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Abstract
Closed-form expressions for poroelastic coefficients are derived for anisotropic materials exhibiting single and double

porosity. A novel feature of the formulation is the use of the principle of superposition to derive the governing mass

conservation equations from which analytical expressions for the Biot tensor and Biot moduli, among others, are derived.

For single-porosity media, the mass conservation equation derived from the principle of superposition is shown to be

identical to the one derived from continuum principle of thermodynamics, thus confirming the veracity of both formu-

lations and suggesting that this conservation equation can be derived in more than one way. To provide further insight into

the theory, numerical values of the poroelastic coefficients are calculated for granite and sandstone that are consistent with

the material parameters reported by prominent authors. In this way, modelers are guided on how to determine these

coefficients in the event that they use the theory for full-scale modeling and simulations.
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1 Introduction

A large number of existing reservoirs may be categorized

as naturally fractured [5, 15, 16, 21, 22, 24–26,

32–34, 44, 45]. By this, we usually refer to materials with

distributed discontinuities that they exhibit two very dis-

tinct porous networks. Roughly speaking, the first porous

network is formed of penny-shaped cracks or fissures

mainly due to tectonic activities, while the second is

formed of rounded pores [20]. As for their characteristics,

the fracture networks are characterized by low storage and

high permeability, whereas the porous blocks are charac-

terized by high storage and low permeability [55]. As a

result, the behaviors of fractured reservoirs are consider-

ably different from those of conventional reservoirs [25],

which could be reflected in the soil consolidation,

groundwater flow, solute transport, and gas/oil production

[3]. Until now, the modeling of fractured reservoirs is still

one of the most challenging activities in geomechanics and

geosciences.

Over the last 50 years, numerous models with different

degrees of sophistication have been proposed for porous

materials, which can be divided into three categories. In the

earliest category, a fractured system was grossly treated as

an equivalent single-porosity continuum [40], and the

existence of fractures or cracks is reflected in the material

coefficients such as stiffness, which may be orders of

magnitude different from those of a homogeneous medium

[3]. However, this approach has a number of drawbacks

such as the identification of the representative blocks and

the determination of equivalent permeability values [3, 32].

On the contrary, the second category is known as the

explicit (direct) modeling approach such as the discrete

fracture network [6, 23, 27, 47], which allows one to

account for each length scale directly within a model.

However, the very large number of micro-fractures in the

unconventional reservoir [37] could make the direct sim-

ulation of discrete fracture networks computationally pro-

hibitive [1, 2].

The third category is the double-porosity model [4, 50],

which assumed that two pore regions overlap in a com-

putational domain. The main idea is that for every physical
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point in space, there may be two scales of porosity, one

representing the average porosity in the fracture network

and the other in the porous blocks [20]. This idealization

may be thought of as an extreme case of the crack density

model of Wong [53] when the micro-fracture density

becomes very high. The mathematical basis for this model

is known as mixture theory in which any material in a

composite medium that is significantly different from those

of other intervening materials deserves a separate

description. This leads to two mass conservation equations,

one for each of the foregoing porosity regions. These

equations are coupled by a leakage (source/sink) term

[30, 36, 37, 42]. Nowadays, the double-porosity concept

has been widely used in civil engineering, energy resource

engineering, and many other related fields of engineering

[3, 32].

Previous formulations of poroelasticity in double-

porosity media have assumed isotropy in both deformation

and fluid flow [3, 7, 18, 19, 25, 29, 31, 35, 36, 46, 52, 59].

However, many geologic materials have exhibited aniso-

tropy in either or both deformation and fluid flow responses

[14, 28, 41, 43, 49, 54, 57, 60]. In this work, we consider a

special case of anisotropy known as transverse isotropy, or

cross-anisotropy, which is characterized by a plane on

which the response is isotropic and an axis perpendicular to

this plane on which the response is anisotropic. For a sin-

gle-porosity medium, the effect of transverse isotropy has

already been incorporated into the poroelasticity equations

[17, 49, 58]. For a double-porosity medium, however, its

effect has not been clearly elucidated in light of the limi-

tations imposed by current laboratory testing procedures.

The aim of this paper is to address the above-mentioned

knowledge gap in the poroelasticity of anisotropic double-

porosity media. A novel feature of the mathematical for-

mulation is the use of the principle of superposition in

combination with mixture theory to arrive at the governing

mass balance equations. The mathematical formulation is

innovative because it leads to a result that is identical to

what has been developed previously using continuum

principles of thermodynamics [58], but following a dif-

ferent route. It is the first time, to the authors’ knowledge,

that these new formulas and interpretations are presented

within the context of poromechanics.

However, we emphasize at the outset that the principle

of superposition is applied in this paper at a fixed

hydromechanical state where only mechanical deformation

is involved, and not from one hydromechanical state to

another where dissipative processes would render the

principle inapplicable. Furthermore, we restrict the devel-

opments to linear elasticity. Nevertheless, even with the

assumption of poroelasticity, the parameters or coefficients

of a model are usually arbitrarily assumed in the literature,

and their fundamental origins were not clearly established.

In this respect, the results of this paper are useful in

shedding light onto the physical meaning of the governing

conservation equations and the relevant poroelastic

coefficients.

The paper is organized as follows. Based on mixture

theory, mass conservation equations are first formulated in

Sect. 2 for single-porosity media, where the evolution laws

for the volume fractions are derived. To this end, we make

use of the principle of superposition for anisotropic single-

porosity media to obtain the poroelastic coefficients and

compare them with those derived in [17, 58]. In Sect. 3, we

extend the formulation to anisotropic double-porosity

media and derive the corresponding poroelastic coefficients

analytically. The elastic moduli for transversely isotropic

materials are discussed in Sect. 4, where the relevant

poroelastic coefficients for two types of rock are also cal-

culated and compared with those derived by prominent

authors [8, 29]. Finally, conclusions are given in Sect. 5.

2 Single-porosity media

In the following discussion and throughout this paper, we

assume that the solid deformation is infinitesimal in the

sense that the domain of the problem does not change

appreciably. We denote by V a representative elementary

volume (REV) consisting of a mixture of solid and fluid.

Let /s and /f represent the volume fractions of solid and

fluid, respectively, defined as

/s ¼ Vs

V
; /f ¼ Vf

V
; ð1Þ

where Vs and Vf are volumes of solid and fluid in V,

respectively. The closure condition on the volume fractions

is

/s þ /f ¼ 1 : ð2Þ

The partial mass densities of the solid and fluid are given

by

qs ¼ /sqs ; qf ¼ /fqf ; ð3Þ

where qs and qf are the intrinsic mass densities of solid and

fluid, respectively. The total mass density of the mixture is

given by the sum

q ¼ qs þ qf : ð4Þ

We denote the material time derivatives following the

motions of solid and fluid by dð�Þ=dt and df ð�Þ=dt,
respectively. The mass balance equations for solid and

fluid, assuming no mass exchanges between them, take the

form
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dqs

dt
þ qsr � v ¼ 0 ; ð5Þ

dfqf

dt
þ qfr � vf ¼ 0 ; ð6Þ

where v and vf are the intrinsic velocities of solid and fluid

particles, respectively. Written in terms of qs and qf , the
conservation equations take the form

d/s

dt
þ /s

qs

dqs
dt

þ /sr � v ¼ 0 ; ð7Þ

df/f

dt
þ /f

qf

dfqf
dt

þ /fr � vf ¼ 0 : ð8Þ

Assuming barotropic flow, the constitutive equation relat-

ing density and pressure in the solid is given by

1

qs

dqs
dt

¼ 1

Ks

dps
dt

; ð9Þ

where ps and Ks are the intrinsic pressure and bulk modulus

in the solid. Substituting in Eq. (7) yields

d/s

dt
þ /s

Ks

dps
dt

þ /sr � v ¼ 0 : ð10Þ

For the fluid, we take a similar intrinsic constitutive rela-

tion of the form

1

qf

dfqf
dt

¼ 1

Kf

df p

dt
; ð11Þ

where p ¼ pf is the intrinsic pressure in the fluid. Substi-

tuting into Eq. (8) gives

df/f

dt
þ /f

Kf

df p

dt
þ /fr � vf ¼ 0 : ð12Þ

We recall that the material time derivative following the

fluid motion is related to the material time derivative fol-

lowing the solid motion through the equation

df ð�Þ
dt

¼ dð�Þ
dt

þrð�Þ � ~vf ; ð13Þ

where ~vf ¼ vf � v is the relative velocity of fluid with

respect to solid. Thus, for the fluid we obtain

d/f

dt
þ /f

Kf

dp

dt
þ 1

Kf
rpð Þ � qþr � qþ /fr � v ¼ 0 ; ð14Þ

where

q ¼ /f ~vf ð15Þ

is the superficial Darcy velocity.

The total Cauchy stress tensor r may be written as the

sum of partial stress tensors in the form

r ¼ /srs � /f p1 ; ð16Þ

where rs is the intrinsic stress in the solid (force in solid

per unit area of solid), and 1 is the second-order identity

tensor. We note that the intrinsic solid stress has the form

rs ¼ �ps1þ ss ; ð17Þ

where ps is the intrinsic solid pressure and ss is the devi-

atoric component of rs. However, it is also common

knowledge that part of the total stress tensor r may be

ascribed to an effective stress r0 that depends on solely on

the deformation of the solid frame. For linear elasticity, the

relation takes the form

r0 ¼ Ce : � ; ð18Þ

where � is the small strain tensor describing the deforma-

tion of the solid frame, and Ce is a rank-four tensor (with

major and minor symmetries) characterizing the elastic

isotropy or anisotropy of the porous material, see Sect. 4.

To determine the component of fluid pressure p that

complements the effective stress r0, we make use of the

principle of superposition shown in Fig. 1. In loading

configuration (a) of this figure, the porous volume is sub-

jected to a total stress of rþ p1ð Þ with no internal fluid

pressure within the pores, thus resembling a dry condition.

In this case, the load is borne completely by the solid

frame. In loading configuration (b), on the other hand, a

total stress of �p1 is applied to the same volume that

generates an internal fluid pressure p within it. This second

load is borne completely by the solid constituent. Super-

position of these two loading configurations yields the

original problem.

Since the internal fluid pressure is zero for loading

configuration (a), the strain in the solid matrix can be

calculated as

�ðaÞ ¼ Ceð Þ�1: rþ p1ð Þ ; ð19Þ

where Ceð Þ�1
is the elastic compliance tensor under dry (or

drained) condition. For loading configuration (b), on the

other hand, the solid matrix is subjected to isotropic

deformation equal to the isotropic strain in the solid con-

stituent, i.e.,

�ðbÞ ¼ � p

3Ks
1 : ð20Þ

The sum of these two strains represents the total strain in

the solid frame, i.e.,

� ¼ �ðaÞ þ �ðbÞ ¼ Ceð Þ�1: rþ p1ð Þ � p

3Ks
1 : ð21Þ

Pre-multiplying both sides by Ce yields the effective

Cauchy stress,
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r0 ¼ Ce : � ¼ rþ pb ) r ¼ r0 � pb ; ð22Þ

where

b ¼ 1� Ce : 1

3Ks

ð23Þ

is the same Biot tensor derived by Zhao and Borja [58].

However, it must be noted that Zhao and Borja employed

continuum thermodynamics to arrive at the above result,

whereas the present formulation makes use of the super-

position principle. That the same result is obtained via two

different methods is noteworthy since one result verifies

the other, see also the expression derived by Cheng [17].

We note that for isotropic elasticity the Biot tensor reduces

to

b ¼ 1� K

Ks

� �
1 ¼ a1 ; ð24Þ

where K is the elastic bulk modulus of the solid frame and

a ¼ 1� K=Ks is the familiar Biot coefficient, see Borja

[10]. For rocks, typical values of a range from 0.6 to 0.9

[39].

We next use the same superposition principle to evaluate

the remaining dependent variable in the balance of mass for

the solid phase, namely, either the mass density qs in

Eq. (7) or the pressure ps in Eq. (10). Let us first define hs
as the intrinsic volumetric strain in the solid constituent,

which can be decomposed into hðaÞs and hðbÞs following the

superposition procedure. For loading configuration (a)

shown in Fig. 1, the intrinsic Cauchy stress in the solid

constituent is rþ p1ð Þ=/s, while the intrinsic mean normal

stress is rþ pð Þ=/s, where r ¼ trðrÞ=3. Thus, the intrinsic
volumetric strain in the solid (assuming a constant Ks) is

hðaÞs ¼ 1

Ks

rþ p

/s ¼ 1

Ks

�/sps � /f pþ p

/s ¼ p� ps
Ks

: ð25Þ

For loading configuration (b), the solid constituent is sub-

jected to the fluid pressure p, so

hðbÞs ¼ � p

Ks
: ð26Þ

Adding the two and taking the material time derivative

following the solid motion yields

dhs
dt

¼ dhðaÞs

dt
þ dhðbÞs

dt

¼ 1

/sKs

dr
dt

þ /f dp

dt
� p� psð Þ d/

s

dt

� �
:

ð27Þ

From solid mechanics, we know the intrinsic volumetric

strain rate in solid dhs=dt is related to the change in qs
through the following equation, assuming the solid mass is

conserved

dhs
dt

¼ � 1

qs

dqs
dt

: ð28Þ

After substituting Eqs. (27) and (28) into Eq. (7) and col-

lecting terms, we obtain

1þ p� ps
Ks

� �
d/s

dt
� 1

Ks

dr
dt

þ /f dp

dt

� �
þ /sr � v ¼ 0 :

ð29Þ

We note that

p� ps
Ks

¼ hðaÞs � 1 ; ð30Þ

see [58]. Thus, the balance of mass for solid takes the

simpler form

d/s

dt
� 1

Ks

dr
dt

þ /f dp

dt

� �
þ /sr � v ¼ 0 : ð31Þ

The final step is to determine an expression for dr=dt.
From the effective stress relation Eq. (22), we obtain

1 : Ce : �

3
¼ rþ 1� 1 : Ce : 1

9Ks

� �
p ð32Þ

by taking the trace of both sides. Next, by taking the

Fig. 1 Superposition in poroelasticity: Phase diagram for a single-porosity volume with solid represented by the shaded area and pores

represented by the white area. Volume is subjected to a tensorial stress indicated above each diagram; number inside the white area is the

generated pore fluid pressure
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material time derivatives of both sides and solving, we

obtain

dr
dt

¼ 1 : Ce

3
:
d�

dt
� 1� 1 : Ce : 1

9Ks

� �
dp

dt
: ð33Þ

Substituting back into Eq. (31) and collecting terms yields

d/s

dt
þ b
Ks

dp

dt
� 1 : Ce

3Ks
:
d�

dt
þ /sr � v ¼ 0 ; ð34Þ

where

b ¼ 1� /f � 1 : Ce : 1

9Ks
: ð35Þ

For the fluid phase, we add Eqs. (14) and (34) to obtain

b :
d�

dt
þ 1

M
dp

dt
þ 1

Kf
rpð Þ � qþr � q ¼ 0 ; ð36Þ

where M is the Biot modulus, defined as

1

M ¼ b
Ks

þ /f

Kf
: ð37Þ

Equation (36) can be used in combination with balance of

linear momentum to solve coupled systems with the u=p

formulation [51, 58].

3 Double-porosity media

We denote by V a representative elementary volume (REV)

consisting of a mixture of solid with double porosity. Let

/s, /m, and /M represent the volume fractions of solid,

nanopores, and micro-fractures, respectively, defined as

/s ¼ Vs

V
; /m ¼ Vm

V
; /M ¼ VM

V
; ð38Þ

where Vs, Vm, and VM are the volumes of solid, nanopores,

and micro-fractures contained in V. The closure condition

on the volume fractions is

/s þ /m þ /M ¼ 1 : ð39Þ

The pore fractions represent the proportion of pore volume

occupied by the nanopores and micro-fractures and are

given by

wm ¼ /m

1� /s ; wM ¼ /M

1� /s : ð40Þ

The denominator in these two expressions, 1� /s, is the

porosity / of the mixture. The closure condition on the

pore fractions is

wm þ wM ¼ 1 : ð41Þ

In what follows, we assume that the nanopores and micro-

fractures are filled with the same type of fluid, which could

be either liquid or gas. The partial mass densities of the

solid, fluid in the nanopores, and fluid in the micro-frac-

tures are given by

qs ¼ /sqs ; qm ¼ /mqm ; qM ¼ /MqM ; ð42Þ

where qs, qm, and qM are the intrinsic mass densities of the

solid, fluid in the nanopores, and fluid in the micro-frac-

tures, respectively. The total mass density of the mixture is

given by the sum

q ¼ qs þ qm þ qM : ð43Þ

Denoting the material time derivatives following the

motions of solid and fluids by d �ð Þ=dt, dm �ð Þ=dt, and

dM �ð Þ=dt, the mass balance equations take the form

dqs

dt
þ qsr � v ¼ 0 ; ð44Þ

dmqm

dt
þ qmr � vm ¼ cm ; ð45Þ

dMqM

dt
þ qMr � vM ¼ cM ; ð46Þ

where v, vm, and vM are the velocities of solid, fluid in the

nanopores, and fluid in the micro-fractures, respectively.

We assume in the foregoing equations that the solid mass is

conserved, and that the nanopores and micro-fractures

exchange mass at the rates if cm and cM per unit total

volume. For a closed system,

cm þ cM ¼ 0 : ð47Þ

Assuming barotropic flow on the solid and fluids once

again, we can write the solid mass balance equation in

terms of hs defined in Sect. 2 as

d/s

dt
� /s dhs

dt
þ /sr � v ¼ 0 ; ð48Þ

and the fluid mass balance equations in terms of the

intrinsic fluid pressures pm and pM as

d/m

dt
þ /m

Km

dpm
dt

þ 1

Km
rpmð Þ � qm þr � qm

þ /mr � v ¼ cm

qm
;

ð49Þ

d/M

dt
þ /M

KM

dpM
dt

þ 1

KM
rpMð Þ � qM þr � qM

þ /Mr � v ¼ cM

qM
;

ð50Þ

where

qm ¼ /m vm � vð Þ ; qM ¼ /M vM � vð Þ ð51Þ
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are the superficial Darcy velocities; and Km and KM are the

intrinsic fluid bulk moduli.

To derive the effective stress equation, a key aspect is to

recognize the statistically distributed nature of the pores,

which allows the double-porosity structure to be repre-

sented by a single-porosity structure with a weighted pore

fluid pressure. Consider, for example, the superposition

shown in Fig. 2. Here, the double-porosity structure is

replaced with a statistically equivalent single-porosity

structure with a weighted pore fluid pressure of �p given by

[11]

�p ¼ wMpM þ wmpm : ð52Þ

Thus, we can use the results from Sect. 2 directly by

replacing p with �p rather than repeating the whole process

of Sect. 2. Specifically, from Eq. (22), we have

r ¼ r0 � �pb ¼ r0 � wMpMb� wmpmb ; ð53Þ

where b is the same Biot tensor given in Eq. (23). From

Eq. (34), we have

d/s

dt
þ b
Ks

d�p

dt
� 1 : Ce

3Ks
:
d�

dt
þ /sr � v ¼ 0 ; ð54Þ

where b is already defined in Eq. (35) with /f replaced by

total porosity / ¼ /M þ /m. Note here the time derivative

of �p generates an additional term which is the time

derivative of pore fraction dwM=dt, and this term is unique

to double-porosity formulation.

Remark An alternative approach that does not explicitly

employ volume averaging of the pore pressures, such as

that shown in Eq. (52), is presented in ‘‘Appendix’’. This

latter formulation reinforces the understanding that the

principle of superposition does not depend on the sequence

of loading, and that there is more than one way by which

one can get to the same result.

In order to evaluate d/m=dt and d/M=dt of Eqs. (49)

and (50), we must develop a constitutive law for dwM=dt.

We refer to the phase diagram shown in Fig. 3, where the

REV is partitioned into two superimposed regions repre-

senting the nanopore and micro-fracture skeletons. These

two regions must be distinguished from the nanopore and

micro-fracture volumes, which are mainly pore spaces

occupied by fluids. The nanopore and micro-fracture

skeletons are themselves superimposed solids and pore

spaces. Let Vnp and Vmf represent respective portions of the

total volume V occupied by the nanopore and micro-frac-

ture skeletons. The corresponding volume fractions are

um ¼ Vnp

V
; uM ¼ Vmf

V
; um þ uM ¼ 1 : ð55Þ

Since both volume fractions are statistically distributed

throughout the entire volume, we would require the

porosities are the same for the nanopore and micro-fracture

skeletons, i.e.,

/m

um
¼ /M

uM
; ð56Þ

which implies that um � wm and uM � wM .

We next consider following trivial decomposition

r ¼ wmrþ wMr ; ð57Þ

and assume the following decomposition for r0

r0 ¼ wmr0m þ wMr0M ; ð58Þ

where r0m and r0M are effective stresses in the nanopore and

micro-fracture skeletons of Fig. 3. Rewriting the effective

stress relation Eq. (53) in the expanded form using above

two equations gives

wm rþ pmbð Þ þ wM rþ pMbð Þ ¼ wmr0m þ wMr0M : ð59Þ

This equation holds for any wM (and wm), so we must have

rþ pmb ¼ r0m ; rþ pMb ¼ r0M ; ð60Þ

which means that

Fig. 2 Statistically distributed pores allow a double-porosity structure to be replaced with a single-porosity structure with mean pore fluid

pressure �p
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r0m � pmb ¼ r0M � pMb : ð61Þ

Taking the trace and applying the material time derivative

with respect to solid motion gives

dr0m
dt

� dr0M
dt

¼ dpm
dt

� dpM
dt

� �
b ; ð62Þ

where r0m ¼ trðr0mÞ=3, r0M ¼ trðr0MÞ=3, and b ¼ trðbÞ=3.
In terms of the volumetric strain in the nanopore and

micro-fracture skeletons, hm and hM , respectively, we

assume linear elasticity and rewrite the foregoing equations

as

Ke
m

dhm
dt

� Ke
M

dhM
dt

¼ dpm
dt

� dpM
dt

� �
b ; ð63Þ

where Ke
m and Ke

M are the elastic bulk moduli of the

nanopore and micro-fracture skeletons, respectively (not to

be confused with the fluid bulk moduli Km and KM).

Finally, from Fig. 3, we recognize that if the height of the

REV remains unchanged, we can represent dhm=dt and

dhM=dt as

dhm
dt

¼ � 1

1� wM

dwM

dt
;

dhM
dt

¼ 1

wM

dwM

dt
: ð64Þ

Substituting Eqs. (64) into (63) yields the poroelastic

equation

dwM

dt
¼ 1

C
dpM
dt

� dpm
dt

� �
; ð65Þ

where

C ¼ 1

b

Ke
m

1� wM þ Ke
M

wM

� �
ð66Þ

is a modulus describing the change in internal structure of

the material. We remark that a constitutive law relating the

variation of pore fraction wM with pore pressure difference

pM � pm is consistent with the internal energy equation for

double-porosity media developed by Borja and Choo [13].

We also note that only one combined coefficient C is

needed to describe the material response, although its

physical meaning is based on the two elasticity constants

Ke
m and Ke

M .

Now, we can rewrite Eqs. (49) and (50) in terms of the

primary unknown variables pm, pM , and �. Recall that

d/m

dt
¼ �wm d/s

dt
� /

dwM

dt
ð67Þ

and

d/M

dt
¼ �wM d/s

dt
þ /

dwM

dt
: ð68Þ

Thus, we can combine Eqs. (54) and (65) to obtain

equivalent forms of Eqs. (49) and (50) as

wmb :
d�

dt
þ 1

Km
rpmð Þ � qm þr � qm

þ SmM
dpM
dt

þ Smm
dpm
dt

¼ cm

qm

ð69Þ

and

wMb :
d�

dt
þ 1

KM
rpMð Þ � qM þr � qM

þ SMM
dpM
dt

þ SMm
dpm
dt

¼ cM

qM
:

ð70Þ

where

Smm ¼ bwmwm

Ks
þ /m

Km
� xm � /

C

SMM ¼ bwMwM

Ks
þ /M

KM
þ xM þ /

C

SmM ¼ bwmwM

Ks
þ xm � /

C

SMm ¼ bwmwM

Ks
� xM þ /

C

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð71Þ

are storage coefficients. Equations (69) and (70) can then

be used in combination with balance of linear momentum

to solve coupled systems based on a u=pM=pm formulation

[18, 19, 56].

In calculating the coefficients of Eqs. (69) and (70), we

can further assume that

Fig. 3 Representation of double-porosity structure in terms of superimposed nanopore and micro-fracture skeletons or matrices
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xm ¼ b pM � pmð Þwm

Ks
� 1 ;

xM ¼ b pM � pmð ÞwM

Ks
� 1 ;

ð72Þ

since pM � pmj j=Ks is on the order of intrinsic strain [9]. In

this case, the storage coefficients reduce to the forms

Smm ¼ bwmwm

Ks
þ /m

Km
þ /

C

SMM ¼ bwMwM

Ks
þ /M

KM
þ /

C

SmM ¼ SMm ¼ bwmwM

Ks
� /

C

9>>>>>>>=
>>>>>>>;

; ð73Þ

i.e., the matrix of storage coefficients becomes symmetric.

Thus, all the coefficients of d�=dt, dpM=dt, and dpm=dt are

‘‘constants’’ in the sense that they do not depend on the

primary unknown variables. Furthermore, it is also rea-

sonable to assume that the pressures pM and pm do not

affect the density terms in qM and qm, i.e., qM ¼
qM rpM ; qrefgð Þ and qm ¼ qm rpm; qrefgð Þ, where qref is the
reference (constant) fluid density and g is the gravity

acceleration vector.

Finally, we can combine Eqs. (69) and (70) to obtain the

total flow equation. The result reads

b :
d�

dt
þ 1

Mm

dpm
dt

þ 1

MM

dpM
dt

þ 1

Km
rpmð Þ � qm

þ 1

KM
rpMð Þ � qM þr � qt ¼

cm

qm
þ cM

qM
;

ð74Þ

where Mm and MM are the Biot moduli defined as

1

Mm
¼ b

Ks
þ /
Km

� �
wm � bðpM � pmÞ

KsC
;

1

MM
¼ b

Ks
þ /
KM

� �
wM þ bðpM � pmÞ

KsC
;

ð75Þ

/ is the porosity, and qt ¼ qm þ qM is the resultant total

flux vector. Eq. (74) is analogous to the pressure equation

of multiphase flow through porous media [48].

4 Poroelastic coefficients

4.1 Elastic coefficients

Before illustrating how Eqs. (69) and (70) may be used, we

first consider a transversely isotropic elastic solid charac-

terized by an elastic moduli tensor Ce of the form

Ce ¼ke1� 1þ 2lTIþ ae 1�M þM � 1ð Þ
þ beM �M þ 2 lL � lTð Þ M � 1þ 1�Mð Þ ;

ð76Þ

where A� Bð Þijkl¼ AikBjl þ AilBjk

� �
=2, I is the symmetric

fourth-order identity tensor, M ¼ n� n is the microstruc-

ture tensor, n is the unit normal vector to the bedding plane,

and ke, lL, lT , ae, and be are the five material elastic

constants. The subscript �ð ÞT (bed-parallel BP) pertains to

the plane of isotropy, and subscript �ð ÞL (bed-normal BN)

pertains to the direction perpendicular to the plane of

isotropy.

In practice, we do not determine ke, lL, lT , a
e, and be

directly from laboratory experiments. Instead, we obtain

these constants indirectly from the following procedure.

First, we perform the following matrix inversion

Ce
11 0

0 Ce
22

� �
¼

Se11 0

0 Se22

� ��1

; ð77Þ

where 0 represents a 3� 3 null matrix. The remaining

submatrices are

Ce
11 ¼

ke þ 2lT ke ke þ ae

ke ke þ 2lT ke þ ae

ke þ ae ke þ ae ke þ 2el

2
64

3
75 ; ð78Þ

where el ¼ 2lL � lT þ ae þ be=2, and

Ce
22 ¼

lT 0 0

0 lL 0

0 0 lL

2
64

3
75 : ð79Þ

The compliance submatrices are

Se11 ¼
1=Eh �mhh=Eh �mvh=Ev

�mhh=Eh 1=Eh �mvh=Ev

�mhv=Eh �mhv=Eh 1=Ev

2
64

3
75 ð80Þ

and

Se22 ¼
2 1þ mhhð Þ=Eh 0 0

0 1=Gvh 0

0 0 1=Gvh

2
64

3
75 : ð81Þ

In the above four submatrices, Ev and Eh are Young’s

moduli in v and h directions, mhh, mvh, and mhv are Poisson’s
ratios, and Gvh is the shear modulus. These constants are

directly measurable in laboratory experiments [38]. Pois-

son’s ratios mhv and mvh are not independent because we

have

mvh
Ev

¼ mhv
Eh

; ð82Þ

which guarantees symmetry of the compliance matrix.

Note the matrix on the LHS of Eq. (77) is exactly the Voigt

form of Ce in Eq. (76) when n ¼ ez ¼ ½0; 0; 1	T .
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4.2 Comparison of poroelastic coefficients

To further illustrate the use of formulas (69) and (70), we

compare the calculated values of the poroelastic coeffi-

cients with those obtained by Berryman and Pride [8] and

Khalili and Selvadurai [29]. To this end, we elucidate the

differences in the mathematical formulations adopted in

their models. Berryman and Pride considered an isotropic

double-porosity material with six basic variables, namely,

the mean total stress r, volumetric strain �, fluid pressures

pM and pm, and fluid content variations fM and fm. In terms

of these variables, they formulated a set of linear consti-

tutive equations of the form

�

�fm
�fM

8><
>:

9>=
>; ¼

a11 a12 a13

a12 a22 a23

a13 a23 a33

2
64

3
75

r

�pm

�pM

8><
>:

9>=
>; ; ð83Þ

where a11 through a33 are all constant coefficients. The

flow continuity equations are given as [37]

ofm
ot

þr � qm ¼ c pM � pmð Þ ; ð84Þ

ofM
ot

þr � qM ¼ c pm � pMð Þ ; ð85Þ

where c is the leakage parameter. This approach is a phe-

nomenological or micromechanical approach for obtaining

the poroelastic coefficients, which is different from what

we have presented in Sect. 3.

In order to rewrite Eqs. (84) and (85) in terms of the

primary unknown variables adopted in our formulation, we

need to move the term r in Eq. (83) to the LHS and the

term � to the RHS. The result reads

r ¼ �

a11
þ a12
a11

pm þ a13
a11

pM ; ð86Þ

fm ¼ � a12
a11

�þ smmpm þ smMpM ; ð87Þ

and

fM ¼ � a13
a11

�þ sMmpm þ sMMpM : ð88Þ

where the storage coefficients are given by

smm ¼ a22 �
a212
a11

sMM ¼ a33 �
a213
a11

smM ¼ sMm ¼ a23 �
a12a13
a11

9>>>>>>=
>>>>>>;

: ð89Þ

From the above three equations, we identify the scalar Biot

coefficients of the Berryman–Pride isotropic double-

porosity model as �a12=a11 (for nanopores or matrix) and

�a13=a11 (for micro-fractures). As for the formulation

proposed by Khalili and Selvadurai [29], we tune the val-

ues of Kp (bulk modulus of the porous blocks), Kb, and Ks

in their formulation so as to obtain the same Biot coeffi-

cients �a12=a11 and �a13=a11 of the Berryman–Pride

model. The result reads

Kb ¼
1

a11
; Kp ¼

Kb

1þ a13=a11ð Þ ; Ks ¼
1

a11 þ a12 þ a13
:

ð90Þ

while the fluid content variations are given by

�fm ¼ a1�þ�smMpM þ�smmpm ð91Þ

and

�fM ¼ a2�þ�sMmpm þ�sMMpM ; ð92Þ

where the storage coefficients are

�smm ¼ a2 � /M

Kp
þ a1 � /m � a2 þ /M

Ks
þ /m

Km

�sMM ¼ a2 � /M

Kp
þ /M

KM

�smM ¼�sMm ¼ a2 � /M

Ks
� a2 � /M

Kp

9>>>>>>>>=
>>>>>>>>;

; ð93Þ

and where a1 ¼ Kb=Kp � Kb=Ks ¼ �a12=a11 and

a2 ¼ 1� Kb=Kp ¼ �a13=a11. Note that we have modified

the notation for fm and fM to indicate that the Khalili–

Selvadurai constitutive formulation is not the same as the

Berryman–Pride formulation. By substituting these con-

stitutive laws into Eqs. (84) and (85), it is now possible to

compare the poroelastic coefficients with those used in

Eqs. (69) and (70).

Table 1 presents a set of input parameters used in these

constitutive relations. We consider two types of material,

Chelmsford granite and Weber sandstone, since they are

well-characterized by laboratory data. Tables 2, 3 and 4

display the results of calculations using the above three

double-porosity frameworks. By comparing these three

frameworks, we find that the Biot coefficients of our

method are quite different from the other two methods,

which is because we use pore fractions (wM and wm) as

weights to obtain �p in Fig. 2, while different weighting

schemes were adopted in [8, 29]. Nevertheless, the total

Biot coefficient matches well among the three methods.

The main dependence on the last three rows of Table 2

(i.e., the storage coefficients, ignoring the um and uM

terms) is in the value of C, and by tuning the value of C, we
find that the agreement of the storage coefficients with

those of the other two methods is quite good for both the

granite and sandstone examples. In particular, we find the

off-diagonal storage coefficients SMm, sMm, and�sMm have a
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negative value for both rocks, which might also be true for

other parameter settings. Furthermore, it must be empha-

sized that our approach is the only one that can handle an

anisotropic macroscopic system. In terms of the time

derivative, our approach adopts the material time deriva-

tive for solid and fluid, while the other two approaches

simply use partial time derivative as an approximation,

compare Eqs. (69) and (70) with Eqs. (84) and (85), for

example. This facilitates an easier extension of our theory

to the finite deformation regime since the material time

derivative already carries the convected term.

5 Closure

We have utilized the principle of superposition to derive

poroelastic coefficients for single- and double-porosity

media. The resulting conservation laws are exact for single-

porosity media and are consistent with those derived in

[17, 58]. For double-porosity media, we derived an evo-

lution law for total porosity / by introducing the weighted

pore fluid pressure �p ¼ wMpM þ wmpm in the equivalent

single-porosity structure, which is consistent with the

results of Borja and Koliji [11]. We then adopted the

effective stress partition concept to derive an evolution law

for the pore fraction wM or wm. Identical results were

obtained by using different loading paths, thus affirming

Table 1 Material parameters

Parameter Chelmsford granite Weber sandstone

a11 (GPa�1) 0.125 0.250

a12 (GPa�1) �0:040 �0:073

a13 (GPa�1) �0:067 �0:150

a22 (GPa�1) 0.041 0.100

a23 (GPa�1) �0:0010 �0:0003

a33 (GPa�1) 0.070 0.152

Ks (GPa) 53.6 37.3

Km ¼ KM ¼ Kf (GPa) 3.3 3.3

Porosity /m 0.001 0.095

Porosity /M 0.011 0.010

Young’s modulus Eh (GPa) 13.0 7.8

Young’s modulus Ev (GPa) 8.5 5.0

Shear modulus Gvh (GPa) 4.0 3.0

Poisson’s ratio mhh 0.18 0.15

Poisson’s ratio mvh 0.25 0.20

Vector n ez ¼ ½0; 0; 1	T ez ¼ ½0; 0; 1	T

Intermediate modulus C (GPa) 0.5 3.2

Note that Berryman and Pride [8] did not provide the values of Eh, Ev, Gvh, mhh, and mvh, so they were deduced by setting 1 : Ce : 1=9 
 1=a11. In
addition, they determined the values of a11 through a33 from a large number of other material parameters, see their Table 1 and Table B1

Table 2 Double-porosity and state variables for the proposed

formulation

Variable/coefficient Granite Sandstone

trðwmbÞ=3 for nanopores 0.077 0.812

trðwMbÞ=3 for micro-fractures 0.773 0.081

Intermediate variable b 0.838 0.788

Storage coefficient Smm (GPa�1) 0.025 0.079

Storage coefficient SMM (GPa�1) 0.040 0.036

Storage coefficient SMm (GPa�1) �0:023 �0:031

Note that the storage coefficients are multipliers of material time

derivatives. Furthermore, the results in this table are invariant with

respect to the vector n given in Table 1

Table 3 Berryman and Pride [8] double-porosity coefficients

Coefficient Granite Sandstone

a1 for nanopores 0.318 0.292

a2 for micro-fractures 0.533 0.600

Storage coefficient smm (GPa�1) 0.028 0.078

Storage coefficient sMM (GPa�1) 0.034 0.062

Storage coefficient sMm (GPa�1) �0:022 �0:044
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the invariance of the principle of superposition with respect

to sequence of loading.

The resulting formulas for double-porosity media

require fewer material parameters than those proposed by

other authors while delivering a comparable performance.

Thus, the proposed approach is useful whenever the

unknown parameters cannot be readily determined in the

laboratory. Provided that the processes involved are

reversible, extension of this work to multi-field coupling,

such as thermo-hydro-chemo-mechanical (THCM) cou-

pling, is possible. However, the principle of superposition

cannot be applied to irreversible or path-dependent pro-

cesses, such as processes involving elastoplastic deforma-

tions. In this case, the formulation must be complemented

by thermodynamical principles to accommodate the effect

of plastic dissipation [12]. Nevertheless, the theory pre-

sented in this paper is still very useful for a wide variety of

applications given the prominent role of poroelasticity in

the scientific literature.

Appendix: An alternative superposition

In this Appendix, we derive the effective stress equation

using the principle of superposition but with an alternative

sequence of loading on an elementary volume shown in

Fig. 4. As noted earlier, the result should not depend on the

sequence of loading, and here we illustrate a more

elaborate loading scenario than the one presented earlier. In

loading configuration (a) of Fig. 4, the volume is subjected

to a total stress of (rþ pM1) with no internal fluid pressure

in either the nanopores or the micro-fractures. The asso-

ciated strain in the solid matrix is then calculated as

�ðaÞ ¼ ðCeÞ�1 : ðrþ pM1Þ ; ð94Þ

where Ce is the previously defined drained elasticity tensor

for the double-porosity medium. For loading configuration

(b), the solid matrix is subjected to isotropic deformation

equal to the isotropic strain in the solid constituent, and so

we write

�ðbÞ ¼ � pm
3Ks

1 : ð95Þ

Loading configuration (c) shows the volume under an

isotropic stress of �ðpM � pmÞ1 with a pore fluid pressure

of ðpM � pmÞ acting in the micro-fractures and zero in the

nanopores. Because both pore scales are statistically dis-

tributed throughout the entire volume, the loading is

equivalent to having all of the pore spaces subjected to a

uniform pressure of wMðpM � pmÞ, which we further ana-

lyze in Fig. 5.

In Fig. 5, loading configuration (c) is replaced with

loading configuration (d), which in turn is represented as

the superposition of loading configurations (e) and (f). In

loading configuration (e), the volume is subjected to a total

load of �ð1� wMÞðpM � pmÞ1 with no pressure within the

pores. This results in a drained isotropic deformation of the

solid skeleton equal to

�ðeÞ ¼ �ðCeÞ�1 : ð1� wMÞðpM � pmÞ1 : ð96Þ

In loading configuration (f), the solid constituent is sub-

jected to an isotropic deformation equal to the isotropic

strain in the solid constituent, which is given by

Table 4 Khalili and Selvadurai [29] double-porosity coefficients

Coefficient Granite Sandstone

a1 for nanopores 0.318 0.292

a2 for micro-fractures 0.533 0.600

Storage coefficient�smm (GPa�1) 0.027 0.077

Storage coefficient�sMM (GPa�1) 0.034 0.062

Storage coefficient�sMm (GPa�1) �0:021 �0:043

Fig. 4 Superposition in poroelasticity: Phase diagram for a double-porosity volume with solid represented by the shaded area and pores

represented by the white area. Volume is subjected to a tensorial stress indicated above each diagram; numbers inside the white area are the

generated pore fluid pressures in the nanopores (pm) and micro-fractures (pM)
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�ðfÞ ¼ �wMðpM � pmÞ
3Ks

1 : ð97Þ

Adding all four components of strain yields the total strain

in the solid frame, equal to

� ¼ �ðaÞ þ �ðbÞ þ �ðeÞ þ �ðfÞ

¼ðCeÞ�1 : ðrþ �p1Þ � �p

3Ks
1 ;

ð98Þ

where �p is the same mean pore fluid pressure defined in

Eq. (52). Premultiplying both sides by Ce and noting once

again that Ce : � is the effective Cauchy stress r0 yields
Eq. (53).
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