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Abstract
A novel two-dimensional mixed fracture–pore seepage model for fluid flow in fractured porous media is presented based on

the computational framework of finite-discrete element method (FDEM). The model consists of a porous seepage model in

triangular elements bonded by unbroken joint elements, as well as a fracture seepage model in broken joint elements. The

principle for determining the fluid exchange coefficient of the unbroken joint element is provided to ensure numerical

accuracy and efficiency. The mixed fracture–pore seepage model provides a simple but effective tool for solving fluid flow

in fractured porous media. In this paper, examples of 1D and 2D seepage flow in porous media and porous media with a

single fracture or multiple fractures are studied. The simulation results of the model match well with theoretical solutions

or results obtained by commercial software, which verifies the correctness of the mixed fracture–pore seepage model.

Furthermore, combining FDEM mechanical calculation and the mixed fracture–pore seepage model, a coupled

hydromechanical model is built to simulate fluid-driven dynamic propagation of cracks in the porous media, as well as its

influence on pore seepage and fracture seepage.

Keywords Finite-discrete element method � Fluid-driven fracturing � Fracture seepage � Fractured porous media �
Hydromechanical coupling � Pore seepage

1 Introduction

The fluid flow in the rock mass includes seepage through

fractures and pore space in the rock matrix. For many rock

mechanics problems, the fracture seepage plays a major role

and controls the mechanical response of rock mass. The pore

seepage is often neglected because the permeability of the

rock matrix is much smaller than that of fractures. However,

in many engineering applications, such as oil and gas

exploitation, deep underground disposal of nuclear waste

and underground storage of oil and gas, fluid flow in porous

rock matrix should be considered. In other words, the rock

mass in this condition needs to be considered as a fractured

porous media. Therefore, establishing an effective seepage

model for fractured porous media is a hot topic in the field of

petroleum oil extraction and rock hydraulics [5, 7, 9, 11, 33].

Currently, the seepage models for fractured porous

media mainly include the following three types: the

equivalent continuum model, dual-porosity model and

discrete fracture model. In the equivalent continuum model

[29, 30, 52, 53], both rock matrix and fractures are con-

sidered as a homogenized porous media. Thus, it cannot

model real fracture distribution and has low accuracy when

solving seepage flow in rock masses with strong water-

conducting fractures. To this end, Barenblatt et al. [4]

proposed a dual-porosity seepage model, in which the

fracture and matrix are considered as independent systems.

The matrix on both sides of the fracture shares the same
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nodes, and the pore pressure on both sides of the fracture is

continuous. In recent years, to consider the seepage of

fractured rock with a small number of large-scale fractures,

the discrete fracture–matrix (DFM) model has attracted

more attention [18, 21, 23]. In DFM, both of the perme-

ability of the rock matrix and the fracture can be consid-

ered. Limited to the computational efficiency, DFM model

is only applicable to fractured rock with a small number of

fractures. In order to improve the computational efficacy,

the discrete fracture network model (DFN) extracts the

dominant fractures in the rock masses and assumes that

fluid flows only in the fracture network, without taking into

account the pore seepage [13]. Therefore, DFN is most

suitable for the formation with a high degree of fracture

development [6, 8, 12, 17, 31, 32, 51].

A lot of traditional numerical methods have been used to

simulate fluid flow in fractured porous media. Galerkin finite

element is widely used in the discrete fracture model and has

been successfully applied in the simulation of single-phase

and two-phase flows [3, 24, 39, 74]. In single-phase flow,

Juanes et al. [22] simulated solute transport caused by

groundwater flow in fractured porous media. In multiphase

flow, Hoteit and Firoozabadi [20] used the MFE to simulate

two-phase flow in fractured porous media and considered

the matrix–fracture interaction. Monteagudo and Firooz-

abadi [34] studied two-phase immiscible flow in 2D and 3D

discrete fracture media by using the finite volume method.

These traditional methods can capture the fluid flow in the

fracture or rock matrix, but these methods often involve

large-scale computation and are laborious for computer

programming. More importantly, in these traditional meth-

ods, the fracture and matrix share the same computational

nodes; therefore, they cannot simulate discontinuous pore

pressure distribution on both sides of the fracture. In addi-

tion, these numerical methods have intrinsic difficulties to

simulate fully coupled hydromechanical problems, such as

fluid-driven fracturing and its influence on the fluid flow in

the porous media. In addition, some methods such as

cracking-particle method (CPM) [41, 42] and dual-horizon

peridynamics (PH-PD) [44, 45] can well simulate the solid

fracturing and even complex fracture patterns in three

dimensions [1, 2]. It should be pointed out that in recent

years, the phase field method [47, 76] and other methods

[43, 48, 71] have been more and more frequently used to

simulate the fracturing driven by fluid.

In this paper, we build a mixed fracture–pore seepage

model for fractured porous media in the computational

framework of finite-discrete element method (FDEM)

[35, 36, 38]. The FDEM combines the advantages of FEM

and DEM, and it has been widely used to model rock

fracture [15, 16, 25, 27, 28, 46, 75 ]. Initially, FDEM is

mainly developed for fracture mechanics simulation of

solids through breaking joint elements between adjacent

solid elements. In recent years, the method has been

extended to solve multi-physics-driven fracture problems.

For example, Yan et al. [54, 56, 60, 61, 64] proposed a

coupled thermo-mechanical model (FDEM-TM) and a

coupled hydrothermal model (FDEM-TH) [57, 58] to solve

the thermal cracking and water–rock heat transfer problems.

In addition, Yan et al. [55, 57, 59, 62, 65, 66] also proposed

several coupled hydromechanical models to simulate

hydraulic fracturing in rocks (FDEM-flow). The first

[65, 70] solves the hydraulic fracturing problem of rock

masses with arbitrarily fractured networks by assuming that

the fluid only flows in the broken joint elements (i.e. fracture

seepage), but the pore seepage is not considered. The second

model [62, 66] uses broken elements for fracture seepage

and unbroken elements for pore seepage simulation, yet the

model parameters (e.g. initial aperture) need to be calibrated

in order to equivalently represent the macroscopic perme-

ability of the porous matrix. The model will be less accurate

in solving transient seepage problems. The third model

[55, 59] can better overcome the shortcomings of the pre-

vious models by using solid elements to characterize pore

seepage (2D-triangular elements; 3D-tetrahedral elements)

according to Darcy’s law, while the fracture seepage is

modeled by the broken joint elements according to the cubic

law. However, the porous matrix is only modeled using

triangular elements, which share pore pressure nodes even

new fracture occurs. As a result, the pore pressure is always

continuous at both sides of the cracks.

In this study, the newly developed mixed fracture–pore

seepage model into will overcome above-mentioned limi-

tations. Compared with previous research [63, 67], the

porous matrix is represented by triangular elements and

joint elements in FDEM. The geometrical configuration

and microstructure of the pore seepage model looks

resemble to a multiscale cohesive zone model [26, 72]. The

pore seepage calculation includes two parts: pore seepage

in triangular elements and fluid exchange between adjacent

triangular elements through joint elements. Because adja-

cent triangular elements do not share pore pressure nodes,

the discontinuity of pore pressure on both sides of a crack

can be considered. Combing the mixed fracture–pore

seepage model with FDEM, the fluid-drive fracturing

problems can be simulated in porous media. The crack

generation is modeled through the joint element breaking,

which will subsequently change the fracture network and

fluid flow. Therefore, the effect of crack generation on the

pore seepage and fracture seepage can be reflected.

This paper is mainly composed of the following parts.

Section 2 introduces the mixed fracture–pore seepage

model. In Sect. 3, the hydromechanical model is intro-

duced. In Sect. 4, we give three examples with theoretical

solutions to validate the model in solving the one-dimen-

sional transient pore seepage problems and two-
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dimensional saturated steady-state pore seepage problems.

In addition, sensitivity analysis and the principle for

determining the fluid exchange coefficient of the unbroken

joint element are given, such that the pore pressure distri-

bution of the continuous porous media obtained by the

model is consistent with the theoretical solution. In Sect. 4,

we derived a theoretical solution for a single-fracture

porous media seepage problem and used it to validate the

model’s capacity in dealing with the fracture–pore mixed

seepage problem. Moreover, we designed an example of

complex fractured porous media seepage and compared the

simulation results with the results of the commercial soft-

ware COMSOL Multiphysics. Finally, an example of

multi-cracks hydraulic fracturing is investigated by the

hydromechanical model.

2 Fundamentals of FDEM

In FDEM, continuum is divided into finite element mesh of

triangular elements and the four nodes joint element with

no thickness is inserted between the neighboring triangular

elements. The deformation of continuum is characterized

by the deformation of constant strain triangular elements,

while crack initiation and propagation in the continuum are

implemented by the breaking of the joint element. Next, we

will briefly introduce the governing equations, contact

forces calculation and the fracture model of joint elements.

2.1 Governing equation

Similar to the DEM dynamics equation, the governing equation

of FDEM according to Newton’s second law is given by

M€xþ C _x ¼ F ð1Þ

where M and C are diagonal mass matrix and damping

matrix of nodes of all triangular elements in the system,

respectively. F is the total nodal force vector, including

nodal force vector caused by external load, nodal force

vector due to contact, nodal force vector due to the

deformation of triangular elements and joint elements. A

constant damping matrix C is used to dissipate the kinetic

energy of the system and can be expressed as

C¼lI ð2Þ

where l is the damping coefficient and I is the unit matrix.

According to Eq. (1), the coordinates and velocities of

the triangular element nodes at the next time step can be

updated by Euler method

v
ðtþDtÞ
i ¼ v

ðtÞ
i þ

X
F
ðtÞ
i

Dt
mn

x
ðtþDtÞ
i ¼ x

ðtÞ
i þ v

ðtÞ
i Dt

ð3Þ

where F
ðtÞ
i represents the total nodal force of a node, Dt is

the time step size, and mn is the nodal mass, which is equal

to one-third of the mass of all triangular elements that are

connected to the node.

2.2 Contact force calculation

In this part, the no binary search (NBS) algorithm is used to

determine which triangle elements are in contact with each

other before the calculation of the contact force in FDEM.

The two triangular elements in contact are termed as a

contact pair. The following is a brief introduction to cal-

culate contact force including the normal and tangential

contact forces in FDEM.

The normal contact force is calculated using a potential-

based penalty function method. As shown in Fig. 1, the

normal contact force fn depends on the overlapping area of

a contact pair, which is given by

fn ¼ pn

Z

S¼bc\bt

graduc Pcð Þ � gradut Ptð Þ½ � dA

¼ pn

I

Cbc\bt

nC uc � utð ÞdC ð4Þ

where Pc and Pt are two overlapping points located in the

contactor bc and target bt, respectively, pn is the normal

penalty parameter, nC is the unit normal vector of the

boundary of the overlapping area, u is the corresponding

potential function as follows

u Pð Þ ¼ min
3A1

A
;
3A2

A
;
3A3

A

� �
ð5Þ

where A is the area of the triangular element; Ai (i = 1, 2,

3) is the area of three sub-triangles formed by connecting

point P with three nodes of the triangular element, as

shown in Fig. 2. Obviously, the potential of a point is 1 at

the center of the element while at the boundary is 0.

After the normal contact force is obtained, the tangential

contact force is calculated by

f tþDt
s ¼ f ts � ptDus ð6Þ

Fig. 1 Schematic diagram of the normal contact force between the

target triangular element and contactor triangular element
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where f tþDt
s and f ts are the tangential forces at the next

time step t þ Dt and the current time step t, respectively, pt

is the tangential penalty parameter, and Dut is the tan-

gential displacements increment of the contact point at one

time step. According to the Coulomb friction law, if the

tangential contact force calculated by Eq. (6) is greater

than the maximum static friction force, i.e. f tþDt
s

�� ��[ l fnj j,
the tangential contact force will be set as

f tþDt
s ¼ �l fnj j Dut

Dutj j ð7Þ

where l is the friction coefficient.

The above contact force is then distributed to the nodes

of triangular elements in contact.

2.3 Constitutive of triangular element

The constitutive of the triangular element is given by

T ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
detFj j

p E

1 þ v
Ed þ

E

1 � v
Es þ 2lD

� �
ð8Þ

where T is the stress tensor, F is the deformation gradient,

E is the elastic modulus, v is the Poisson’s ratio, Ed is the

Green strain tensor, Es is the St. Venant strain tensor, l is

the damping coefficient, and D is the strain rate tensor,

where F, Ed, Es, D can be calculated based on the current

coordinates, the initial coordinates, the current velocity and

the initial velocity of three nodes of a triangular element.

The equivalent nodal force caused by stress tensor T can

be calculated by

fðiÞ ¼ 1

2
T � nðiÞLðiÞ ð9Þ

where fðiÞ is the nodal force assigned to node i of the tri-

angular element (i is the local number of a node in the

triangular element), nðiÞ is the external normal unit vector

of the edge opposite to node i of the triangular element, and

LðiÞ is the length of the edge opposite to node i of the

triangular element.

2.4 Fracture model of joint elements

The constitutive model of the joint element is very

important for FDEM to simulate the crack initiation and

propagation. There are three types of fracture models in the

joint element, namely Mode I (tensile failure), Mode II

(shear failure) and mixed Mode I–II (mixed tensile–shear

failure).

(1) For Mode I failure (Fig. 3a): the tensile stress of the

joint element increases to the tensile strength ft from

zero as the normal opening amount o increases to the

critical opening amount op from zero. Then, the r
gradually decreases to zero as the normal opening

amount of the joint element increases to the maxi-

mum opening amount or. Finally, the joint element

breaks, and a tensile crack generates.

(2) Model II failure (Fig. 3b): the shear stress of the joint

element increases to the shear strength fs from zero

as the slip amount s increases to the critical opening

amount sp from zero. Then, the shear stress gradually

decreases to zero as the slip amount of the joint

element increases to the maximum slip amount sr.

Finally, the joint element breaks, and a shear crack

generates.

(3) The mixed Mode I–II failure (Fig. 3c): The joint

element breaks through a mixed Mode I–II failure if

the amounts of normal opening and tangential slip (o

and s) satisfy

o� op

or � op

� 	2

þ s� sp

sr � sp

� 	2

� 1 ð10Þ

The tensile stress and shear stress of the joint element

are applied on the two triangular elements that are con-

nected by the joint element, and finally, they are assigned

to the nodes of the two triangular elements.

3 Mixed fracture–pore seepage model

3.1 Finite-discrete element discretization

In this model, the problem domain is discretized into triangular

elements connected by joint elements, as shown in Fig. 4.

Existing fractures are represented by broken joint elements,

while the matrix is represented by triangular elements bonded

by unbroken joint elements. Note that the nodes of neighboring

triangular elements at the fracture are not shared, such that their

pressure fields can be calculated independently.

The 2D mixed fracture–pore seepage model is based on

the following assumptions: (1) The pore seepage follows

Darcy flow; (2) the fracture seepage obeys cubic law; and

Fig. 2 The potential of a point P in a triangular element
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(3) the fluid is assumed to be laminar, viscous and

incompressible. The 2D mixed fracture–pore seepage

model is mainly composed of the pore seepage model, the

fracture seepage model and the fluid exchange model

between rock matrix and fracture. For the pore seepage

model, it includes the fluid flow that follows Darcy’s law in

triangular elements, and the fluid flow between neighboring

triangular elements through joint elements. For the fracture

seepage model, the fluid flow occurs in the broken joint

element and is described by the cubic law. For the fluid

exchange model between fracture and rock matrix, it is

determined by the pressure difference between the fracture

pressure and the pore pressure on both sides of the fracture

and the fluid exchange coefficient of the fracture.

3.2 Pore seepage model

As shown in Fig. 5, the porous media are discretized into

triangular elements and unbroken joint elements are

inserted between the neighboring triangular elements. The

basic principle of the pore seepage model in this paper is as

follows:

The pore seepage consists of pore flow in the triangular

element and fluid exchange between the neighboring tri-

angular elements through the unbroken joint element. The

pore flow in triangular elements follows Darcy’s law. The

fluid exchange between the neighboring triangular ele-

ments is determined by the pore pressure difference on

both sides and the fluid exchange coefficient hj of the

unbroken joint element. The basic unknowns are pore

pressure on triangular element nodes, which can be used to

linearly interpolate the entire pore pressure distribution in

the problem domain. Then, the finite difference method is

used to update the pore pressure of each node according to

the obtained flow increment of each node at the one time

step. Finally, the evolution of pore pressure in the porous

media is obtained.

The flow rate along the ith direction, qi, is described by

Darcy’s law:

Fig. 3 Fracture model of the joint element: a Mode I. b Mode II. c Mixed Mode I–II

Fig. 4 . Finite-discrete discretization of fractured porous media

Fig. 5 The element connection in the pore seepage model

Acta Geotechnica (2021) 16:3061–3086 3065

123



qi ¼ �qwg
kij
l
oh

oxj
ð11Þ

where qw is the fluid density, g is the acceleration of

gravity, kij is the intrinsic permeability,l is the fluid vis-

cosity, and h is the total head

h ¼ ðp� qwygÞ=ðqwgÞ ð12Þ

where p is the pore pressure, and g is the acceleration of

gravity (= - 9.81 m/s2), y is the ordinate.

Within a control volume V, the change in pore pressure

is expressed by [14]:

op

ot
¼ M

V
Qtotal þ a

oV

ot

� 	
ð13Þ

where Qtotal is the total flow, M is the Biot modulus, and a
is the Biot coefficient.

In Fig. 5, the volume and mass of a triangular element

are equally distributed to its three nodes. The pore pressure

distribution in the triangular element can be linearly

interpolated by pore pressures of its three nodes. Taking

node 4 as an example, fluid flow can occur within trian-

gular element D489 if the water head of node 4 is different

from that of nodes 8 and 9. Similarly, when the water head

of node 4 is different from that of nodes 1 and 5, the fluid

exchange occurs between node 4 and nodes 1 and 5

through joint elements 4975 and 4821, respectively.

Within triangular element D489 that connects to node 4,

the total water head is assumed to be a linearly distributed

and its gradient keeps as a constant as follows:

oh

oxi
¼ 1

A

Z

A

oh

oxi
dA ¼ 1

A

Z

s

hnids ¼
1

A

X3

m¼1

h
m 2ij Dx

m
j ð14Þ

where A is the area of the triangular element, ni is the

outward normal unit vector of the element edge, h
m

is the

average total water head on edge m, Dxmj is the coordinate

difference between the two nodes of edge m, and 2ij is the

two-dimensional permutation tensor

2 ¼ 0 1

�1 0

� 	
ð15Þ

Thereupon, substituting Eq. (14) into Eq. (11), the flow

rate can be expressed as

qi ¼ �qwg
kij
l

1

A

X3

m¼1

h
m 2ij Dx

m
j

 !
ð16Þ

It is worth noting that Eq. (16) needs modification if the

element is not fully saturated. For example, if two nodes

have zero pore pressure, their total head gradient might not

be zero, which still contributes to flow within the element.

Apparently, this phenomenon is unreasonable. Therefore, a

modification function fs is proposed to multiply Eq. (16):

fs ¼ s2ð3 � 2sÞ ð17Þ

where s is the average of the saturation of the three nodes.

It can be seen that: the flow rate in the triangular element

becomes zero (fs = 0) if the average saturation s = 0. When

fully saturated, the flow rate within the triangular element

will not be affected (fs = 1). Finally, the flow rate can be

modified as

qi ¼ �qwg
kij
l
oh

oxj
fs ð18Þ

Then, the fluid flow into node 4 from the triangular

element D489 per unit time can be obtained as

QD489!4 ¼ � qin
ð4Þ
i Lð4Þ

2
ð19Þ

where n
ð4Þ
i is the outer normal unit vector of the edge

opposite node 4 in triangular element D489, and Lð4Þ is the

length of the edge opposite to node 4 in triangular element

D489.

Besides, triangular element D489 has fluid exchange

between D123 and D567 through the joint elements 1248

and 4975, respectively. As shown in Fig. 5, the fluid

exchange from D123 to D489 through joint element 1248 is

given as

Q ¼ 1

2
hjðp1 þ p2 � p4 � p8ÞL

¼ 1

2
hjðp1 � p4ÞLþ 1

2
hjðp2 � p8ÞL ð20Þ

where p1; p2; p4; p8 are the pore pressure of nodes 1, 2, 4

and 8, respectively; hj is the fluid exchange coefficient of

the unbroken joint element, which will be further discussed

in the following examples.

Note the first part of Eq. (20) represents the flow from

triangular element D123 into node 4 through joint element

1248

QD123!4 ¼ 1

2
hjðp1 � p4ÞL ð21Þ

Similarly, the flow from triangular element D567 into

node 4 through joint element 4975 can be obtained as

QD567!4 ¼ 1

2
hjðp5 � p4ÞL ð22Þ

Thus, the total flow Qp into node 4 is given by

Qp ¼ QD489!4 þ QD123!4 þ QD567!4 ð23Þ

The pore pressure of node 4, according to Eq. (13), can

be updated by
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ptþDt
p ¼ ptp þ

MðQp � Dt � DVpÞ
VtþDt

p

ð24Þ

where Dt is the time step, and DVp ¼ VtþDt
p � Vt

p is the

volume change of the pore matrix associated with node 4

through mechanical calculation. The volume of pore

matrix, Vp, can be obtained as 1/3 of volume of triangular

element that contains node 4. Using the same procedure,

the pore pressure evolution of the entire problem domain is

solved.

For the continuum porous medium, the unbroken joint

element between the neighboring triangular elements can

hinder fluid flow. Therefore, the fluid exchange coefficient

hj of the unbroken joint element should be large enough to

reduce the hindering effect. We conducted a sensitivity

analysis to determine the value range of hj in Example 1. It

is found that when hj � 100 k
lLe

(k is the intrinsic perme-

ability of the triangular element, l is the fluid viscosity, and

Le is the element size), the numerical result agrees well

with the theoretical solution of pore pressure in the con-

tinuum porous medium.

As an explicit algorithm is used in the pore seepage

model, the time step size should be less than the critical

value specified as

Dtf ¼ min
V

M
P
i

ki=l

2
4

3
5 ð25Þ

where ki is the isotropic intrinsic permeability.

3.3 Fracture seepage model

Figure 6 shows a computational mesh composed of broken

joint elements (white rectangular strips), unbroken joint

elements (gray rectangular strips) and triangular elements.

At the junctions of joint elements, ‘‘crack nodes’’ are

labeled as C1, C2… C7 in Fig. 6. If a crack node is

connected to any broken joint element, it will be defined as

an ‘‘open crack node’’ and included into the fracture net-

work for seepage calculation. The remaining crack nodes

are defined as ‘‘closed crack node.’’ The broken joint ele-

ments and open crack nodes constitute a fracture network

to conduct water in the fracture seepage model.

Taking the fracture network in Fig. 6 as an example, the

total pressure difference between crack nodes C1 and C2

can be given by

Dp2�1 ¼ p2 � p1 þ qwgðy2 � y1Þ ð26Þ

where p1 and p2 are the fracture pressure at crack nodes C1

and C2, and y1 and y2 are the ordinate of C1 and C2,

respectively. Then, the flow rate from fracture node C2 to

C1 is described by the cube law as

q2!1 ¼ 1

12l
a3 Dp2�1

L
ð27Þ

where l is the fluid viscosity, L is the length of the broken

joint element 1284 between nodes 1 and 2, and a is the

average aperture of the joint element, which is related to

the average normal displacement un of the broken joint

element via Eq. (28), see Fig. 7.

a ¼ a0 þ un; amin � a� amax ð28Þ

where a0 is the initial aperture of the fracture. A minimum

aperture amin and a maximum aperture amax can be speci-

fied to facilitate numerical computation.

Similar to Eq. (16), Eq. (27) should also be multiplied

by a function fs ¼ s2ð3 � 2sÞ where s is the saturation of

the outflow node, e.g., if q2!1 [ 0, the outflow node is C2;

otherwise, the outflow node is C1. Finally, the total flow

between the two nodes can be given by

q2!1 ¼ 1

12l
a3 Dp2�1

L
fs ð29Þ

Since the crack node 1 also connects with crack nodes 4

and 6, the flow rate q4!1, q6!1 between C1 and C4, C6 can

Fig. 6 The computational mesh for fracture seepage

Fig. 7 Relationship between the average normal displacement and the

average aperture of the broken joint element [70]
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be also obtained similarly. Thus, the total flow into fracture

node C1 is

Qc ¼ q2!1 þ q4!1 þ q6!1 ð30Þ

Next, according to the law of mass conservation, the

degree of saturation at node C1 is updated as:

stþDt ¼ st þ Qc

Dt
VtþDt

c

� DVc

Vm

ð31Þ

where stþDt and st are the saturation associated with node

C1 at the present and the previous time steps.

DVc¼VtþDt
c � Vt

c, Vm ¼ ðVtþDtþVtÞ
2

, where VtþDt and Vt are

the volume associated with the crack node C1 at the current

time step and the previous time step, respectively. Note that

volume associated with node C1 is calculated as half of the

volumes of all broken joint elements that are connected to

C1. If the fracture node saturation stþDt \ 1 according to

Eq. (31), then pressure at the fracture node C1 would be

zero. If the calculated stþDt � 1, the value will be set to 1,

and the pressure at node C1 can be updated as [50]

ptþDt
c ¼ ptc þ Kw Qc

Dt
VtþDt

c

� DVc

Vm

� 	
ð32Þ

where Kw is the bulk modulus of the fluid.

3.4 The fluid exchange between the pore
and fracture seepage

In this section, we set up the model to account for fluid

exchange between the pore matrix and fractures. Assume

that the pore pressure of the rock matrix at both sides of the

fracture is pþp and p�p , respectively (see Fig. 8), the fracture

pressure in the crack is pc, the fracture length is L, and the

fluid exchange coefficient between the fracture and rock

matrix at the fracture is hc, then the fluid exchange per unit

time between the fracture and rock matrix on the left and

the right side of the interface is given by

Qþ
e ¼ hcðpþp � pcÞL and Q�

e ¼ hcðp�p � pcÞL ð33Þ

Finally, the pressure in the fracture is updated by

ptþDt
c ¼ ptc þ Kw QcþQþ

e þQ�
e


 � Dt
VtþDt

c

� DVc

Vm

� �
ð34Þ

Similar to Eq. (24), the pore pressure on both sides of

the fracture is updated by

ptþDt
p ¼ ptp þ

M ðQp � Q
þ=�
e Þ � Dt � DVp

h i

VtþDt
p

ð35Þ

3.5 Effect of cracking on the pore and fracture
seepage

As shown in Fig. 9, when some cracks are generated (for

example, joint element 1248 breaks), the flow QD123!4

from triangular element D123 into pore node 4 in the pore

seepage model, shown in Eq. (21), should be replaced by

the flow from the broken joint element 1248 into pore node

4 as:

Q1248!4 ¼ 1

2
hcðpc1 � p4ÞL ð36Þ

where hc is the fluid exchange coefficient at the fracture

(i.e. broken joint element). pc1 is the pressure at crack node

C1. The flow calculations of other pore nodes at the newly

generated fractures are also changed as described above.

Crack generation changes the fluid flow network and

naturally affects the fracture seepage. Therefore, in com-

bination with the previous fracture seepage model and fluid

exchange between fractures and rock matrix, the effect of

dynamic cracking on fracture seepage can be readily

considered.

Fig. 8 Fluid exchange between fracture and rock matrix Fig. 9 The calculation of pore seepage with cracking

3068 Acta Geotechnica (2021) 16:3061–3086

123



4 Hydromechanical coupling

The above mixed fracture–pore seepage model can be

combined with mechanical calculation of FDEM to con-

struct a fully coupled hydromechanical model. The fracture

pressure and pore pressure are considered in the mechan-

ical calculation using the following schemes:

4.1 Fracture pressure

As shown in Fig. 10a, assuming that the pressures at two

nodes of a broken joint element are pc1 and pc2, the total

fracture pressure acting on the edge of the triangular ele-

ments can be determined by

fcð Þi¼ �ðpc1 þ pc2ÞL
2

ni ð37Þ

where L is the length of the broken joint element, and ni is

the outward normal of the element edge. The total pressure

is then distributed to the two nodes of the edge.

4.2 Pore pressure

According to Biot’s theory, the total stress in the rock

matrix can be expressed as

rij ¼ r0ij � appdij ð38Þ

where a is the Biot coefficient. Note that in the above

equation, the negative sign is introduced to the pore pres-

sure pp as the sign convention used in the mechanical

calculation takes tensile component of stress as positive. As

shown in Fig. 10b, the pore pressure causes the change of

stress field in the triangular element by

Drij ¼ �appdij ð39Þ

The stress increment can be treated as nodal forces

applied to the triangular elements as follows:

fp

 �ðkÞ

i
¼ Drijn

ðkÞ
j

LðkÞ

2
¼ � appL

ðkÞ

2
n
ðkÞ
i ; k ¼ 1; 2; 3 ð40Þ

where n
ðkÞ
i and LðkÞ are the outward unit normal vector and

length of the edge facing node k.

4.3 Hydromechanical coupling framework

The flowchart of the coupled hydromechanical model is

illustrated in Fig. 11. The mainly includes the following

parts: First, the mixed fracture–pore seepage model is used

to obtain the pore pressure and fracture pressure distribu-

tion. Then, these pressures are converted into nodal forces

of the triangular elements and entered into the FDEM

system of equations. Then, FDEM mechanical fracture

calculation is performed to obtain the stress and strain of

triangular elements, and the nodal displacements are

updated. At the same time, the breakage of joint elements

is determined and the fracture network is updated as input

for the next calculation step of the mixed fracture–pore

seepage model. In this way, the hydromechanical coupling

is realized. The hydromechanical model can simulate the

fluid-driven fracturing with consideration of the effect of

crack propagation on the fracture and pore seepage. These

features will be illustrated using a few examples in Sect. 4.

5 Verification examples

5.1 1D transient saturated pore seepage

In this example, 1D transient seepage in a rectangular strip

(L 9 W) is simulated (Fig. 12). The bottom and top

boundaries of the model are impervious. The pore pressure

at the left and right boundaries is fixed at p1 and p2,

respectively. The initial pore pressure in the strip is set to

be zero everywhere. We study the pore pressure evolution

with time in the rectangular strip.

Theoretical solution for this problem in the rectangular

strip can be written as

pðx; tÞ ¼ p1 þ
x

L
ðp2 � p1Þ

þ 2

p

X1

i¼1

e�ji2p2t=L2 p2 cosðipÞ � p1

i

� 	
sin

ipx
L

ð41Þ

where x is the distance to the left boundary, t is the time,

j ¼ ðk=lÞM, k is the intrinsic permeability, l is the fluid

viscosity, and M is the Biot modulus (M ¼ Kw=/), where

kw is the bulk modulus of fluid, and / is porosity of the

medium. As shown in Fig. 12, the rectangular strip

(L 9 W) is meshed into 80 triangular elements with a size

of 0.05 m. Assume L = 1 m, W = 0.2 m, p1 = 100 kPa,Fig. 10 Fracture pressure and pore pressure acting on two triangular

elements connected by a broken joint element
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and p2 = 0 kPa, k = 2 9 10–13 m2, l = 0.001 Pa s, Kw-

= 2.2 GPa, / = 0.1. The fluid density qw = 1000 kg/m3,

and the medium is fully saturated s = 1.

In the pore seepage model, the pore seepage in the entire

problem domain is composed of the pore flow in the tri-

angular element and fluid exchange between the neigh-

boring triangular elements through the unbroken joint

element. However, the unbroken joint element can hinder

fluid flow and thus causes the numerical result unable to

match the theoretical solution. Theoretically, the fluid

exchange coefficient hj of the unbroken joint element

should be taken an infinite value to eliminate the hindering

effect. However, referring to Eq. (25), the required time

step for numerical stability is inversely proportional to hj,

which would approach zero if the fluid exchange coeffi-

cient takes infinity. The situation is clearly unaccept-

able for numerical simulation. Therefore, it is vital to

determining appropriate the value range of hj to ensure that

the numerical result matches the theoretical solution and

the time step size is not too small.

According to the dimensional analysis, the fluid

exchange coefficient can be expressed as hj ¼ n k
lLe

� 
,

where Le is the triangular element size, and n is a non-

dimensional magnification factor.

Next, we will conduct a formal sensitivity analysis to

determine the appropriate magnification factor n by vary-

ing the intrinsic permeability k, the fluid viscosity l, ele-

ment size Le and element shape.

5.1.1 The effect of n on the numerical accuracy
with different k

We assume the intrinsic permeability k = 2 9 10–13,

2 9 10–12, 2 9 10–11 m2, the magnification factor n ranges

from 1 to 200, and other parameters remain unchanged. In

order to quantitatively compare the difference between

numerical results and analytical solutions, a relative error is

defined as follows

RE = ¼
P

jp� ppjP
p

ð42Þ

where p is the pore pressure obtained from the theoret-

ical solution Eq. (41), and pp is the pore pressure obtained

from the numerical simulation. The summation is taken

over all nodal points along the centerline in Fig. 12.

Figure 13 shows the variation of RE against the mag-

nification factor n under different k. It can be seen that as

the magnification factor n increases, the RE decreases

linearly in a log–log plot. It is important to note that the

rate of convergence seems not to be affected by the value

of k. For all the cases, it is found that when n is equal to or

larger than 100, the relative error between the simulation

results and the theoretical solution will be less than 1%,

which is sufficiently accurate for many engineering

applications.

Fig. 11 Flowchart of hydromechanical coupling calculation

Fig. 12. 1D transient saturated pore seepage
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5.1.2 The effect of n on the numerical accuracy
with different l

In this set of analysis, the intrinsic permeability k is

assumed to be 2 9 10–13 m2. We change the fluid viscosity

l = 0.01, 0.001, 0.0001 Pa s, and the other parameters

keep unchanged. Correspondingly, the amplification factor

n varies from 1 to 200.

The relative error versus amplification factor n is plotted

in Fig. 14 under different viscosities l. Interestingly, the

rate of convergence is very similar to Fig. 14, and it is not

much influenced by the value of l. Therefore, we reached

the same conclusion that when n is equal to or larger than

100, the relative error will be less than 1% regardless of the

value of l.

5.1.3 The effect of n on the numerical accuracy
under different Le

As shown in Fig. 15, we change the triangular element size

from Le = 0.05 m to 0.03 and 0.01 m, respectively, and

assume k = 2 9 10-13m2, l = 0.001 Pa s. Figure 16

shows the convergence plot of the relative error against the

amplification factor n. It is important to note that the ele-

ment size has little effect on the overall convergence in

Fig. 16, which also has a similar convergence trend as

shown in Figs. 13 and 14. Again, when n is equal to or

larger than 100, the relative error will be less than 1%

regardless of the element size.

Based on the sensitivity analysis of the previous sec-

tions, we can conclude that when the fluid exchange

coefficient of the unbroken joint element hj is expressed as

hj ¼ n k
lLe

� 
, the numerical accuracy is primarily controlled

by the non-dimensional magnification factor n, regardless

of the intrinsic permeability k, the fluid viscosity l, ele-

ment size Le. For practical application, n should be chosen

as 100 to guarantee a sufficiently accurate numerical

solution, in the meanwhile, a large enough time step for

computational efficiency.

5.1.4 The effect of element shapes

Next, we study the effect of different element shapes on the

numerical accuracy of the pore seepage model. We assume

the intrinsic permeability k = 2 9 10-13m2, the triangular

element size Le = 0.1 m, the fluid viscosity l = 0.001 Pa s,

the amplification factor n = 100. Three sets of computa-

tional meshes using different element shapes are shown in

Fig. 17.

Figure 18 shows pore pressure distribution of the

numerical and theoretical solutions at t = 0.02 s for dif-

ferent element shapes. It can be seen that the pore pressure

distribution calculated by the pore seepage model matches

the theoretical solution very well. The errors of pore

Fig. 13 The effect of magnification factor n on the relative error

under different intrinsic permeabilities k

Fig. 14 The effect of magnification factor n on the relative error

under different viscosities l

(a)

(b)

(c)

Fig. 15 The rectangular strips are discretized using three different

element sizes
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pressure distribution at each nodal point are all less than

0.6% for three element shapes, which shows the element

shape has little effect on the numerical results. Therefore,

the simulation result of the pore seepage model agrees well

with the theoretical solution as long as hj ¼ 100 k
lLe

� 
.

5.2 Two-dimensional steady-state saturated
pore seepage

A production well is drilled in the center of stratum and

penetrates the oil layer. A 2D horizontal, homogeneous

stratum model is shown in Fig. 19, with constant pore

pressures pw and pe prescribed on the well and external

boundary, respectively.

The theoretical solution of the pore pressure distribution

and pressure gradient at any point in the stratum model is

given by

pðrÞ ¼ pw þ pe � pw

ln re

rw

ln
r

rw

ð43Þ

dp

dr
¼ pe � pw

ln re

rw

� 1

r
ð44Þ

where rw is the well radius, and re is the radius of external

boundary.

The model parameters are as follows: re = 1 m,

rw = 0.1 m, pe = 106 Pa, pw = 107 Pa, the stratum perme-

ability k = 1 9 10-13m2, the fluid viscosity

l = 0.001 Pa s, the fluid density qw = 1000 kg/m2. The

mesh size is 0.03 m, and the non-dimensional

Fig. 16 The effect of n on the relative error under different element

sizes. Le

(a)

(b)

(c)

Fig. 17 Computational mesh of different element shapes

Fig. 18 Comparison between numerical and theoretical solutions of

pore pressure for three different element shapes, t = 0.02 s, n = 100

Fig. 19 Diagram of radial pore seepage model
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magnification factor for the fluid exchange coefficient

n = 100 as discussed above.

The numerical and theoretical solutions of the pore

pressure distribution along the radial direction are shown in

Fig. 20. It can be seen that the numerical results agree well

with the theoretical solutions. The pore pressure gradient

decreases from the well boundary to the external boundary,

which is consistent with the solution in Eq. (44).

Note that the above simulation is only for validating the

seepage model. Fluid-driven fracturing in the porous media

can also be simulated by combining the capacity of

mechanical fracture calculation from FDEM with the

mixed fracture–pore seepage model proposed in this study.

The details of developing and implementing the mechani-

cal fracture model in FDEM can be found in [35, 68],

which has been successfully used for solving thermal

cracking problems.

Several additional parameters, as listed in Table 1, are

required for the fracture model, including (1) Young’s

modulus, density, Passion’s ratio for elastic stress–strain

calculation; (2) cohesion, frictional angle and tensile

strength for describing the peak strength of the joint ele-

ment; and (3) fracturing will occur in the joint element

when the fracture energy for the Mode I (tensile fracture)

or Mode II (shear fracture) is reached.

Taking the same seepage model as an example, the

maximum principal stress distributions are shown in

Fig. 21. At the beginning of the simulation (Step 1000),

considerable tensile stress is concentrated around the well

boundary. Crack begins to initiate and propagates toward

the exterior boundary in the radial direction, when the joint

elements break. It can be seen that the tensile stress con-

centration appears at the crack tips and will continue to

extend outward when water is injected into the cracks. In

the meanwhile, as water enters the cracks, the large fracture

pressure induces compressive stress in the porous media

around the well boundary.

Figure 22 shows the evolution of pore pressure distri-

bution and crack propagation. It is visually obvious that the

high pore pressure is generated along the crack paths when

the fluid enters the cracks and seeps to the surrounding.

Also, it can be found that the fluid from the well boundary

can constantly enter the rock matrix, causing that the pore

pressure around the well boundary gradually increases with

time. From this example, it is demonstrated that the pore

seepage model is very effective to take into account the

rock matrix permeability and crack propagation during the

hydraulic fracturing.

Fig. 20 a Analytical and numerical results of pore pressure distribution; b the contours of pore pressure distribution obtained from numerical

simulation

Table 1 The mechanical parameters for the calculations

Parameter Value

Young modulus (GPa) 55

Density (kg/m3) 2600

Poisson’s ratio 0.3

Cohesion (MPa) 20

Friction angle of fracture (�) 30

Tensile strength (MPa) 3

Mode I fracture energy (J/m2) 2

Mode II fracture energy (J/m2) 10

Normal contact penalty (GPa) 5500

Tangential contact penalty (GPa/m) 5500

Fracture penalty (GPa) 5500

Initial aperture (m) 6 9 10–4

Minimum aperture (m) 1 9 10–5

Maximum aperture (m) 1 9 10–3
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Fig. 21 Evolution of the maximum principal stress

Fig. 22 The evolution of pore pressure distribution and crack propagation with time step in hydraulic fracturing process in the two-dimensional

pore seepage model
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6 The mixed fracture–pore seepage

In the previous section, we verified the correctness of the

model in dealing with the pore seepage problems. In this

section, seepage problems in fractured porous media are

investigated.

6.1 Single-fracture porous media seepage

To verify the model in dealing with the fluid exchange

between a fracture and rock matrix, we designed a single-

fracture porous media. The model size is 120 m 9 10 m,

and a fracture is located at x = 0 m in the fractured porous

media, shown in Fig. 23. Fracture pressure pc remains

constant, and the initial pore pressure p0 is zero. All outer

boundaries are impervious. The fluid in the fracture enters

the porous media through the fracture due to pressure

difference. Therefore, the pore pressure in the fractured

porous media increases with time. The theoretical solution

to this problem is derived by the authors as follows:

pðx; tÞ ¼ p0 þ ðpc � p0Þ

erfc
x

2
ffiffiffiffi
at

p
� 	

� e
hcxl
Km

þh2
c atl

2

K2
m

� 

erfc
x

2
ffiffiffiffi
at

p þ hcl
ffiffiffiffi
at

p

Km

� 	" #

ð45Þ

where p0 is the initial pore pressure of the model, pc is the

fracture pressure, x is coordinate component along the x

direction, t is the time, and erfc is the complementary error

function, a ¼ Kwk=ðl/Þ, Kw is the bulk modulus of fluid, k

is the intrinsic permeability, / is the porosity, l is the fluid

viscosity, and hc is the fluid exchange coefficient of the

fracture.

The calculated parameters of the numerical model are as

follows: pc = 8 9 106 Pa, p0 = 0 Pa, k = 10–9 m2,

hc = 2 9 10–7 m/Pa s, Kw = 2.2 9 109 Pa,

l = 0.001 Pa s, and / = 1.

As shown in Fig. 24, the pore pressure in the porous

media increases continuously when the fluid enters the

porous media from the fracture, which agrees well with the

theoretical solution (x[ 0). It is interesting to note that

while a constant pressure 8 9 106 Pa is maintained in the

fracture, the pore pressure at the interface is not equal to

the fracture pressure but increases with time. In addition,

we can see that the pore pressures on both sides of the

fracture are equal at the beginning (t = 0.001 s). Later, the

pore pressure on the left side of the fracture will be greater

than that at the right side (t = 0.1, 0.2 s) because the fluid

has reached the impervious boundary on the left. It can be

seen that the mixed fracture–pore seepage model can well

consider the discontinuity of pore pressure on both sides of

the fracture.

6.2 Double-fracture porous media seepage

In this part, the mixed fracture–pore seepage model is

verified by a standard example Tatomir [49]. As shown in

Fig. 25, two fault lines intersect with each other in the

porous medium at depth, and they outcrop at two valleys

on the ground surface. The surface topography is sym-

metric. The total head (in m) is prescribed at the top

boundary of the model as the following function to repre-

sent the elevation of water table,

h ¼ Y � 1000 ð46Þ

Except for the top boundary, all other boundaries are

impervious. The model is discretized into 1644 triangular

elements connected by joint elements.

Figure 26 shows the total head distribution when the

seepage reaches the steady state. The maximum pore

pressure is at the mountain peak and gradually decreases to

Fig. 23 Schematic diagram of the mixed fracture–pore seepage model in a single-fracture porous media

Fig. 24 The numerical and theoretical solutions of pore pressure

distribution in the model at different times

Acta Geotechnica (2021) 16:3061–3086 3075

123



depth. The minimum pore pressure is at the intersection of

the valley and fault zone.

We take the total heads at monitor lines Y = 1000, 800

and 600 m to compare with the results from Tatomir [49].

As shown in Fig. 27, the numerical results are in good

agreement with that from Tatomir [49], proving the cor-

rectness of the mixed fracture–pore seepage model in

dealing with the fractured porous media seepage.

6.3 Fractured porous media seepage

In this section, an example of fractured porous media

seepage is investigated by the mixed fracture–pore seepage

model. As shown in Fig. 28, a 40 m 9 30 m rectangular

domain contains 6 cracks. The position coordinates of the

cracks are shown in Table 2. The origin of the coordinates

is located in the center of the rectangular. The initial pore

pressure within the model is 0 MPa, and the pore pressure

at the left boundary is fixed at 20 MPa while at the right

boundary is fixed at 0 MPa. The top and bottom boundaries

are impervious. The model is discretized into 2758 trian-

gular elements. The parameters are listed as follows: the

intrinsic permeability of the matrix k = 10–13 m2, the fluid

viscosity l = 0.001 Pa s, the porosity of the matrix

/ = 0.1, the aperture of the crack a = 0.001 m, the fluid

exchange coefficient of the fracture hc = 2 9 10–8 m/Pa s.

At different time steps, the pore pressure propagates

from the left to the right (see Fig. 29). Compared with the

matrix, cracks have much higher permeability. Therefore,

buildup of the pressure around crack tips A, E, D appears to

be slower than that of the matrix when the fluid exchange

between rock matrix and fracture occurs at t = 0.1 h. On

the other hand, pressure around crack tips B, K, F is larger

than the pore pressure of the matrix (t = 0.3 h). With the

continued transmission of pore pressure, the pore pressure

around the fracture gradually increases until it stabilizes

(t = 0.5 h, t = 1 h). The entire seepage process reflects the

effect of crack distribution on fluid flow in the fractured

porous media.

To further verify the mixed fracture–pore seepage model

in this paper, COMSOL Multiphysics [10] is also used to

simulate the same example, as shown in Fig. 30. It can be

seen that the result from the mixed fracture–pore seepage

model in this paper is in good agreement with the results

from COMSOL Multiphysics. To compare the results

quantitatively, we set up a horizontal monitoring line at

y = 5 m to obtain the pore pressure distribution. As shown

in Fig. 31, the pore pressure distribution along the moni-

toring line agrees very well via two models. In addition, it

can be seen that from the fracture interaction point to the

point close to crack tips B, K (X = - 1 * 10 m), pore

pressure gradient in the matrix appears to be much smaller

than the rest part, implying that the flow rate within this

area is much smaller. The main reason is that this area is

almost enclosed by several cracks. Since the permeability

of the fractures is much greater than that of the rock matrix,

these cracks become channels for preferential fluid flow

and served as pressure boundary for the area. As a result,

the pore pressure in this region remains substantially

unchanged. This example clearly shows the flow and

pressure redistribution within the fracture network and the

rock matrix. The excellent agreement with simulation

results from COMSOL Multiphysics further validates the

correctness of the mixed fracture–pore seepage model to

solve fluid flow in complex fractured porous media.

Fig. 25 The double-fracture model and the boundary condition

Fig. 26 Hydraulic head distribution in the double-fracture model at

steady state
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6.4 Modeling of multi-cracks hydraulic
fracturing

In the previous sections, we verified the correctness of the

model to deal with seepage in fractured porous media. In

this section, the multi-cracks hydraulic fracturing problems

in the fractured porous media are investigated. In the first

example, the mutual influence of three prefabricated cracks

propagating under the effect of fluid is investigated, but

there is no crack intersection between the cracks. In the

second example, we study the extension and intersection of

two cracks under the action of fluid.

6.4.1 Simulation of crack growth paths for horizontal
multiple cracks

In this part, crack propagation of horizontal multiple cracks

driven by fluid in fractured porous media is investigated.

The geometry and boundary conditions for this model are

shown in Fig. 32. There are three initial cracks with equal

length of 0.2 m and spacing of 0.3 m on the left boundary

of the computational domain. Fluid are injected into each

crack with a prescribed flow rate q0 = 1 9 10–2 m2/s. The

calculation parameters are listed in Table 3. The geometry

model is discretized into 15,134 triangular elements, and

the mesh size is 0.05 m. The fluid exchange coefficient of

the fracture hc is chosen as 1 9 10–9 m/Pa s.

Fig. 27 The numerical result of the pressure water head at the monitor line (Y = 1000, 800, and 600 m) and result from Tatomir [49] in the

double-fracture model
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Figure 33 shows the propagation of the cracks and

change in pore pressure within the porous media upon

injection of the fluid. It is interesting to note that the upper

and lower cracks are affected by the middle crack, and their

propagation paths are deflected from the horizontal direc-

tion toward the upper and lower boundaries of the model

[40, 73]. This is attributed to the change of stress field

caused by the fracture pressure in the middle crack.

Because of symmetry, the middle crack still propagates in

the horizontal direction. Yet, its crack propagation length is

much shorter than the others because the middle crack is

suppressed by the pressure of the upper and lower cracks.

6.4.2 Propagation and intersection of two perpendicular
cracks

A square porous media with 4 m 9 4 m include two

perpendicular cracks inside as shown in Fig. 34. Two

cracks have an initial aperture a0 = 1 9 10-4 m, and a

constants flow rate q = 0.01 m2/s is injected into both

cracks. The pressure at the outer boundary of the square is

fixed at zero. The geometry model is discretized into 2197

triangular elements with an element size of 0.15 m. The

simulation parameters are shown in Table 4. The fluid

exchange coefficient of the fracture hc is chosen as

6.67 9 10–7 m/Pa s.

Figure 35 shows the crack propagation path and the

crack pressure evolution in two perpendicular cracks. It can

be seen that as the fluid is continuously injected into the

two cracks, the crack pressure gradually increases. When

the crack pressure reaches the tensile strength of the porous

media, the two cracks start to propagate, resulting in a

decrease in the crack pressure. Due to the influence of the

horizontal cracks, the vertical crack do not extend in the

vertical direction but deflects to the right and eventually

intersects the boundary. Since the entire model is sym-

metrical along the horizontal cracks, the horizontal crack

Fig. 28 The physical model of porous media with a fracture network

Table 2 Coordinates of the crack ends in the complex fractured

porous media

Point Coordinates Point Coordinates

xðmÞ yðmÞ xðmÞ yðmÞ

A - 10 15 G - 2.5 - 2.5

B 10 7.5 H 2.5 - 5

C 5 15 I 12.5 10

D - 10 - 10 J 10 15

E - 10 - 5 K 10 2.5

F 7.5 - 12.5 L 0 - 15

Fig. 29 Pore pressure distribution by the 2D mixed fracture–pore seepage model
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still extends in the horizontal direction. The right end of the

horizontal crack intersects the vertical crack, while the left

end extends to the left boundary of the model. Figure 36

shows the evolution of pore pressure distribution in the

model. Although different materials are used in this study,

the simulation results are generally similar to that in ref-

erence [76].

In addition, the effect of element sizes on crack propa-

gation is investigated. Because crack propagation in the

model can only extend along the element boundary, so the

results might be affected by a different discretization.

Figure 37 shows the crack propagation path and pore

pressure distribution under two different mesh sizes

(0.15 m and 0.09 m). Overall, the simulation results are

quite similar, indicating that the crack propagation simu-

lation is converging as the mesh size decreases. One can

refer to [19, 37, 54, 69] for more study on mesh depen-

dence of crack propagation in FDEM.

Fig. 30 Pore pressure distribution obtained by COMSOL [10]

Fig. 31 Pore pressure distribution at y = 5 m, when t = 3 h

Acta Geotechnica (2021) 16:3061–3086 3079

123



7 Discussion

The mixed fracture–pore seepage model and hydrome-

chanical coupling can well deal with the seepage problem

in fractured porous media and fracturing driven by single-

phase flow. However, the method currently still has certain

limitations. It cannot properly capture multiphase fluid flow

through the propagation crack and the porous matrix. Since

the mixed fracture–pore model is combined with FDEM to

construct a coupled hydromechanical model, when simu-

lating fluid-driven fracturing, it inherits the advantages and

limitations of FDEM. For example, the advantage of the

model for simulating fracture is that it does not need to

explicitly track the crack growth, so it can naturally deal

with complex branching cracks and interactions of various

complex cracks. The disadvantage is that the crack prop-

agation proceeds along the element boundary, so the crack

propagation path is affected by the meshing, especially

when the mesh size is large. Fortunately, when the mesh

size is small enough, the crack growth simulation results

will converge. Although the model in this paper is cur-

rently limited to the two-dimensional case, the model can

easily be extended to the three-dimensional case. It only

needs to replace the triangular element with tetrahedral

element and the 4-node joint elements with 6-node joint

elements. We will extend this model to three dimensions in

the near future.

8 Conclusions

In this paper, we proposed a novel mixed fracture–pore

seepage model for fractured porous media. The 2D mixed

fracture–pore seepage model is mainly composed of the

fracture seepage model, the pore seepage model and the

fluid exchange model. The fracture seepage model is rep-

resented by the fluid flow in the broken joint element. For

the pore seepage model, it includes fluid flow in the tri-

angular elements and between the adjacent triangular ele-

ments through the unbroken joint element. However, for

continuum medium, the unbroken joint element can hinder

fluid flow between the adjacent triangular elements. Thus,

the fluid exchange coefficient of the unbroken joint element

is required to be sufficiently large to reduce the hindering

Fig. 32 Geometry and boundary conditions for the multi-cracks hydraulic fracturing

Table 3 Material parameters of the porous media and fluid

Parameter Value

Porous media

Young modulus (GPa) 16

Density (kg/m3) 2000

Poisson’s ratio 0.2

Tensile strength (MPa) 3

Normal contact penalty (GPa) 1600

Tangential contact penalty (GPa/m) 1600

Mode I fracture energy (J/m2) 2

Mode II fracture energy (J/m2) 10

Initial aperture of crack, a0 (m) 1 9 10–4

Minimum aperture, amin (m) 1 9 10–5

Maximum aperture, amax (m) 1.1 9 10–4

Biot’s coefficient, a 1

Biot’s modulus, M (GPa) 11

Porosity, / 0.2

Permeability, k (m2) 1 9 10–13

Fluid

Viscosity, l (Pa s) 0.001

Bulk modulus, Kw (GPa) 2.2

Density, qw (kg/m3) 1000
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Fig. 33 The evolution of crack propagation and pore pressure distribution for multi-cracks hydraulic fracturing at different time steps

Fig. 34 Model geometry of a square with two perpendicular cracks

Table 4 Parameters used for two perpendicular cracks model

Parameter Value

Porous media

Young modulus (GPa) 40

Density (kg/m3) 2600

Poisson’s ratio 0.25

Tensile strength (MPa) 2

Normal contact penalty (GPa) 4000

Tangential contact penalty (GPa/m) 4000

Mode I fracture energy (J/m2) 25

Mode II fracture energy (J/m2) 40

Initial aperture of crack, a0 (m) 4 9 10–3

Minimum aperture, amin (m) 1 9 10–5

Maximum aperture, amax (m) 8 9 10–3

Biot’s coefficient, a 0.002

Biot’s modulus, M (GPa) 11

Porosity, / 0.2

Permeability, k (m2) 1 9 10–11

Fluid

Viscosity, l (Pa s) 0.001

Bulk modulus, Kw(GPa) 2.2

Density, qw (kg/m3) 1000

Acta Geotechnica (2021) 16:3061–3086 3081

123



effect of the unbroken joint element for fluid flow. We

provided the principle of selecting the fluid exchange

coefficient of the unbroken joint element through the study

of pore seepage in a continuum medium. The numerical

result of the pore seepage model matches the theoretical

solution as long as the fluid exchange coefficient of the

unbroken joint element satisfies this principle.

For the fluid exchange model between fracture and rock

matrix, it is determined by the pressure difference between

the fracture pressure and pore pressure on the fracture and

the fluid exchange coefficient of the fracture. Since the

Fig. 35 Contours of crack pressure for two perpendicular cracks at different times
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adjacent triangular elements do not share nodes, the pore

pressure on both sides of the fracture may be discontinu-

ous. Some examples such as 2D steady-state seepage,

single-fracture porous media seepage, double-fracture

porous media seepage and complex fractured porous media

seepage are studied. The simulation results of these prob-

lems are in good agreement with the theoretical solutions,

literature results and the results obtained by COMSOL

Fig. 36 Contours of pore pressure for two perpendicular cracks at different times

Acta Geotechnica (2021) 16:3061–3086 3083

123



Multiphysics, which verifies the correctness of the mixed

fracture–pore seepage model.

The proposed method provides a simple and effective

tool for solving fluid flow in fractured porous media.

Moreover, a fully coupled hydromechanical model is built

by combining the mixed fracture–pore seepage model and

finite-discrete element method (FDEM) for simulating

fluid-driven fracturing in porous media. A few examples

are also included to demonstrate the capacity of such

simulation.
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