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Abstract
In this study, field monitoring testing and machine learning are used to analyze vegetated soil’s response to various rainfall

events under natural environmental conditions. Parameters that reflect the soil, vegetation, and atmosphere of three

monitoring points at different distances from a tree (0.5 m, 1.5 m, and 3.0 m) at a constant depth (0.2 m) are quantified and

used for multivariate model development. A machine learning method, multi-gene genetic programming (MGGP), is used

to formulate the relationships between two indices representing vegetated soil response and six selected influential

parameters. Analysis indicates that for a complicated system, the MGGP method is suitable for establishing an efficient

computational model under conditions of limited data. Global sensitivity analysis and parametric study are conducted,

based on the obtained multivariate models, to reveal the effect of each influential parameter, indicating that rainfall pattern

has much the same impact on variations in soil suction as rainfall amount and intensity and tree canopy do. An advanced

rainfall pattern can trigger a more rapid response of vegetated soil than intermediate and delayed rainfall patterns can.

Rainfall pattern’s effect on the descent rate of soil suction is nonlinear.

Keywords Global sensitivity analysis � Multi-gene genetic programming � Parametric study � Soil suction response �
Temporal rainfall pattern

1 Introduction

In the vadose zone of geotechnical engineering, rainfall is a

critical indicator of variations in the properties of unsatu-

rated soil and is also an important parameter in analysis of

hydrological processes, because rainfall infiltration can

seriously reduce the effective stress and shear strength of

unsaturated soil [17, 27, 33, 39, 43, 49, 56, 57]. In recent

decades, heavy rainfall events have become increasingly

likely as a result of climate change (e.g., global warming,

the urban heat island, and rain island effects) caused by

human activities [23, 41]. Heavy rainfall can cause natural

disasters such as collapse, landslide, debris flow, and

waterlogging, bringing significant economic loss and

threatening human safety. Accordingly, in-depth analysis

of variations in unsaturated soil’s parameters as a result of

different rainfall events can offer insights into the charac-

teristics of rainfall (e.g., amount, intensity, duration, pat-

tern) and their effects on unsaturated soil parameters in a

specified area. These can serve as a reference for engineers

to evaluate and predict unsaturated soil’s properties,

informing actions taken to prevent disasters, reduce eco-

nomic loss, and ensure human safety.

Numerous studies have indicated that rainfall amount,

intensity, and duration can influence variations in soil

parameters, triggering natural disasters

[4, 5, 19, 23, 25–27, 43, 46]. In some early studies, rainfall

pattern was not considered in hydraulic analysis of shallow

unsaturated soil’s properties. Later, it was demonstrated

that peak rainfall rates of a single rainfall event may be

dozens of times higher than the mean event rate, requiring

determination of the temporal position of peak intensity
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within an event [2, 35]. Tsai [43] investigated the effects of

rainstorm pattern on shallow landslide and found that

rainstorm pattern affects slope stability. Ng et al. [29]

observed that rainfall pattern influences pore-water pres-

sures in soil layers near the ground surface. Rainfall

accompanying an advanced storm pattern of 24 h duration

was found to be critical for causing the highest pore-water

pressure in a slope. Rahimi et al. [34] reported that the rate

of decrease in the factor of safety was fastest for the

advanced rainfall pattern, followed by the normal and

delayed rainfall patterns. Zhan et al. [51] found that volu-

metric water content was greatest in deep soil layers

induced by the advanced pattern, followed by the central,

uniform, and delayed rainfall patterns, and vice versa for

volumetric water content in shallow soil layers. Wu et al.

[48] showed that under similar slope conditions, the factor

of safety changes with the precipitation pattern, being

largest under the linear delayed pattern. A et al. [2]

reported that the delayed rainfall pattern can lengthen the

response time of increase in soil water content to rainfall.

Zhai et al. [53] demonstrated that rainfall pattern is a key

parameter in providing warnings about some disasters.

Some researchers have argued that rainfall pattern is ran-

domly distributed [47], but rainfall pattern in a certain

region can be derived based on the measured data to

identify one or two prevalent rainfall patterns in the region

[2, 20, 35, 45, 50]. Too few studies have focused on rainfall

patterns’ influence on soil properties under natural envi-

ronmental conditions, and many have analyzed it only

using rainfall simulation experiments [2, 14, 52]. Analysis

of natural rainfall events is needed to arrive at a compre-

hensive understanding of the effects of various rainfall

events on shallow soil’s properties.

In this study, variations in the soil suction, weather, and

vegetation parameters of three monitoring points were

recorded under natural environmental conditions from

September 2016 to March 2019. The three monitoring

points were distributed at different distances from selected

trees (0.5 m, 1.5 m, and 3.0 m) at a consistent depth from

the ground surface (0.2 m). An image processing technique

was used to quantify the vegetation parameter and the

radius of the tree canopy so as to represent the effect of

trees. Initial statistical analysis indicated that various

rainfall parameters, including rainfall intensity, amount,

duration, and pattern, can have various influences on soil

suction. A machine learning method, multi-gene genetic

programming (MGGP), was then used to develop a mul-

tivariate model with which to formulate the relationships

between influential parameters and two key indices

reflecting variations in soil suction. Based on the obtained

multivariate models, each input’s influence on the output

variables was assessed through global sensitivity analysis

and effects of selected rainfall, weather, and vegetation

parameters on soil suction response investigated by para-

metric study.

2 Field monitoring scheme

The field monitoring test was carried out at a vegetated site

on the campus of University of Macau (Hengqin Island,

Zhuhai, China, 113.55 �E, 22.13 �N), as Fig. 1 shows. The

monitoring site is covered with various types of vegetation

amid a range of landscapes. Detailed characteristics of the

local climate and topography can be found in Zhou et al.

[55].

Over the entire monitoring period, from September 2016

to March 2019, three trees (Fig. 2) were targeted. Various

sensors and pieces of equipment were arranged at different

distances from the target trees and different depths from the

ground surface to quantify soil suction, vegetation, and

atmosphere parameters. Data were recorded at half-hour

intervals. Common grassland and tree species in Macau are

distributed at the selected monitoring site. As Fig. 2a

shows, the site has primarily two types of grass, carpet

grass, and Manila grass. The selected tree was of the

variety Elaeocarpus apiculatus Masters, commonly dis-

tributed in southern China (e.g., Macau).

Soil samples were taken in shallow layers around the

target trees for use in laboratory experiments to determine

several physical properties of the soil. Soil sampling depths

ranged from 10 to 80 cm, as determined by the embedded

depth of sensor. According to sieve analysis, the shallow

soil at the monitoring site was of a single kind. As Fig. 3

shows, according to the Unified Soil Classification System

[1], the soil in the shallow soil layers (underground surface

0–0.8 m) of the study area was well-graded sand (SW).

Variations in soil suction at three monitoring positions

A, B, and C (Fig. 4), distributed at different distances from

the target tree (0.5 m, 1.5 m, and 3.0 m) at a constant depth

of 0.2 m, were used as the objective unsaturated soil

parameter for analysis of response to various rainfalls

while taking into account the effects of atmosphere and

vegetation factors. Employed sensors and equipment

included a soil suction sensor (MPS-6), an air temperature/

relative humidity sensor (VP-4), a rainfall gauge, and a

drone. The air temperature/relative humidity sensor and

rainfall gauge were distributed at the open center of the

monitoring site, and the drone was used to record variations

in tree canopy, representing the impact of vegetation.
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3 Monitoring results and statistical analysis

3.1 Quantification of tree canopy

The selected target trees can significantly affect soil suction

variations through root water uptake [54]. In this study,

radius of tree canopy and distance from tree reflect the

influence of the target tree. Various images of the tree

Fig. 1 Site selection for field monitoring

Fig. 2 Vegetation coverage at the field monitoring site

Fig. 3 Particle size distribution of shallow soil at the monitoring site

Fig. 4 Cross section of the three monitoring points’ positions
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canopy were obtained during the monitoring period by

using a drone. The obtained images were processed to

obtain the radius of tree canopy. As Fig. 5 shows, an

original image can be converted to a black-and-white

image showing only the tree canopy, whose radius can then

be calculated by assuming that the canopy is circular [42].

The entire monitoring period can be divided into six

monitoring subperiods reflecting adjustments to the moni-

toring plan in response to termite infestations, typhoon, and

embedding of new sensors. During different monitoring

subperiods, image acquisition was conducted at least twice

to analyze variations in tree canopy. It was found that the

tree canopy did not vary meaningfully across subperiods,

so a mean value for the tree canopy’s radius during every

subperiod was used for modeling analysis. Table 1 sum-

marizes the radius values used for the tree canopy during

different monitoring periods. A dimensionless parameter,

ratio of distance from tree to radius of tree canopy, was

used to build a model reflecting the effects of the targeted

trees.

3.2 Rainfall characteristics and their effects
on soil suction

To reveal the effects of different rain events on soil suction,

the definition of a single rainfall event is important,

because it can affect the quantification of rainfall proper-

ties. Many time intervals can be used for the sorting of

rainfall data, such as 5, 10, 20, 30, 40, 60, 80, 90, 100 min

and 2, 3, 4, 12, 18, 24 h [19]. It is pointed out that different

definition methods of a single rainfall event should be

utilized according to the specific study objectives [14].

Considering that the reduction rate of field-monitored soil

suction is fast, and more data are beneficial to the model

development, in this study, each rainfall event was delin-

eated using the minimum inter-event time (MIT) approach,

where MIT = 6 h. Thus, a period of rainfall bounded by

dry periods of at least 6 h apiece was regarded as a distinct

event. A MIT value of 6 h has been widely adopted in

many studies. According to this criterion, 300 rainfall

events were recorded during the entire monitoring period.

Based on the distribution of rainfall intensity during an

entire rainfall event, rainfall events can be classified into

three patterns—advanced, intermediate, and delayed—as

proposed by Horner and Jens [18]. Rainfall pattern can be

determined using the equation:

Fig. 5 Image processing for tree canopy quantification
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r ¼ TRImax
� T0

T
ð1Þ

where TRImax
is the time of the rainfall’s maximum intensity

and r represents its temporal position; T0 is the start time of

a rainfall event; and T is the rainfall duration. Rainfall

patterns are defined as advanced, intermediate, and delayed

when values of r are 0.0–0.4, 0.4–0.6, and 0.6–1.0,

respectively [3, 13]. This method is simple and convenient

for use in mathematical modeling and analysis, but in

initial statistical analysis, another rainfall pattern, uniform

rainfall pattern, is also considered, in which there is no

obvious peak rainfall intensity during a single rainfall

event. Of the 300 rainfall events obtained from field

monitoring based on the classification criteria, some

included only two data points, making classification of

rainfall patterns difficult. In total, 149 rainfall events whose

rainfall duration had no fewer than three data points were

separated by further screening for analysis of rainfall pat-

terns. As Table 2 shows, these 149 rainfall events com-

prised 55 advanced, 47 delayed, 31 uniform, and 16 central

patterns during the monitoring period. The proportions of

each rainfall pattern for each year, with total rainfall, are

shown in brackets, indicating that the advanced and

delayed patterns were prevalent at the field monitoring site,

with the uniform pattern the second most important and the

central rainfall pattern rarely appearing. Rainfall patterns

offer insights into the distribution of peak rainfall intensity

during a single rainfall event. Based on the happened

regular of rainfall patterns obtained from the statistical

rainfall events at a monitoring site, the safety of a

geotechnical engineering infrastructure can be estimated in

advance.

Under natural environmental conditions, soil, meteo-

rological, and plant parameters are uncontrolled, making

it difficult to find multiple cases in which all conditions

are the same except one control variable. Some extreme

cases can occur, however, under complicated natural cli-

mate conditions. For example, when the initial soil suc-

tion of one wetting process is small, heavy rainfall ensues

of high intensity and long duration, causing a sudden drop

in soil suction. To better analyze different rainfall events’

effects on variations in soil suction, several cases were

selected, as Fig. 6 shows. For these cases, initial soil

suction at the same monitoring point was in the approx-

imate range 20–600 kPa, with corresponding rainfall

events of different temporal patterns featuring appropriate

rainfall amount and intensity. According to Fig. 6, it is

found that rainfall events of various rainfall amounts,

intensities, and temporal patterns can cause different

impacts on the response of vegetated soil that can be

evaluated using two indices: time to descent of soil suc-

tion after the beginning of a single rainfall event (t) and

mean descent rate of soil suction (vs) during a wetting

process. The soil suction cannot immediately decrease

when a rainfall event happens. The time to descent of soil

suction after the beginning of a single rainfall event is a

characteristic physical parameter reflecting the relation-

ships between the status of soil suction and relevant

influential factors. It is noted that the resolution and

accuracy of the time to descent of soil suction are limited

by the monitoring equipment and record setting (i.e., time

interval of data record is 0.5 h). After a rain, an obvious

reduction period of soil suction is observed, and the

reduction rate of soil suction is greatly affected by the

environmental parameters. In this study, the reduction

period starts from a peak soil suction to an initial soil

suction value of a stable stage. The value of a stable stage

is not always the minimum value (e.g., 10 kPa) that can

be measured by the used sensor. The gradient between

two adjacent record data in the reduction period can be

computed, but some values are too large for use in sta-

tistical and modeling analysis. Accordingly, the mean

descent rate of soil suction was calculated by averaging

the gradient values of all two adjacent data in a reduction

period of soil suction and used for further analysis.

Table 3 summarizes rainfall parameters and two indices

representing vegetated soil’s response in eight selected

cases during wetting processes. All other influential factors

being equal, higher rainfall intensity clearly increases the

Table 2 Ratio of different rainfall patterns during the monitoring

period

Year Advanced Central Uniform Delayed

2016 4 (0.33) 0 (0.00) 4 (0.33) 4 (0.33)

2017 28 (0.39) 8 (0.11) 10 (0.14) 25 (0.35)

2018 21 (0.38) 7 (0.13) 14 (0.25) 13 (0.24)

2019 2 (0.18) 1 (0.09) 3 (0.27) 5 (0.45)

Total 55 (0.37) 16 (0.11) 31 (0.21) 47 (0.32)

Figures are presented in the form occurrences (proportion)

Table 1 Results of image processing

Date Radius of tree

canopy/m

Ratio dist./r
(tree canopy)

2016/09/29–2017/05/31 2.273 0.22, 0.66, 1.32

2017/11/21–2018/06/11 1.380 0.36, 1.09, 2.17

2018/06/11–2018/08/22 2.626 0.190, 0.571, 1.142

2018/08/22–2018/10/16 2.309 0.217, 0.65, 1.30

2018/10/23–2018/12/26 2.392 0.209, 0.627, 1.254

2018/12/29–2019/03/24 2.549 0.196, 0.588, 1.177
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Fig. 6 Soil suction variations induced by various rainfalls
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reduction rate of soil suction, as shown by cases 1, 4, and 8

in Table 3. What’s more, temporal rainfall pattern signifi-

cantly influences the response of vegetated soil, as shown

by cases 1–5 in Table 3. Within a certain range of rainfall

intensity, suction reduction in response to a delayed pattern

is slower, but the mean reduction rate of soil suction

induced by a delayed pattern is larger, than with the uni-

form and central patterns, indicating that the response time

of soil suction reduction associated with a single rainfall is

closely related to the rainfall’s pattern. For instance, for

cases 1 and 8 in Table 3, when peak rainfall intensity

appeared in the second half of rainfall duration (delayed

pattern), the time to descent of soil suction was relatively

long. Conversely, the advanced pattern usually triggered a

shorter time to reduction start and quicker reduction of soil

suction, as in case 7. In addition, although the amount and

intensity of the rainfall event for case 6 were larger than for

case 1, the mean reduction rate was smaller, reflecting

differences in initial soil suction and other factors. The

influence of initial soil suction and other factors requires

further analysis and will be elucidated in the following

modeling analysis. Finally, the effects of rainfall pattern,

except rainfall amount and intensity, are significant.

Analysis of variations in shallow soil parameters, initial

state condition, and other factors (e.g., tree canopy, air

temperature) also must be considered.

4 Modeling soil suction variation induced
by rainfall

4.1 Multi-gene genetic programming method

MGGP is a variant of genetic programming. Accordingly,

to better understand the working mechanism of MGGP,

genetic programming is first introduced. As an evolution-

ary algorithm technique [31], GP can automatically pro-

gram a computer model to solve a problem through

Darwinian natural selection [21]. GP was first proposed by

Cramer [10] and attracted much attention with the publi-

cation of Koza’s book [24]. As Fig. 7 shows, the GP

equation is usually given as a syntax tree, consisting pri-

marily of functional and terminal nodes. The former can

include basic arithmetic operators (e.g., ? , –, 9 , 7),

nonlinear functions (e.g., sin, cos, exp, power), and any

other mathematical functions defined by the user, and the

latter primarily contain the arguments for the functions,

such as numerical constants and variables [38]. Functions

and terminals are usually chosen at random. Compared

with other similar techniques, GP has two main advan-

tages, flexibility and interpretability, when used to model

nonlinear systems [15]. Some modeling and prediction

techniques are considered black box methods, because they

generate models that are hard to understand; such tech-

niques traditionally include ANNs and SVMs. Unlike such

techniques, tree models generated by GP are simpler and

are easier to evaluate; what’s more, their complexity can be

controlled by setting maximum GP tree depth and length.

Given input variables and corresponding outputs, GP

can develop a mathematical model based on the user’s set

parameters [38]. The initial population is created through a

blind random search for solutions in the large space of

possible solutions. Once a population of models is created

at random, the GP algorithm evaluates individuals; selects

individuals for reproduction; generates new individuals by

mutation, crossover, and direct reproduction; and finally

creates a new generation in all iterations [7]. The evolu-

tionary process continues by evaluating the fitness of the

new population and starting a new round of reproduction

and crossover. The best program to appeared in any gen-

eration, the best-so-far solution, defines the output of the

GP algorithm [8]. A typical fitness function for assessing

the performance of the generated population is the root-

mean-square error (RMSE), given by

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 Pi � Aij j2

n

s

ð2Þ

where Pi is the estimated value of the ith data point, Ai the

measured value of the ith data point, and n the number of

data points.

Table 3 Two indices representing vegetated soil’s response to dif-

ferent rainfall events

No. Mean

intensity

(mm/h)

Amount/

mm

Pattern

(r)
Start time

to

descent/h

Descent rate

of suction

(kPa/h)

1 1.14 31.2 Delayed

(0.782)

9.5, 5.5,

3.5

48.34, 21.32,

5.46

2 1.49 54.4 Uniform

(0.479)

1.0, 1.0,

1.5

16.61, 5.87,

4.38

3 0.32 2.4 Central

(0.467)

1.0, 1.0,

1.0

2.43, 0.84,

0.98

4 0.31 3.6 Delayed

(0.913)

1.5, 2.5,

6.5

1.88, 0.43,

0.92

5 1.08 36 Uniform

(0.881)

6.5, 3.0,

2.5

18.7, 4.63,

8.73

6 1.66 64 Delayed

(0.714)

1.0, 1.0,

1.0

6.98, 5.12,

3.94

7 7.57 140 Advanced

(0.243)

1.5, 2.0,

1.0

19.10, 7.18,

4.58

8 9.57 62.2 Delayed

(0.692)

1.0, 1.0,

1.5

260.9, 31,

5.65
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As a variant of GP, MGGP can capture the dynamics of

complex systems involving multiple input–output param-

eters [16]. In this study, where the relationship between the

selected output variables and the other six parameters is

complicated, the MGGP method is used to build a com-

putational model whose parameter settings are as simple as

possible. Each model evolved using the MGGP is a

weighted linear combination of the outputs of several GP

trees. The model is linear in its parameters with respect to

coefficients W0, W1, W2, …, Wn despite using nonlinear

terms. Figure 8 shows the MGGP’s working procedure and

principle. Within a certain range, more complicated

parameter settings can help generate an optimal model,

reducing error. For a certain problem, it is better to choose

simpler functions and terminals that still produce accept-

able performance for the obtained solution, simple struc-

ture being more conducive to analysis of the relationship

between different variables. Generally, GP generates a

simpler model than MGGP, but in this study, it is difficult

for GP to develop a good model having high accuracy, as

validated by various trials—primarily because a compli-

cated relationship between multiple variables must be

formulated using limited data. MGGP can accomplish this

difficult task, making it better suited for some complicated

and difficult cases. Accordingly, in this study, MGGP was

employed for multivariate model development, with the

obtained explicit multivariate models used for sensitivity

analysis and parametric study.

4.2 Parameter settings

4.2.1 Settings of input and output variables

Analysis showed that during wetting process of in situ soil

suction, different types of rainfall events generally cause

variations in time to start of descent after the beginning of a

rainfall event and in reduction rate of soil suction. In

practice, time to start of soil suction descent reflects rainfall

water’s rate of infiltration into rooted soil at a certain depth.

When a rainfall event occurs that is of high intensity and

long duration, soil suction decreases sharply, whereas the

curve of soil suction over time drops slowly. The rate of

reduction in soil suction is an important parameter indi-

cating the effects of relevant factors (e.g., rainfall amount,

rainfall intensity, rainfall pattern) on variations in soil

suction. Accordingly, in this study, two characteristic

parameters, time to start of descent of soil suction after the

beginning of a rainfall event, t, and average rate of decline

of soil suction during the wetting process, vs, were taken as

output variables for development of a multivariate model,

as Fig. 9 shows. Although 149 rainfall events were

screened for statistical analysis, only 74 values of t and vs
were selected for model development and analysis over the

entire monitoring period, because soil suction remained

low during some rainfall events, hindering quantification of

time to descent start and of mean descent rate of soil

suction. Particularly, it is noted that the used data in this

study are in chronological order. According to the analysis

results, the training data used for model development

possess enough variability to ensure the acceptable perfor-

mance of the obtained MGGP.

Field monitoring testing indicates that rainfall amount,

intensity, and pattern can critically influence in situ soil

suction variations in a shallow soil layer. What’s more,

variations of in situ soil suction are closely related to local

air temperature, relative humidity, and vegetation condi-

tions. Initial soil suction is also an important parameter

reflecting the initial energy state of unsaturated soil. The

state variable, initial soil suction, plays a controlling role in

the infiltration process, affecting the time to start of descent

of soil suction after the beginning of a single rainfall event

observed in field monitoring [9, 29]. Accordingly, as

Fig. 10 shows, six parameters were selected as the input

variables for multivariate modeling in this study: rainfall

amount (x1), mean rainfall intensity (x2), normalized value

of rainfall pattern (x3), ratio of distance from tree to radius

of tree canopy (x4), air temperature (x5), and initial soil

suction (x6).

Best practices for multivariate modeling require a low

level of relation between each pair of input variables.

Multicollinearity between input variables was assessed

using variance inflation factors (VIF), based on the fol-

lowing criteria: VIF = 1/T\ 5 indicates that multi-

collinearity problems are not likely to exist [22]. The

relationship among VIF, tolerance values (T), and corre-

lation coefficient (R) can be described as VIF = 1/T, T = 1

– R2. Table 4 gives the results of multicollinearity evalu-

ation, showing that there is low correlation between each

pair of selected input variables, reflecting good modeling

practice.

GP equation: (9+x1)×(7-x2)

Functional nodes

Terminal nodes

interior nodes

exterior leaves

Fig. 7 A typical genetic programming (GP) syntax tree
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4.2.2 Parameter settings for MGGP

Among the total data selected for the two models’ devel-

opment, 60 sets of data were taken as the training data for

building the t-model and vs-model, respectively, with the

remained 14 sets of data used as the testing data for vali-

dating the reliability of obtained multivariate models.

Table 5 shows MGGP parameter settings for the two

models. The probability rates of crossover, mutation, and

reproduction were set at 85%, 10%, and 5%, respectively,

for maximum model efficiency [28, 32]. Other parameter

settings were determined by trial and error with a view to

finding an optimal model efficiently and economically,

developing a model with better fitness and simpler

structure.

4.3 MGGP modeling and performance
evaluation

Based on the variables and parameters set for the MGGP

program, two explicit multivariate models were obtained to

formulate the relationships between two output variables,

the time to descent of soil suction after the beginning of a

single rainfall event (t), the average reduction rate of soil

suction (vs), and the selected six influential parameters. It

has been demonstrated that MGGP performs well at fitting

high discrete data. However, owing to its working princi-

ple, it usually gives a relatively complicated explicit for-

mula for the given parameter settings. Two multivariate

models were obtained using MGGP, based on simplified

parameter settings within an acceptable degree of error:

Data preparation

Parameter settings for GP 

Randomly initialize population

Terminate?

Select good models 
based on fitness

No

Yes

Calculate fitness 
values for all models

Generate new models

Reproduction,
mutation and 

crossover

Return the 
optimal solution

Good models
Gene 1 Gene 2 Gene n

MGGP model = W0+W1(Gene 1)+W2(Gene 2)+Wn(Gene n)

Return the 
optimal solution

MGGP operation

GP results

Fig. 8 Working procedure of the MGGP method

Acta Geotechnica (2021) 16:3601–3616 3609

123



t ¼ 0.085x2x
2
4x6=ðx1x5 sin x6Þ � 0:255ðx5

þ 147:177Þ=ðsin x5Þ2

� ðx6 � 705:058Þ � 1:619x6=ðx5ðsin x5Þ2Þðx5 þ x6Þ
� 0:082ðx5=x3Þ2 sin x4=ðx6 � 842:092Þ þ 1:439

ð3Þ

vs ¼ 0.203/ sin x1 � 0:013x6ð1þ x3Þ þ 0:013x4=x
3
3

þ 1:02e� 4x3x
2
5x6 � 3:34e� 9x1x

3
6ðx1 � x6Þ=x6

� 144:738Þ
þ 3:24e� 3x6ðx2 � x4Þ=x2= sinðx6 þ 101:079Þ þ 1:238

ð4Þ

Figure 11 compares the estimated and measured values

of two selected parameters representing variations in soil

suction. Figure 12 evaluates training and testing data for

the obtained t-cycle and vs-cycle models. In addition to the

fitness function, three metrics are used to estimate the

performance of the obtained multivariate models: mean

absolute percentage error [MAPE(%)] [Eq. (5)], relative

error (%) [Eq. (6)], and coefficient of determination (R2)

[Eq. (7)],
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soil response

15 30 45 601 74
0

20

40

60

80

R
ai

nf
al

l a
m

ou
nt

 /m
m

Number of data
15 30 45 601 74

0

2

4

6

8

10

M
ea

n 
ra

in
fa

ll 
in

te
ns

ity
 (m

m
/h

r)

Number of data
(a)                (b)

15 30 45 601 74
0.0

0.2

0.4

0.6

0.8

1.0

1.2

r v
al

ue
 fo

r r
ai

nf
al

l p
at

te
rn

Number of data
15 30 45 601 74

0

1

2

3

4

D
is

t./
r(

ca
no

py
)

Number of data

(d)(c)

15 30 45 601 74
0
5

10
15
20
25
30
35

Te
m

pe
ra

tu
re

 /°
C

Number of data
15 30 45 601 74

0
100
200
300
400
500
600
700

In
iti

al
 s

oi
l s

uc
tio

n 
/k

Pa

Number of data

(e)             (f)

Fig. 10 Selected six input variables for modeling analysis

Table 4 Multicollinearity evaluation of input variables used for

multivariate modeling

Variables Multicollinearity diagnostics

R T VIF

x1 and x2 0.037 0.999 1.001

x1 and x3 0.095 0.991 1.009

x1 and x4 0.224 0.950 1.053

x1 and x5 - 0.129 0.983 1.017

x1 and x6 0.421 0.823 1.215

x2 and x3 0.092 0.991 1.009

x2 and x4 - 0.003 1.000 1.000

x2 and x5 - 0.316 0.900 1.111

x2 and x6 0.032 0.999 1.001

x3 and x4 - 0.057 0.997 1.003

x3 and x5 0.046 0.998 1.002

x3 and x6 0.185 0.966 1.035

x4 and x5 0.054 0.997 1.003

x4 and x6 0.080 0.994 1.006

x5 and x6 0.012 1.000 1.000
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MAPE ¼ 1

n

X

n

i¼1

Ai � Pi

Ai

�

�

�

�

�

�

�

�

� 100 ð5Þ

Relative error ¼ Pi � Aij j
Ai

� 100 ð6Þ

R2 ¼
Pn

i¼1 ðAi � AiÞðPi � PiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 ðAi � AiÞ2

Pn
i¼1 ðPi � PiÞ2

q

2

6

4

3

7

5

2

ð7Þ

where Ai and Mi are the measured and estimated values,

respectively; �Ai and �Pi the mean values of the measured

and estimated values, respectively; and n the number of

training or testing samples. It can be concluded that the two

multivariate models obtained by MGGP have learned the

relationships between the two selected output variables and

the six influential parameters. Although two multivariate

models developed using limited data behave relatively poor

estimation or prediction for testing data, they can be used

to estimate or predict soil suction’s response to various

rainfall events with an acceptable degree of error. What’s

more, two models can be used to better analyze each

influential parameter’s effect on variations in soil suction in

shallow soil layers.

5 Sensitivity analysis and parametric study

5.1 Contribution of each input to t and vs

Sensitivity analysis, which can be used to study how

variations in the output variable can be attributed to dif-

ferent input variables [37], offers insights into the rela-

tionships between input and output variables in an obtained

model. For a complicated model consisting of several types

of variables, global sensitivity analysis (GSA) usually

attracts more interest for its ability to reflect integrated

sensitivity over the entire input variable space

[6, 30, 36, 37]. Among GSA methods, the variance-based

method is seen as a versatile and reliable indicator of

parameter importance as well as quantitative sensitivity

indices with which to demonstrate the effect of a single

input and the coupled effects of different parameters

[12, 30]. The Fourier amplitude sensitivity test (FAST) [11]

and Sobol sensitivity [40] are both robust approaches to

performing variance-based global sensitivity analysis [6].

This study uses these methods to investigate each input

variable’s sensitivity to output variables based on two

multivariate models.

Figures 13 and 14 show the results of sensitivity anal-

ysis, with both methods giving similar results. Air

Table 5 Parameter settings of MGGP for the t and vs models

Parameters Values

Runs 20

Population size 3000

Number of generations 1000

Max genes 4

Function set Times, minus, plus, division, sin,

power

Terminal set [- 1000, 1000]

Reproduction probability

rate

0.05

Crossover probability rate 0.85

Mutation probability rate 0.10
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Fig. 11 Values measured and calculated by MGGP
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temperature (x5) has the greatest impact on time to start of

descent of soil suction after the beginning of a rainfall

event (t), and initial soil suction (x6) is the second most

important parameter. The other four parameters, rainfall

amount (x1), mean rainfall intensity (x2), rainfall pattern

(x3), and ratio of distance from tree to radius of tree canopy

(x4), have a similar sensitivity to the output (t), indicating

that temporal rainfall pattern and the vegetation parameter

are almost as important as rainfall amount and rainfall

intensity. During the wetting process, initial soil suction

(x6) and rainfall amount (x1) are the first and second most

important influences on the descent rate of soil suction,

respectively. Rainfall pattern (x3) and the ratio of distance

from tree to radius of tree canopy (x4) strongly influence

the descent rate of soil suction. Air temperature (x5) has a

greater influence than mean rainfall intensity (x2) on the

descent rate of soil suction.

5.2 Effect of atmosphere and vegetation factors

In order to better understand the behavior of the developed

MGGP models, parametric analysis can be performed to

reveal the interaction mechanism between different

parameters in soil–vegetation–atmosphere interaction, and

the rationality and effectiveness of the two obtained mul-

tivariate models can be verified [44]. Based on the two

multivariate models obtained using MGGP, rooted soil’s

response to different influential factors during wetting

processes is investigated by changing individual input

variables keeping other variables constant. In this study,

when one input variable varies according to the monitored

data values, other input variables are kept as the minimum,

mean, and maximum values calculated using the obtained

data from the field monitoring. However, it is noted that

because the relationships between the selected input and

output variables are complicated, the results of parametric

analysis cannot reflect the whole variation ranges of out-

puts induced by input variables. Table 6 shows the mini-

mum, mean, and maximum values of input variables,

including rainfall amount (x1), mean rainfall intensity (x2),

rainfall pattern (x3), the ratio of distance from tree to radius

of tree canopy (x4), air temperature (x5), and initial soil

suction (x6).

Figures 15 and 16 show the results of parametric anal-

ysis for two multivariate models. To better display varia-

tions in trends of curves under different settings, several

longitudinal axes are broken and one marker is provided, as

can be seen in Fig. 15c, d. From Fig. 15a, b, the time to

start of descent of soil suction decreases with rainfall

amount and mean rainfall intensity at a certain range, and

when rainfall amount and intensity exceed a certain value,

time (t) remains at a small constant value. Figure 15c

indicates that the advanced rainfall pattern can cause more

a rapid response of rooted soil than the intermediate and

delayed rainfall patterns when other variables reach a

certain value. As Fig. 15d shows, when values of variables

other than the tree canopy-related parameter are below a

certain value, the rooted soil closer to the edge of tree

canopy (with ratio of distance from tree to radius of tree

canopy 1.2–1.4) responds slower to rainfall events. Inter-

ruptions of tree canopy are more prominent when other

influential parameters exceed a certain value. The higher

air temperature and larger initial soil suction can lengthen

the time to start of descent (Fig. 15e, f).

As Fig. 16a shows, the closer the monitoring point to the

tree, the smaller the change in soil suction, indicating that

interruptions in the tree canopy play a key role but that

rainfall amount is less influential when other variable val-

ues are below a certain value. Conversely, when other input

variables are at their maximum, the descent rate of soil

suction clearly increases with rainfall amount. Figure 16b

shows the inverse change induced by rainfall intensity at a

certain range (\ 2 mm/h) when other variables are at dif-

ferent values. When mean rainfall intensity is less than

2 mm/h, other variables remaining at larger values indicate

that a single rainfall event of delayed pattern with longer

duration (large rainfall amount and small rainfall intensity)

reduces the descent rate of soil suction at the monitoring
Fig. 13 Effects of input variables on time to start of descent with

different sensitivity analysis methods

Fig. 14 Effects of input variables on descent rate of soil suction with

different sensitivity analysis methods
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point farther from the tree, and vice versa when the value

of variables other than mean rainfall intensity is below a

certain value. However, the descent rate of soil suction

remains almost constant with mean rainfall intensity

exceeding 2 mm/h. As Fig. 16c shows, different rainfall

pattern values affect variations in soil suction differently. If

pattern value is less than 0.2, the descent rate of soil suction

decreases with pattern value, but if not then the reverse.

Figure 16d shows that the tree canopy significantly influ-

ences variations in soil suction when rainfall parameters

are at a low level. Variations in soil suction are more severe

with increases in air temperature (Fig. 16e). When other

influential parameters are larger, then the higher the initial

soil suction, the more quickly the slope of soil suction’s

descent rate increases. Conversely, a reduction in rainfall

near the tree is unlikely to cause a significant descent in

soil suction when initial soil suction is large (Fig. 16f). In

addition, it is noted that the results of parametric analysis

are limited by the used data for model development, which

makes the analysis results have particularities.

6 Conclusions

A field monitoring test was conducted to record and

quantify soil suction variations at three monitoring points

(0.5 m, 1.5 m, and 3.0 m from the tree, 0.2 m below the

ground surface), corresponding rainfall events, tree canopy,

and air condition. Characteristics of rainfall at the moni-

toring site and effects on soil suction variation were ana-

lyzed, after which a machine learning method, MGGP, was

used to develop multivariate models. Finally, based on

global sensitivity analysis and parametric study of two

obtained multivariate models, the effects of rainfall
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Fig. 15 Parametric analysis of the t MGGP model
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Fig. 16 Parametric analysis of the vs MGGP model

Table 6 Settings of inputs’ values for parametric study

Input variables Minimum Mean Maximum

Rainfall amount, x1/mm 0.400 11.024 64.000

Mean rainfall intensity, x2 (mm/

h)

0.096 1.496 9.569

Rainfall pattern, x3 0.077 0.566 1.000

Dist./ r(tree canopy), x4 0.190 0.837 2.170

Air temperature, x5/�C 13.660 22.334 31.318

Initial soil suction, x6/kPa 11.301 183.499 625.931
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parameters, tree canopy, and air condition on soil suction

variation were revealed.

(a) Two multivariate models created through the MGGP

method can be used to estimate and predict the time

to start of descent of soil suction (t) and the mean

descent rate of soil suction (vs) within an accept-

able degree of error, showing that for a complicated

system, MGGP is suitable for developing a compu-

tational model under conditions of limited data.

(b) Global sensitivity analysis shows that as a stress state

variable, initial soil suction plays a significant role in

evaluating rooted soil’s response to different types of

rainfall events. Rainfall pattern’s effect is similar to

or greater than those of rainfall amount and intensity,

underscoring the importance of rainfall pattern in

analysis of variations in shallow soil parameters.

(c) Parametric study indicates that the advanced rainfall

pattern can cause a more rapid response of rooted

soil than intermediate and delayed rainfall patterns

when other variable values reach a certain value.

Interruptions in tree canopy are more prominent

when other influential parameters exceed a certain

value. Higher air temperature and larger initial soil

suction can lengthen the time to start of descent.

(d) The impacts of rainfall amount, tree canopy, air

temperature, and initial soil suction on average

descent rate of soil suction are monotonic. However,

the influence of mean rainfall intensity is limited by

changes in other variables’ values. Rainfall pattern’s

impact on the descent rate of soil suction is not

monotonic. The tree canopy significantly affects soil

suction decrease when rainfall parameters are at a

low level.

This study emphasizes the response of vegetated soil’s

parameters to different rainfall events and supports

implementation of a machine learning method, MGGP, for

evaluation of vegetated soil response. A short monitoring

time produced limited data, limiting the generalizability of

the proposed multivariate models and the conclusions

derived from their use. In future, more data collected from

the field monitoring test or laboratory test with artificial

rainfall can be used to further verify the performance of the

obtained MGGP model. The results of the analysis offer

insights into the effects of rainfall events on the properties

of shallow soil, with the proposed multivariate models

useful for evaluating and predicting variations in shallow

soil’s parameters.
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