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Abstract
A smoothed particle hydrodynamics code based on micropolar continua for geomaterials is developed for problems

involving large deformation and shear strain localization. Two typical geotechnical problems, i.e., biaxial compression test

and sand column collapse, are simulated using classical and micropolar model to demonstrate the performance of the newly

proposed method. A parameter study is given on the scale effect in the micropolar continua.
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1 Introduction

Smoothed particle hydrodynamics (SPH) was originally

developed for simulations in astrophysics [22, 37]. After

decades’ development, SPH has been applied to a vast

range of problems in CFD and solid mechanics such as free

surface flow [44], muti-phase flows [42], dynamic response

[30] and explosion simulations [34]. As a purely Lagran-

gian meshfree method, SPH is suitable for problems

involving large deformation and post-failure, which are

challenging for traditional numerical methods like Finite

Element Method (FEM). Therefore, SPH has drawn quite

some attention in the geomechanics community

[4, 5, 11, 67]. Maeda et al. [38] and Naili et al. [48] are

among the first to apply SPH to real geotechnical problems

such as seepage analysis and soil liquefaction, but the

constitutive models for soils they used were simple and not

rigorous. Later, Bui et al. [5] incorporated the elastoplastic

model based on the Critical State Soil Mechanics into the

SPH framework to describe soil’s behavior in large

deformation and post-failure analysis. Since then, many

researchers, following the SPH framework in [5], devel-

oped new formulations, numerical algorithms and

implemented various constitutive models [2, 49, 53].

Plenty of reports can be reached in related areas including

debris flow [7, 14, 52], landslide [8, 13, 51], slope stability

[3, 6, 50], etc.

At the very beginning of those large deformation and

post-failure problems is the emergence and development of

shear strain localization, which is the key issue while

modeling the granular material. However, it is well known

that the classical continuum suffers from the pathological

mesh-dependence [57]. To overcome this drawback, vari-

ous regularization techniques have been developed by

introducing an internal length into the constitutive equation

[31], e.g. the nonlocal theory [60], strain gradient theory

[64], micropolar theory [46] and theory with viscosity [1].

Among them the micropolar theory is chosen in this work

because of its clear physical relevance for granular mate-

rials [18, 26, 59]. Micropolar theory, also known as Cos-

serat theory [20], considers the rotations as independent

variables in addition to the translations in the classical

continuum, which means that each material point has 6

DOFs (three for translation and the others for rotation).

Besides, Micropolar theory also introduces some other

physical quantities such as micro-curvature, defined as the

gradient of the rotational angle, and couple stress ener-

getically conjugate to the micro-curvature. As a result, the

number of basic physical quantities is extended from 15

within the conventional continuum mechanics to 42 in the

Micropolar theory (18 stress and strain components, 18

couple stress and micro-curvature components, and the

aforementioned 6 DOFs). Therefore, it is foreseeable that

the framework of the Micropolar theory can be of relative
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complexity in contrast to the conventional continuum.

Nevertheless, the price is affordable as the advantages are

distinct. For example, Micropolar theory is capable with

estimating the width of the shear band due to the intro-

duction of the internal length [59]. Moreover, this theory is

well suited for granular materials such as sand, where

particle rotations play an important role [63]. A compre-

hensive account of the theory can be found in the book by

Vardoulakis [65].

As the extension of the classical continuum mechanics,

micropolar theory has been applied to tackle various

problems of progressive strain localization. Mühlhaus and

and Vardoulakis [46] treated the shear band formulation as

a bifurcation problem, and made theoretical prediction of

the shear band thickness in agreement with experimental

observation. Mühlhaus [47] analyzed the limit load of

tunnel statics within the framework of micropolar theory

by the finite element method. de Borst [15] presented the

von-Mises elastoplastic model and analyzed the localiza-

tion under static and dynamic loading [17], but this model

is more suitable for metals rather than granular materials.

For geomaterials such as stone and soil, de Borst [16]

proposed the pressure dependent J2-flow theory for

micropolar continuum, which is widely adopted in

geomechanics [25, 39, 58]. Besides, many studies are

conducted based on the micropolar hypoplasticity model

[24, 61, 62]. Furthermore, the micropolar theory has been

used in many other research areas, such as biomechanics

[54], crystal plasticity [12, 41] and composite material

[9, 55].

Despite the achievements mentioned above, it should be

noted that the micropolar theory is no longer in force under

pure tensile or compression as no rotational degrees exist in

such circumstances. In addition, the micropolar theory is

usually realized with the aid of standard finite element

procedure, accounting for the limited applications to

problems of small strain or weak discontinuity. This is

where this paper steps in.

The motivation of this paper is to establish a general

SPH framework based on the micropolar theory. As the

first step, we consider an elasoplastic constitutive model

based on the yield surface of Drucker–Prager. The per-

formance of the Micropolar SPH (MPSPH) is compared

with the conventional Euler kernel based SPH (CESPH) by

conducting two typical geomechnics problems, i.e., biaxial

compression test and sand column collapse. Meanwhile, a

parameter analysis is given on the micropolar effect,

defined as the influence induced by considering the micro-

rotation. Simulation results show that the newly proposed

method can deal with problems involving large deforma-

tion or discontinuous failure, and processes the capability

in keeping the well-posedness of the boundary value

problems with strain localization incorporated.

2 Micropolar continuum

2.1 Kinematics

Figure 1 illustrates the three degrees of freedom in 2-D

problems. Compared with conventional continuum

mechanics which has only translational freedom, a point in

the framework of micropolar continuum is also free in

terms of rotation. This character leads to the asymmetrical

strain rate tensor because the microscopic rotation is dif-

ferent from the macroscopic one, as shown in Eq. (1)

_e ¼ _�� wþ -: ð1Þ

In the equation, _� is the infinitesimal strain rate tensor,

which is defined as _� ¼ 1=2 rvþ ðrvÞT
� �

, where v

denotes the velocity vector. w is the spin tensor with the

expression w ¼ 1=2½rv� ðrvÞT �. And - is the micro-

scopic rotation tensor, reading

- ¼ �f � x; ð2Þ

where f refers to the third-order permutation tensor and

x ¼ _h is the micro-rotation vector with h denoting the

angle vector. Note that in a classical (Boltzmann) contin-

uum, _e coincides with _� as the slip and rotation between

individual grains are neglected (i.e., - ¼ w).

Apart from the strain tensor, there exists a curvature rate

tensor in the micropolar theory, which describes the spatial

derivative of the micro-rotation vector

_j ¼ rx: ð3Þ

2.2 Conservation laws

The conservation laws governing the physical phenomenon

in micropolar continuum include the conservation of mass,

linear momentum and angular momentum, i.e.,

Fig. 1 DOFs in a 2D Micropolar continuum
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dq
dt

þ qr � v ¼ 0; ð4Þ

q
dv

dt
�r � r� qf ¼ 0; ð5Þ

and

qJ
dx

dt
�r � l� qJc� f : r ¼ 0; ð6Þ

where q is the mass density, r denotes the stress tensor, f

the body force such as gravity in most cases, l the couple

stress, c the body couple vector, and J the moment of

inertia. Note that in this study we assume that the density is

invariant, so Eq. (4) is not involved in simulation.

2.3 Cosserat elastoplastic model

The micropolar elastoplasticity is adopted to delineate the

constitutive property of the Cosserat medium in this work,

whose elastic part is shown as below

_r ¼ ðK � 2

3
GÞ _evIþ Gþ Gcð Þ_eþ G� Gcð Þ_eT ; ð7Þ

_l ¼ 2Gl2 _j; ð8Þ

in which _r and _l represent the stress rate and couple stress

rate, respectively; _ev ¼ trð_eÞ with tr(�) denoting the trace of

a tensor; K;G andGc are the volumetric modulus, shear

modulus and Cosserat shear modulus; and l denotes the

characteristic length, which depends on the shape and the

size of the micro-structure [17]. In fluid dynamics, the

technique called Lagrangian velocities of tracer particles

can be employed to measure the quantity experimentally

[45]. In geomechnics, however, to the authors’ knowledge,

there is no reported method to determine the characteristic

length. Theoretically speaking, the characteristic length of

granular materials should be related with the averaged

grain diameter, d50, since there is abundant experimental

evidence that shear bands in granular media involve a

significant number of grains [46].

To describe the plastic behavior for a Cosserat medium,

the micropolar Drucker–Prager model is employed in this

study, which has the following yield function

f ¼ k/I1 þ
ffiffiffiffiffi
J2

p
� kcc ¼ 0; ð9Þ

where I1 ¼ trr; c denotes the cohesion; k/ and kc are the

constitutive parameters related with the frictional angle, /,

from Mohr-Coulomb model

k/ ¼ tan/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 þ 12tan2/

p ; kc ¼
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 þ 12tan2/

p ; ð10Þ

in which J2 is the second deviatoric stress invariant in the

micropolar continuum, which can be generalised as [16]

J2 ¼ a1s : sþ a2s : s
T þ a3l : l=l2: ð11Þ

Herein s stands for the deviatoric stress defined as

s ¼ r� 1
3
trðrÞI, where I is the identity tensor; ai is the

material parameter with the requirement a1 þ a2 ¼ 0:5 to

ensure that Eq. (11) can be retrieved to the conventional

continuum form in the absence of couple stress. Notice that

the set of values, a1 ¼ a2 ¼ 1
2
a3 ¼ 1

4
, is used throughout the

whole study [15, 21].

By introducing the piecewise linear hardening/softening

assumption into cohesion, we have,

c ¼ c0 þ Hc; ð12Þ

in which, c0 is the initial cohesion; H denotes the harden-

ing/softening paramter; and c represents the hardening

parameter. In this paper, the micropolar equivalent plastic

strain is chosen as the hardening parameter, owning the

following rate form [16],

_c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
_ep : _ep þ 1

3
_ep : ð _epÞT þ 2

3
l2 _jp : _jp

r

; ð13Þ

with _ep the plastic deviatoric strain. Besides, we adopt the

non-associated flow rule with the following form of plastic

potential

g ¼ kwI1 þ
ffiffiffiffiffi
J2

p
� kcc; ð14Þ

where kw is another material parameter defined as

kw ¼ tanw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 þ 12tan2w

p ; ð15Þ

with w the dilatancy angle.

2.4 Return-mapping algorithm

In this paper, we develop a one-step algorithm to determine

the stress increment in a finite loading step, in which the

gradient is evaluated at the trial stress state. It can be

considered as the straightforward extension of the method

proposed by de Borst et al. [15] for the pressure-indepen-

dent Cosserat material. This algorithm begins with an

elastic prediction, which leads to the trial stress, rt, and

couple stress, lt, with the superscript t denoting the pre-

dicted value of a quantity. This practice is adopted

throughout the whole work. Then the yield function Eq. (9)

will be used to check whether the new stress state has

reached the yield surface or not. If not, the updated stress

and couple stress will be used as the input data for the next

calculation loop. If the trial stress state goes beyond the

yield surface, plastic failure occurs and a correction to the

trial stress is needed. In this case, the corresponding plastic

strain is computed with the plastic flow rule, i.e.,
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Depc ¼ Dk
og

orc
: ð16Þ

Herein, rc and epc represent the generalized Cosserat stress

and plastic strain, with the former a block diagonal tensor

incorporating both stress and couple stress while the latter

assembling the plastic strain and curvature. Within the

framework of Cosserat DP model, Dk, the increment of the

plastic multiplier, has the following form,

Dk ¼ f ðrt; lt; cnÞ
kcH þ Gþ 9Kk/kw

; ð17Þ

where cn is the hardening parameter at n-th calculation

step. Eq. (17) features its simplicity but owns second order

accuracy; details of the derivation are given in Appendix.

Unlike the classical FEM codes, where a global stiffness

matrix is needed, the stress in the SPH framework can be

updated directly once the increment of the plastic multi-

plier is determined [5]. One can acquire a straightforward

cognition of the aforementioned whole process with the

work flow shown in Fig. 2.

3 SPH formulations

SPH is a particle-based numerical method, in which

physical information such as velocity and stress are carried

by Lagrangian particles. The core of SPH is the kernel

approximation and particle approximation.

3.1 SPH basics

A field function, f ðxÞ, and its spatial derivative, rf ðxÞ, at a

given point x ¼ ðx1; x2; x3Þ can be approximated firstly

with the following integral formulas:

f ðxÞh i ¼
Z

X
f ðx0ÞWðx� x0; hÞdX ð18Þ

and

rf ðxÞh i ¼ �
Z

X
f ðx0Þrx0Wðx� x0; hÞdX; ð19Þ

where X is the supporting domain, W is the kernel function,

and h is the smoothing length. In this study, the Wenland

function [68] is used with the following expression

W ¼ ad
ð1 � q=2Þ4ð2qþ 1Þ 0� q� 2

0 q[ 2

(

ð20Þ

in which, ad equals to 7=4ph2 in 2-D and 21=16ph3 in 3-D;

q is non-dimensional distance between particles, expressed

by q ¼ r=h, where r is the distance between two given

particles.

With a further step, Eqs. (18-19) can be rewritten by

summing the contributions of all particles in the support

domain of particle i, i.e.,

f ðxiÞ ¼
Xn

j¼1

f ðxjÞWijmj=qj; ð21Þ

and

rf ðxiÞ ¼
Xn

j¼1

f ðxjÞrWijmj=qj; ð22Þ

where Wij ¼ Wðx� x0; hÞ, n is the number of particles

within the supporting domain of particle i, and mj=qj means

the volume of the particle j. For more details of SPH, one

can refer to Liu and Liu’s book [32].

3.2 Discretization in MPSPH

By applying Eqs. (21-22), Eqs.(1) and (3) can be dis-

cretized as

_ei ¼
Xn

j¼1

mj

qj
vjiriWij þ

Xn

j¼1

mj

qj
-jWij; ð23Þ

where vji ¼ vj � vi, and

_ji ¼
Xn

j¼1

mj

qj
xjiriWij; ð24Þ

in which xji ¼ xj � xi. Similarly, Eqs. (5-6) have the

following forms:

dvi
dt

¼
Xn

j¼1

mjð
ri

q2
i

þ rj

q2
j

ÞriWij þ f i; ð25Þ

and
Fig. 2 Flow chart of the return-mapping algorithm for Cosserat D-P

model
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J
dxi

dt
¼

Xn

j¼1

mjð
li
q2
i

þ
lj

q2
j

ÞriWij

þ
Xn

j¼1

mj

qj
ðe : rÞjWij þ Jci:

ð26Þ

Compared with CESPH, except the widely-used Eq. (25),

the other three formulas above are either additional or

different in MPSPH discretization.

3.3 Artificial viscosity

Artificial viscosity, usually denoted by Pij, is a common

numerical technique introduced to alleviate the unphysical

oscillations in SPH method. Herein, the scheme proposed

by Monaghan [43] is applied due to its simplicity and

popularity:

Pij ¼
�aPcs/ij þ bP/

2
ij

�qij
; vij � rij\0

0; vij � rij � 0

8
><

>:
ð27Þ

with

/ij ¼
hvij � rij

rij
�� ��þ 0:01h2

; �qij ¼
qi þ qj

2
; ð28Þ

in which, rij is the vector pointing from j and i; aP and bP
are two coefficients that need to be tuned according to

specific problems; and cs is the artificial speed of sound,

which will be further specified in the following section. In

this study, the values of aP and bP are taken as 0.2 and 0,

respectively, as such assignment can generate stable and

reasonable results in all our simulations. Thus, incorpo-

rated with artificial viscosity, Eq. (25) is renovated as

dvi
dt

¼
Xn

j¼1

mjð
ri

q2
i

þ rj

q2
j

�PijIÞriWij þ f i; ð29Þ

3.4 Time integration

Among those available integration techniques [27], Verlet

scheme [66] is chosen because of its low computational

overhead, as it calculates the particle interaction only once

per step. Thus, all the variables at each particle are updated

with the following explicit integration:

xnþ1
i ¼ xni þ Dtvni þ 0:5ðDtÞ2ðdvi

dt
Þn; ð30Þ

hnþ1
i ¼ hni þ Dtxn

i þ 0:5ðDtÞ2ðdxi

dt
Þn; ð31Þ

Knþ1
i ¼ Kn�1

i þ 2DtðdKi

dt
Þn; ð32Þ

where n denotes the time step, and K traverses the fol-

lowing variables: velocity, v, angular velocity, x, stress, r,

couple stress, l, strain, e, and curvature, j. In order to

avoid the divergence of the integration through time, every

Ns time steps (Ns ¼ 40 in this study), K should be calcu-

lated with a new expression

Knþ1
i ¼ Kn

i þ DtðdKi

dt
Þn: ð33Þ

Similar with other explicit integration algorithm, the time

step is restricted with the so-called CFL condition, based

on the acceleration term and the viscous diffusion term [23]

Dt ¼ vCFL � minð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h=amax

p
;

h

cs þ /max

Þ; ð34Þ

where vCFL is the CFL coefficient, amax is the maximum

acceleration and /max, defined in Eq. (28), is the maximal

term among all particles. In this work, the CFL coefficient

is taken as 0.2 and cs ¼ 200 m/s is utilized. This will give

rise to a sufficiently small time step, and thus, the com-

putational stability can be achieved.

3.5 Boundary condition

Accurate enforcement of the boundary condition plays a

crucial role in obtaining precise simulation results for any

numerical method. Achieving this, however, is not an easy

task for SPH as it suffers from the problem of particle

deficiency near the boundary. Thus, various schemes have

been developed to resolve the trouble including ghost

particles [29], repulsive forces [44] and boundary particles

[56].

In the present work, the solid boundary is modeled with

three layers of dummy particles, which are either fixed or

move with a prescribed velocity. To impose a non-slip

condition, the boundary particles are reassigned with the

following velocity and stress when interacting with soil

particles:

vb ¼ 2vw � v̂b; v̂b ¼
P

s vsWbsP
s Wbs

; ð35Þ

rabb ¼
raab ; a ¼ b

rabs ; a 6¼ b

�
; ð36Þ

raab ¼
P

s r
aa
s þ ðaaw � gaÞ

P
s qsðxab � xas ÞWbsP

s Wbs
: ð37Þ

In these three equations, the subscripts b and s denote the

boundary and soil particles, respectively. vw and aw,

accordingly, are the wall velocity and acceleration. The

superscripts a; b ¼ x; y; z refer to the Cartesian

Acta Geotechnica (2021) 16:2355–2369 2359

123



components. Note that Eq. (35) is only used for interaction,

not the update of positions of boundary particles. Besides,

the couple stress and angular velocity at all boundary

particles are set equal to zero. This is a simplified way to

deal with the rotational boundary conditions, but it is

observed that reasonable results could be achieved, which

will be shown in the subsequent section.

In Sect. 4.2 where the simulations of biaxial compres-

sion are conducted, a method to handle stress boundary

condition is required. The approach suggested by Zhao

et al. [69] is adopted to model the flexible confined

boundary condition, but a new criterion is proposed herein

to determine which particles should be treated with this

procedure. By doing so, Eq. (29) has a new expression:

dvi
dt

¼
Xn

j¼1

mjð
ri þ rc

q2
i

þ rj þ rc

q2
j

�PijIÞriWij þ f i; ð38Þ

Dr� 2h: ð39Þ

where rc is the confining stress, and Dr represents the

shortest distance between a given soil particle and the

confined boundary. The new criterion implies that all those

soil particles whose supporting domains are truncated by

the confined boundary should take into account the effect

of the confining pressure. Therefore, for an arbitrary soil

particle, if Eq. (39) is satisfied, Eq. (38) will be applied,

otherwise Eq. (29) is used in the calculation.

4 Numerical examples

In this section, the simulation of a simple shear test is

conducted to validate the proposed SPH method in the first

place. Subsequently, two typical geotechnical problems are

considered to study the performance of MPSPH. First, the

biaxial compression test is simulated to investigate the

shear localization phenomenon, which is illustrated in

detail with a parametric analysis on the micropolar effect

(for definition, cf. Sect. 1). Then the proposed method is

further examined with one of the most widely studied

problems using SPH, i.e., the problem of sand column

collapse. In both cases, results are compared with those

from the conventional method, CESPH. In all simulations,

the problem domain is discretized as particles in regular

lattices with a particle spacing Dp. And the smoothing

length h is fixed as
ffiffiffi
2

p
Dp. All material parameters are

summarized in Table 1. Note that Chen et al. [10] argue

that J ¼ l2, but such a value will account for an unac-

ceptable significant angular acceleration. Thus, we tuned

the coefficient and set J ¼ 32 in all simulations except

when discussing J-induced micropolar effect.

4.1 Simple shear test

Figure 3 illustrates the initial configuration of the square-

shaped numerical model of 0.3 m length exploited in the

simple shear test. The simulation model is divided into two

separate parts, i.e., the centrally located specimen (100 mm

� 100 mm) and the boundary area enclosing the specimen.

For realizing the pure shear condition, the velocity field is

predefined with Eq. (40). Besides, the boundary particles

are maintained with the initial state, while the specimen

particles move freely during the whole simulation. The

particle distance is taken as 10 mm, which leads to 961

particles in total. Three cases are conducted with values of

confining stress of 50, 75, and 100 kPa.

vx ¼ 0:01z ð40Þ

The stress path and stress–strain relations of the simple

shear test with the micropolar Drucker–Prager model are

plotted in Fig. 4. The simulations adopt the strain softening

elastoplastic model, so the yield surface will shrink as the

plastic strain develops. After shear starts, all loading stress

paths move vertically upwards from their initial hydrostatic

confined states, as shown by the hollow symbols in Fig. 4a.

During the plastic flow, all stress states are enforced to

remain on the yield surface. Thus the shear stress will be

decreased in the softening regime, which is represented by

the symbols with crossings in Fig. 4a and the declining

lines in Fig. 4b. Besides, a good agreement is found

between the numerical results and theoretical calculations,

represented by the hollow symbols and the solid lines in

Fig. 4b, respectively. A minor deviation is observed at the

large strain stage. This is induced by the calculation error

on the hydrostatic pressure, which can be verified with the

post-failure stress states in Fig. 4a. In general, the results

from the simple shear test indicate that MPSPH, incorpo-

rating the micropolar model and SPH, owns the potential to

capture the appropriate stress state of the geomaterial with

high accuracy.

4.2 Biaxial compression test

Figure 5 depicts the initial geometry and the boundary

conditions in the plain-strain biaxial test. The soil sample is

50 mm wide and 100 mm high. Three resolutions, i.e., 2

mm, 3 mm and 4 mm, are chosen to study the shear

localization problem. The characteristic length is taken as 1

mm. The techniques mentioned in Sect. 3.5 are applied to

model the boundary conditions. In addition, the upper

boundary particles move together downward at the speed

of 10 cm/s, which can guarantee both accuracy and effi-

ciency. The fixed and constant moving boundary condi-

tions are well achieved by restricting particle displacement
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or velocity updates. One weak particle is introduced at the

center of the sample to trigger the initialization of the shear

localization. Besides, the specimen is confined with pres-

sure 100 kPa.

First, we simulate the biaxial test using CESPH with

three numerical resolutions. Figure 6 portrays the equiva-

lent strain contour at axial strain, ea, (ratio of the dis-

placement of the top boundary to the sample height) equal

to 6%, and equivalent strain is calculated as

eeq ¼ ð2
3
e� : e�Þ1=2

, where e� ¼ �� ðtr�=3ÞI. As presented

in Fig. 6, it is obviously observed that the X-shape shear

band becomes wider with a larger particle spacing. In

addition, a finer discretization can cause an increment in

the maximum equivalent strain. These outcomes reflect the

fact that the conventional continuum model suffers from

the pathological mesh-dependence in localization analysis.

By contrast, we find MPSPH exhibits less sensitivity to the

change in numerical resolution. In Fig. 7a, all three reso-

lutions lead to nearly the same shear band shape and size,

and the close magnitude of the equivalent strain. Therefore,

it is generally recognized that MPSPH gives rise to

objective strain localization independent of numerical

resolution. The size of shear bands is not a numerical result

in MPSPH but is controlled by the characteristic length.

This conclusion can be further validated with the rotation

plot as shown in Fig. 7b. Hence, MPSPH clearly illustrates

its capability of regularization in shear band pattern.

Figure 8 presents the comparison of axial stress–strain

relations between CESPH and MPSPH with different res-

olutions. Both methods predict that when axial strain

reaches around 1%, the soil gets yielded and the peak stress

is approximately 330 kPa. Starting from the same stress

state, all curves experience almost identical elastic period

before yielding. Following the yield stage is the strain

softening plastic flow, which corresponds to the declining

segments in the figure. In Fig. 8a, with finer resolution, the

peak stress becomes slightly higher and more delayed.

Additionally, the specimen displays more stiff behaviors in

the softening regime of a coarse particle spacing than in a

Table 1 Material parameters for numerical simulations

Numerical test G(MPa) Gc(MPa) m c(kPa) /(	) w(	) q(kg/m3) J(m2) H(kPa)

Simple shear 8.514 0.0 0.2 8.5 30.5 0.0 1530 32 - 100

Biaxial compression 8.514 1.0 0.2 20 30 0.0 1530 32 - 80

Sand column collapse 20 10 0.2 0.0 30.0 0.0 2600 32 0

Fig. 3 Configurations of simple shear test

(A) (B)

Fig. 4 Results of the simple shear test with the micropolar Drucker–Prager model a Stress path; b Stress-strain relation
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fine discretization. In departure from the result within the

framework of CESPH, the axial stress versus strain curves

from MPSPH indicate that the mesh dependency problems

have been remarkably alleviated. As illustrated in Fig. 8b,

all curves with varied resolutions coincide with each other

after peak values, until a small difference appears at the

large deformation. Similar observations can be found in the

existing literature [33, 57]. Therefore, the regularization

effectiveness of the proposed method, MPSPH, has been

proven again, showing that not only the shear band patterns

but the post-failure mechanical behavior is insensitive to

the particle size.

4.3 Parametric analysis of micropolar effect

From Sect. 2, we can conclude that many coefficients play

a part in the micropolar effect. In this section, we choose

the following factors, i.e., the characteristic length, l, the

Cosserat shear modulus Gc and and the moment of inertia

J, as they are typical parameters in micopolar theory.

Firstly, the effect induced by the characteristic length is

studied, as shown in Fig. 9. Note that all the data points are

acquired from the dash line in the inset, which is a quarter

width away from the right vertical boundary. The snapshot

delineates the symmetric patterns for the equivalent strain

Fig. 5 Model of the biaxial compression and the boundary conditions

Fig. 6 Equivalent strain contour for biaxial tests from CESPH at 6% axial strain a Dp=2mm; b Dp=3mm; c Dp=4mm

(A) (B)

Fig. 7 Contours of a equivalent strain and b rotation for biaxial tests from MPSPH at ea ¼ 6%
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and the skew-symmetric patterns for the micro rotation,

which is in line with expectation. Meanwhile, both the peak

values of eeq and h decline as the characteristic length

becomes larger, and the shear band gets wider.

Similar patterns are observed in Fig. 10, which depicts

the micropolar effect induced by the Cosserat shear mod-

ulus with a range from 0 to 4000 kPa. In case of Gc equal to

0 kPa, the hollow square line portrays the result from

CESPH without micropolar effect. In this condition, there

is no microscopic rotation, so the corresponding line is not

drawn in Fig. 10b. It is found that the peak values of both

equivalent strain and rotation decrease following the

increasing Cosserat shear modulus, which means microp-

olar effect gets stronger if the Cossearat shear modulus

becomes larger. Meanwhile there exists a certain range

beyond which the micropolar effect is not sensitive to the

value change of Cosserat shear modulus. In this study, the

range is between 1 and 1000 kPa.

The effect of the moment of inertia, J, is illustrated in

Fig. 11. From the physical perspective, J describes the

inertial resistance against rotational acceleration. This

parameter can be ignored in quasi-static problems which is

common in previous studies [19, 28]. However, the

moment of inertia is indispensable in MPSPH as it is an

explicit method. Like the characteristic length, the moment

of inertia is also dependent on the shape and the size of the

micro-element. Herein, we explored J-induced micropolar

effect by choosing several example values within a rela-

tively large range. From Fig. 11, it is found that the

moment of inertia is a key factor to influence the behavior

of biaxial tests. The peak value of the equivalent strain

drops as the moment of inertia increases. A similar ten-

dency is observed for the microscopic rotation. Second,

there exists a certain range (between 0.1 and 10 m2 in this

case), within which the biaxial test response is insensitive

to the value change of the moment of inertia. Besides, in

parameter analysis, an unrealistic result is observed when

J is either too larger or small. Therefore, a calibration about

the inertia of moment is recommended, before conducting

simulations.

(A) (B)

Fig. 8 Axial stress-strain relations among different resolutions a CESPH; b MPSPH

(A) (B)

Fig. 9 l-induced micropolar effect at 6% axial strain a equivalent strain; b rotation
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4.4 Sand column collapse

In this section, another numerical simulation, namely, sand

column collapse, is investigated, which has been widely

studied experimentally and numerically [11, 35, 36, 40].

The initial geometry and boundary conditions are shown in

Fig. 12. The column’s initial width and height, di and hi,

are 200 mm and 100 mm, respectively. The sand column is

discretized with two resolutions, i.e., 2 mm and 4 mm, so

there are around 5000 and 1250 particles involved

accordingly. The other configuration parameters is listed in

Table 1. In order to highlight the micropolar effect, the

artificial viscosity is switched off in this simulation.

To compare the performance of MPSPH and CESPH,

the results from these two numerical methods as well as

experimental data [35] are drawn in Fig. 13, which depicts

the evolution of the runout distance. Those solid lines are

obtained by recording the position of the column toe at

each instant. Note that the dash lines represent the exper-

imental process. Actually, in Lube et al. [35], there are only

empirical formulas that describe the relationship between

the incremental runout distance, dd, or collapsing duration,

t1, and aspect ratio a ¼ hi=wi. Thus in dash lines, none but

the turning points from curved lines to horizontal lines are

plausible. However it is still meaningful to do the com-

parison between numerical and experimental results. All

the simulations last 0.6 s and reach the stable stages finally.

As shown in Fig. 13a, after about 0.5 s, the motion of the

flow front ceases using CESPH and the incremental runout

distance is around 0.274 m. However, in the case where l

(A) (B)

Fig. 10 Gc-induced micropolar effect at 6% axial strain a equivalent strain; b rotation

(A) (B)

Fig. 11 J-induced micropolar effect at 6% axial strain a equivalent strain; b rotation

Fig. 12 Initial geometry and boundary conditions
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equals 4 mm, the duration for restoring stationary is about

0.4 s and at last the excursion of the flow front is roughly

0.210 m. Although these values from MPSPH vary with the

data from the empirical expression from Lube at al. [35]

(t1 ¼ 0:33 s and dd ¼ 0:160 m), they are much closer to

the experiment data than the result from CESPH. More-

over, when the characteristic length is assigned a smaller

value, more precise result could be achieved. Similar

conclusions could also be drawn from Fig. 13b where the

mesh is coarser. Therefore, compared with CESPH,

MPSPH can get more accurate results for different

resolutions.

In addition, inside the sand column, there exists an

interface which distinguishes the flow regime from the

static domain. Traditionally, researchers usually use the

strain contour to find such slip plane. Now, MPSPH could

offer an alternative tool to search for the slip surface.

Figure 14 demonstrates the contours for microscopic

rotation and equivalent strain of the final deposit. The

white dash lines are the so-called slip surfaces which

separate the soils generally at rest from those after motion.

From both images we can obtain right-angled trapezoid

static regimes, which are similar with each other.

5 Closure

For the first time, the micropolar SPH is developed, which

is based on the Cosserat Druck–Prager model considering

strain softening. The one-step algorithm is proposed to

update the stress state, with features in straightforward

implementation and a second-order accuracy. Two

numerical simulations are conducted to compare the per-

formance of the newly proposed method with conventional

SPH. Some advantages of the MPSPH are observed,

including objective shear band patterns and stress-strain

relations in the post-failure regime, independent of mesh

size, and more accurate simulation without the employ-

ment of artificial viscosity. Besides, parametric studies are

performed to investigate the influence of the micropolar

effect. It is found that the characteristic length, Cosserat

shear modulus and moment of inertia all play critical roles.

This paper only reports our preliminary study on MPSPH.

Several problems, i.e. better implementation of micropolar

boundary condition, physical determination of micropolar

parameters, require further investigation. Nevertheless,

MPSPH shows to be a promising approach for geome-

chanical modeling as it can effectively regularize the strain

localization in geomaterials.

Appendix

For the sake of simplicity, all conponents of the stress and

couple stress tensors for a plain strain problem can be

incorporated into one single generalized vector, i.e.,
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Fig. 13 Comparison of runout distance between CESPH and MPSPH a Dp ¼2mm; b Dp ¼4mm

(A)

(B)

Fig. 14 Slip surface at the final profile a rotation contour; b equivalent

strain contour
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rc ¼ r11; r22; r33; r13; r31; l12=l; l32=l½ �T : ð41Þ

Similarly, we can obtain the counterpart expression for

strain and curvature tensors as follows

ec ¼ e11; e22; e33; e13; e31; j12l; j32l½ �T : ð42Þ

With Eq. (41) at hand, we can rewrite I1 and J2 in an

appeallingly compact form,

I1 ¼ rTcm; J2 ¼ 1

2
rTcPrc; ð43Þ

where m ¼ ½1; 1; 1; 0; 0; 0; 0�T , and P is a 7 � 7 matrix as

follows,

P ¼

2=3 ��1=3 ��1=3 0 0 0 0

�� 1=3 2=3 ��1=3 0 0 0 0

�� 1=3 ��1=3 2=3 0 0 0 0

0 0 0 1=2 1=2 0 0

0 0 0 1=2 1=2 0 0

0 0 0 0 0 1 1

0 0 0 0 0 1 1

2

666666666664

3

777777777775

:

ð44Þ

Introduction of the matrix above allows the rate of the

hardening parameter, _c, to be rewritten in a similar format

as J2,

_c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
ð _epcÞTP _epc

r

; ð45Þ

in which, the vector _epc assembles the plastic strain-rate

components. Substituting the plastic flow rule, Eq. (16),

into the aforementioned equation yields

_c ¼ _k; ð46Þ

since Pm ¼ 0 and PP ¼ P. The concise relation between _c

and _k can facilitate the derivation of the plastic multiplier

significantly, which is illustrated as follows. This is also the

motivation behind the determination of the parameter set of

a1, a2 and a3.

As mentioned in Section 2.4, the proposed one step

algorithm starts on computing the trial stress,

rtc ¼ r0
c þ DeDec; ð47Þ

where t and 0 in the superscript represent the trial and

initial stress states for a specific loading step accordingly;

Dec denotes the Cosserat strain increment; and De is the

elastic modulus matrix, reading

with k1 the first Lame constant. When plasticity occurs,

i.e., if f ðrtc; c0Þ[ 0, the return mapping algorithm will be

applied to drag the predicted stress state back to the newly-

formed yield surface. To this end the yield condition

f ðr�c ; c�Þ ¼ 0 should be reassured, where the subscript �
denotes the corrected value of quantity at the end of

loading. In this case, the following expression can be

obtained when the yield function is expanded as Taylor

series at the trial stress state with rearrangement by intro-

ducing Eq. (46),

f ðrt; c0Þ � Dk kcH þ ogT

orc
De of

orc

� �

þ 1

2
Dk2 o2f

oc2
þ ogT

orc
De o

2f

or2
c

De og

orc

� �
þ oðDk3Þ ¼ 0:

ð49Þ

Note that the second term of the above equation will vanish

due to the linear hardening/softening and the choice of a1,

a2 and a3, which is be given the proof as follows. There-

fore, we obtain an explicit formulation of the plastic mul-

tiplier with second order accuracy such that

Dk ¼ f ðrtc; c0Þ
kcH þ ogT

orc
De of

orc

¼ f ðrt; lt; cnÞ
kcH þ Gþ 9Kk/kw

; ð50Þ

De ¼

k1 þ 2G k1 k1 0 0 0 0

k1 k1 þ 2G k1 0 0 0 0

k1 k1 k1 þ 2G 0 0 0 0

0 0 0 Gþ Gc G� Gc 0 0

0 0 0 G� Gc Gþ Gc 0 0

0 0 0 0 0 2G 0

0 0 0 0 0 0 2G

2

666666666664

3

777777777775

; ð48Þ
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as PDe ¼ 2G and mTDem ¼ 9K.

To prove that the second term of Eq. (49) makes no

contribution to the equation, we first give the specific

expression for the second gradient of the yield function,

o2f

or2
c

¼ rTcPrcP� Prcr
T
cPffiffiffi

2
p

ðrTcPrcÞ
3=2

; ð51Þ

and the gradient of the potential function

og

orc
¼ Prc

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
rTcPrc

q þ kwm
T : ð52Þ

A straightforward calculation can show that the dot product

between Eq. (51) and Deog=orc is a zero vector, i.e.,

o2f

or2
c

De og

orc
¼ G

ðrTcPrcÞ
2
ðrTcPrcÞPrc � PrcðrTcPrcÞ
� �

¼ 0:

ð53Þ

With Eq. (53) at hand and the prerequisite of linear hard-

ening/softening, the assertion is easily proved of the second

order accuracy for the plastic multiplier, i.e., Eq. (50).
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47. Mühlhaus H-B (1989) Application of cosserat theory in numeri-

cal solutions of limit load problems. Ingenieur-Archiv

59:124–137

48. Naili M, Matsushima T, Yamada Y (2005) A 2d smoothed par-

ticle hydrodynamics method for liquefaction induced lateral

spreading analysis. J Appl Mech 8:591–599

49. Neto AHF, Borja RI (2018) Continuum hydrodynamics of dry

granular flows employing multiplicative elastoplasticity. Acta

Geotechnica 13:1027–1040

50. Nonoyama H, Moriguchi S, Sawada K, Yashima A (2015) Slope

stability analysis using smoothed particle hydrodynamics (sph)

method. Soils Foundations 55:458–470

51. Pastor M, Blanc T, Haddad B, Petrone S, Morles MS, Drempetic

V, Issler D, Crosta G, Cascini L, Sorbino G et al (2014) Appli-

cation of a sph depth-integrated model to landslide run-out

analysis. Landslides 11:793–812

52. Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009)

A depth-integrated, coupled sph model for flow-like landslides

and related phenomena. Int J Numer Anal Methods Geomech

33:143–172

53. Peng C, Guo X, Wu W, Wang Y (2016) Unified modelling of

granular media with smoothed particle hydrodynamics. Acta

Geotechnica 11:1231–1247

54. Rosenberg J, Cimrman R (2003) Microcontinuum approach in

biomechanical modeling. Math Comput Simul 61:249–260

55. Spadoni A, Ruzzene M (2012) Elasto-static micropolar behavior

of a chiral auxetic lattice. J Mech Phys Solids 60:156–171

56. Takeda H, Miyama SM, Sekiya M (1994) Numerical simulation

of viscous flow by smoothed particle hydrodynamics. Prog Theor

Phys 92:939–960

57. Tang H, Hu Z, Li X (2013) Three-dimensional pressure-depen-

dent elastoplastic cosserat continuum model and finite element

simulation of strain localization. Int J Appl Mech 5(3):1350–1350

58. Tang H, Sun F, Zhang Y, Dong Y (2018) Elastoplastic axisym-

metric cosserat continua and modelling of strain localization.

Comput Geotech 101:159–167

59. Tang H, Wei W, Liu F, Chen G (2010) Elastoplastic cosserat

continuum model considering strength anisotropy and its appli-

cation to the analysis of slope stability. Comput Geotech

117:103–235

60. Tejchman J (2003) A non-local hypoplastic constitutive law to

describe shear localisation in granular bodies. Arch Hydro-Eng

Environ Mech 50:359–379

61. Tejchman J, Bauer E (1996) Numerical simulation of shear band

formation with a polar hypoplastic constitutive model. Comput
Geotech 19:221–244

62. Tejchman J, Wu W (1993) Numerical study on patterning of

shear bands in a cosserat continuum. Acta Mechanica 99:61–74

63. Tordesillas A, Pucilowski S, Walker DM, Peters JF, Walizer LE

(2014) Micromechanics of vortices in granular media: connection

to shear bands and implications for continuum modelling of

failure in geomaterials. Int J Numer Anal Methods Geomech

38:1247–1275

64. Triantafyllidis N, Aifantis EC (1986) A gradient approach to

localization of deformation. i. hyperelastic materials. J Elasticity

16:225–237

65. Vardoulakis I (2018) Cosserat continuum mechanics: with

applications to granular media, vol 87. Springer, Berlin

66. Verlet L (1967) Computer experiments on classical fluids. i.

Thermodynamical properties of Lennard-Jones molecules. Phys-

ical review 159:98

67. Wang J, Chan D (2014) Frictional contact algorithms in sph for

the simulation of soil–structure interaction. Int J Numer Anal

Methods Geomech 38:747–770

2368 Acta Geotechnica (2021) 16:2355–2369

123



68. Wendland H (1995) Piecewise polynomial, positive definite and

compactly supported radial functions of minimal degree. Adv

Comput Math 4:389–396

69. Zhao S, Bui HH, Lemiale V, Nguyen GD, Darve F (2019) A

generic approach to modelling flexible confined boundary

conditions in sph and its application. Int J Numer Anal Methods

Geomech 43:1005–1031

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Acta Geotechnica (2021) 16:2355–2369 2369

123


	Applications of micropolar SPH in geomechanics
	Abstract
	Introduction
	Micropolar continuum
	Kinematics
	Conservation laws
	Cosserat elastoplastic model
	Return-mapping algorithm

	SPH formulations
	SPH basics
	Discretization in MPSPH
	Artificial viscosity
	Time integration
	Boundary condition

	Numerical examples
	Simple shear test
	Biaxial compression test
	Parametric analysis of micropolar effect
	Sand column collapse

	Closure
	Appendix
	Funding
	References




