6 Amplitudes of surface displacement versus x=a at g ¼ 1:0 for various incident angles: deep hill
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characterize the ratio of the span of the triangle hill to the

wavelength, but also to represent the magnitude of the

wavenumber. The displacement amplitude which is used to

characterize the magnitude of ground motion, is defined as

wj

�� �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rewj

� �2þ Imwj

� �2
q

ð27Þ

4.1 Convergence test

A number of convergence tests are carried out to determine

the truncation values of n, m, l. Generally, more terms of n

and l are required for higher dimensionless frequency of

incident waves. For the number of truncation terms of m,

150 is enough to get the convergence results of the

examples in this paper. Successive tests suggest that the

horizontally incident cases take more truncation terms than

others to reach convergence. In other words, as long as the

displacement amplitudes converge in the case of a ¼ 90�,
the truncation term is sufficient for other incident angles.

Take the case of h=a ¼ 0:4 as an example. Figure 2a shows

the five test positions where S1 � S5 are located at

x=a ¼ �2:0, �0:5, 0, 0.5 and 2.0, respectively. The con-

vergence of the displacement amplitudes of the five test

positions at three different dimensionless frequencies is

shown in Fig. 2b–d. The abscissa N represents the trun-

cation values of n and l. The displacement amplitudes of

five positions need N to reach a certain value before they

tend to be stable. Before that, the displacement amplitudes

all present irregular and violent oscillations, so the results

of non-convergence cannot be adopted. Although the

positions of the five observation points are different, their

convergence trend of displacement amplitude is similar.

When the dimensionless frequency g is 5.0, the amplitude

of the displacement is stabilized as N increases to 19. For

high-frequency case with g ¼ 10:0 and g ¼ 15:0, the cor-

responding N when the displacement amplitudes begin to

stabilize are 35 and 50, respectively.

4.2 Correctness verification

Qiu and Liu [12] have derived the correct wave field

expressions of the isosceles triangle hill by complex

function method. Although the numerical results given in

this paper are not satisfactory for the most part, the dis-

placement amplitudes of the shallow hill under low-fre-

quency incidence can still be adopted as a reference under

low-frequency incidence. In this paper, the method of

Fig. 7 Displacement amplitudes versus x=a for h=a ¼ 0:25 at g ¼ 5:0
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model establishment and coefficient solution are different

from that adopted by Qiu and Liu [12]. We set the hill

height h=a ¼ 0:25; 0:5; 0:75. Figure 3a shows the dis-

placement amplitudes at vertical incidence with the

dimensionless frequency g ¼ 0:5 and Fig. 3b represents the

case of oblique incidence. It can be seen that the results of

present work are in good agreement with the results in Ref.

[12]. The results obtained by the two different methods are

basically coincident with each other, so it can be consid-

ered that the research method in this paper is effective.

To verify the accuracy of the numerical results obtained

by the proposed model and method under the high-fre-

quency incident SH waves, the finite element method is

used for comparison. The height of the triangle hill is set as

h=a ¼ 1:0. The dimensionless frequency is g ¼ 5:0, and

seismic wave is incident from two different angles (a ¼ 0�

and 30�). A comparison is performed to validate the

solution results with those by the finite element method as

shown in Fig. 4. The solid lines are the results obtained by

the series solution in this paper, and the scatter points of the

triangle are the results obtained by the finite element

method. It can be seen that due to the limitation of the

mesh division and the size of the solution domain, the

results of the finite element method have errors, which

cannot be completely consistent with the analytical results

in this paper. But the distribution trend of displacement

amplitude is consistent, which can prove that the results

obtained by this method in the case of high-frequency

incident SH wave are effective.

4.3 Surface motion analysis

Figures 5 and 6 show the displacement amplitudes wj j as a
function of the distance x=a for g ¼ 1:0 at various incident

angles (a ¼ 0�, 30�, 60�, 90�). Set the dimensionless fre-

quency equal to the span of the hill, i.e., g ¼ 1:0. The effect

of the triangle height on displacement amplitudes is con-

sidered when the ratio of hill height to span is less than 1.0

(shallow case) and greater than 1.0 (deep case). In Fig. 5,

four cases of the height of hill are analyzed, which are

h=a ¼ 0:2, 0.4, 0.6 and 0.8, respectively. Despite the dif-

ferent angles of incidence, the surface displacement

amplitudes show a general rule. That is, a higher hill cor-

responds to a larger oscillation range of displacement

amplitude. In the case of vertical incidence, the maximum

displacement amplitude wj jmax corresponding to the four

heights of the hill appears at the hilltop, and the minimum

value wj jmin appears at the hillside. As the incident angle

Fig. 8 Displacement amplitudes versus x=a for h=a ¼ 0:25 at g ¼ 10:0
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increases, the positions of wj jmax and wj jmin shift from the

original position to the right. Generally, extreme values of

displacement amplitude occur on the surface of the

isosceles triangle hill.

For deep hill, the displacement amplitudes at four inci-

dent angles are investigated when the height of the hill is

set as h=a ¼ 1:2, 1.4, 1.6 and 1.8, respectively. When the

dimensionless frequency is 1.0, the rule of surface dis-

placement amplitudes corresponding to different hill height

are quite different from that of shallow case. For the deep

triangle hill, the influence of the height on the displacement

amplitudes is not obvious. In the case of vertical incidence,

although the maximum displacement amplitude of higher

hill is larger, the increment of amplitude is slight. With the

increase of incident angle, the influence of hill height on

displacement amplitude is weakened, which is especially

reflected in the left part of the surface (x=a\0). It is worth

noting that the maximum surface displacement amplitude

wj jmax occurs on the horizontal surface to the left of the hill

when a ¼ 60� and 90�.
After analyzing the surface displacement of the triangle

hills with various heights under the low-frequency incident,

the ground motion of the triangle hill at high dimensionless

frequency is further analyzed in Figs. 7, 8, 9 and 10. The

displacement amplitudes of the triangle hill with height of

0.25 and 1.5, respectively, at four incident angles (a ¼ 0�,
30�, 60�, 90�) are given, and the maximum and minimum

values of the amplitudes in each case are marked out.

For vertical incidence (a ¼ 0�) in Figs. 7a and 8a, the

maximum ground motion occurs at the hilltop (x=a ¼ 0)

while the minimum one is at two rims of the hill

(x=a ¼ �1:0). In this case, the displacement amplitude of

the hill surface is generally greater than that of the flat

surface on both sides. For oblique incidence (a ¼ 30�; 60�)
in Figs. 7b, c and 8b, c, the position of the maximum

displacement amplitude is shifted to the right-hand side,

but it is still on the surface of the hill. When the seismic

wave is incident at 60�, the corresponding maximum dis-

placement amplitude reaches 2.77 at g ¼ 5:0 and 3.25 at

g ¼ 10:0. It is noted that with the increase of the incident

angle, the oscillation frequency of the ground displacement

on the left side of the hill (x=a\� 1:0) increases, but the

oscillation amplitude decreases. However, the motion pat-

tern on the right side of the hill (x=a[ 1:0) is the opposite

of the one on the left. And the displacement amplitude of

the left hillside is obviously lower than that of the right

hillside. For horizontal incidence (a ¼ 90�) in Figs. 7d and

8d, the distribution of displacement results shows an

obvious characteristic. That is, the amplification effect of

triangular hill on seismic waves is mainly reflected on the

Fig. 9 Displacement amplitudes versus x=a for h=a ¼ 1:5 at g ¼ 5:0
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right-side slope, while the ground motion on the left-side

slope is obviously weakened. It is noted that this rule is just

opposite to the result of V-shaped canyon in Ref. [17].

In order to analyze the surface displacement amplitudes

of deep hill at high-frequency incidence, we set the hill

height as h=a ¼ 1:5, dimensionless frequency as g ¼ 5:0 in

Fig. 9 and g ¼ 10:0 in Fig. 10. Compared with the cases of

low frequency, the amplitude distribution of ground dis-

placement under high-frequency incidence is much more

complex. To show the displacement amplitude of the hill

surface �1:0� x=a� 1:0ð Þ more clearly, we reduce the

abscissa interval to �3:0; 3:0ð Þ. For vertical incidence, the
maximum and minimum amplitudes still occur near the top

of the hill, and the amplification effect of the amplitude is

significant. In the two examples, the maximum amplitude

reaches 6.03 at the frequency of 5.0. With the increase of

incident angle a, the displacement amplitudes of the hill

surface decrease. When the incident angle is 60� and 90�,
the initial amplification effect (while a ¼ 0�; 30�) of the

hill on the seismic wave energy changes to the shielding

effect. This shielding effect is reflected in the displacement

amplitudes of the hill surface are obviously less than 2.0,

and the displacements of the flat surface on the right side of

the hill also have a certain reduction. The closer to grazing

incidence a ¼ 90�ð Þ, the more obvious the shielding effect

is. In addition, large incident angle makes the maximum

displacement amplitude occur at the left rim of the hill.

Figure 11 illustrates the displacement amplitudes wj j as
a function of the dimensionless frequency g at two incident

angles (a ¼ 60�, 90�). Five observer points are selected to

study the displacement amplitudes of five typical locations

as shown in Fig. 11a in a large frequency interval. For

point 1, the displacement amplitudes under low-frequency

incident corresponding to the two incident angles are

basically the same. As the dimensionless frequency

increases, the difference in displacement amplitude at two

incident angles becomes apparent. The displacement

amplitudes fluctuate regularly with the dimensionless fre-

quency and are always less than 2.0. For point 2 and point

3, the displacement amplitudes are less than 2.0 at 60�

incidence, and they decrease with the increase of dimen-

sionless frequency g. In contrast, the displacements of

oblique incidence are significantly larger than that of hor-

izontal incidence. The magnifying effect of the hill on the

seismic wave is reflected in the right part of the triangle hill

at a ¼ 90�. As shown in Fig. 11e, f, the black curve pre-

sents an upward trend and is always greater than 2.0. The

displacement of the right rim of the hill at the horizontal

Fig. 10 Displacement amplitudes versus x=a for h=a ¼ 1:5 at g ¼ 10:0
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incidence of SH wave is significantly larger than that at the

oblique incidence.

Figure 12 is presented to show the displacement

amplitudes of a deep hill versus dimensionless frequency g.
We find that the oscillation forms of displacement ampli-

tudes are similar under two incident angles (a ¼ 60�, 90�),
which is different from the case of shallow hill. For the

observer points on hillside and hilltop, in general, the

surface displacements caused by oblique incidence of SH

waves are larger than that of grazing incidence. This means

that for the deep hill, a larger incident angle corresponds to

a more significant earthquake wave energy absorption

effect, which is applicable to the whole frequency range

0\g� 15ð Þ. With regard to observer point 1 at the left rim

of the deep hill, the oscillation range of displacement

amplitudes under oblique incidence (a ¼ 60�) is larger than
that under grazing incidence (a ¼ 90�). And the displace-

ment amplitude of point 1 is larger than that of other

locations, which indicates that this point may be an

earthquake risk position that needs attention. Compared

with shallow hill, the ground motion response of deep hill

is much more complex, and with the increase of dimen-

sionless frequency, the distribution of ground displacement

amplitude has no obvious regularity.

For the sake of revealing the influence of dimensionless

frequency g and incident angle a on surface motions,

Fig. 11 Five observer points’ seismic responses versus g at h=a ¼ 0:1 for two incident angles
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Fig. 13 displays the displacement amplitudes as a function

of x=a and g at various angles of incidence (a ¼ 90�, 60�,
30�, 0�). We set h=a ¼ 0:25. Surface motion around the

triangle hill under horizontal incidence (a ¼ 90�) is shown
in Fig. 13a. It can be seen intuitively that at any dimen-

sionless frequency, the displacement oscillation of the flat

surface on the right side of the hill (x=a[ 1:0) is gentle,

while that on the left side (x=a\1:0) is violent. For oblique

incidence, the maximum amplitude of surface displace-

ment generally occurs around the right foot of the hill

(x=a ¼ 1:0), and the ground motion of the flat surface on

the right side (x=a[ 1:0) is significantly stronger than that

on the left (x=a\1:0). At vertical incidence, the ground

motion on both sides is the same because of the

symmetrical shape of the triangle hill. Maximum dis-

placement amplitude occurs on the hill surface

(�1:0� x=a� 1:0).

5 Conclusion

In this paper, an exact solution using wave-function series

expansion method for the scattering of SH waves by an

isosceles triangle hill has been presented. By introducing

the fractional Bessel function, the expression of standing

wave field satisfying the stress-free condition in polar

coordinate system is constructed. The research method

proposed in this paper is applicable for isosceles triangle

Fig. 12 Five observer points’ seismic responses versus g at h=a ¼ 1:5 for two incident angles
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hill with arbitrary height. Based on the orthogonality of

trigonometric functions, the infinite algebraic equations for

solving coefficients are derived. The numerical results are

accurate and convergent in spite of high-frequency inci-

dence. According to the foregoing analysis, some findings

can be summarized as follows:

1. Steeper hill makes more complex ground motion

responses. For small incident angle, the amplification

effect of deep hill is more obvious than that of shallow

hill.

2. The position of the maximum displacement is affected

by the incident angle. In the case of vertical and

horizontal incidence, the maximum displacement

amplitude wj jmax appears at the hill top (x=a ¼ 0) and

at the left rim of the hill, respectively.

3. Once the incident angle is greater than 45�, the

displacement of the hill surface decreases, and the

triangle hill has a barrier effect on seismic waves.

4. The method presented in this paper is applicable for the

further study of the scattering of SH waves by non-

isosceles triangular hill.
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