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Abstract
This study systematically presents the application of machine learning (ML) algorithms for constructing a constitutive

model for soils. A genetic algorithm is integrated with ML algorithms to determine the global optimum model, and the k-

fold cross-validation method is used to enhance the models’ robustness. Three typical ML algorithms with formulations

explicitly expressed [i.e., back-propagation neural network (BPNN), extreme learning machine (ELM) and evolutionary

polynomial regression (EPR)], and two modelling strategies (i.e. total or incremental stress–strain strategies) are used. A

synthetic database is first generated based on a simple constitutive model to objectively evaluate the performance of three

ML algorithms and two modelling strategies. Next, the optimum ML algorithm and the well evaluated modelling strategy

are applied to experimental tests for examining its robustness. All results indicate that a BPNN-based constitutive model

using the incremental stress–strain strategy performs best in modelling the mechanical behaviour of soils in terms of

interpolation and extrapolation abilities, followed by ELM and then EPR.

Keywords Constitutive model � Extreme learning machine � Evolutionary computation � Neural network �
Optimization � Soils

1 Introduction

Experimental investigations show that the mechanical

behaviour of soils is very complicated, involving elements

such as state-dependence [56], contraction-dilation [57],

anisotropy [72], destructuration [41, 74], stress-path

dependence [21], time-dependence [75], and non-coaxiality

[59]. Accurate description of such soil behaviours is vitally

important in engineering practice [33, 46, 66, 89].

Numerous constitutive models have been developed during

the past few decades. These models can be classified as (1)

linear-elastic, (2) elastic perfectly plastic (such as the

Mohr–Coulomb model), (3) nonlinear (such as the hard-

ening soil [62] and nonlinear Mohr–Coulomb [28] models,

(4) critical state–based advanced (such as the modified

cam-clay model [53], Nor-Sand model [25], CSAM model

[82], Severn–Trent model [11], UH models [68–70],

SANISAND model [58], SIMSAND model [26–28] and

ANICREEP model [80]), hypoplasticity [36, 42, 64, 65]

and (5) micromechanical models [4, 67, 76–79]. The last

two categories are usually called advanced soil models

[28, 80]. However, traditional soil models have three main

disadvantages in modelling soil behaviours: (1) most con-

stitutive models were developed based on certain

assumptions [71, 72, 75] (e.g., the associated or non-as-

sociated flow rule, non-coaxiality), (2) each model was

suitable only for a specific type of soil or specific stress-

paths and (3) although the mathematical formulas in a

constitutive model are developed based on some theories

(e.g., elastoplasticity theory) or derived from finite exper-

imental data (e.g., the critical state line from triaxial tests),

the formula’s form gives good accuracy for selected tests,

but at the same time limits the model’s simulation ability

& Zhen-Yu Yin

zhenyu.yin@polyu.edu.hk; zhenyu.yin@gmail.com

& Yin-Fu Jin

yinfu.jin@polyu.edu.hk

1 Department of Civil and Environmental Engineering, The

Hong Kong Polytechnic University, Hung Hom, Hong Kong,

Kowloon, China

2 Key Laboratory of High-Speed Railway Engineering of

Ministry of Education, School of Civil Engineering,

Southwest Jiaotong University, Chengdu 610031, China

123

Acta Geotechnica (2022) 17:1403–1422
https://doi.org/10.1007/s11440-021-01170-4(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11440-021-01170-4&amp;domain=pdf
https://doi.org/10.1007/s11440-021-01170-4


for other stress paths. For example, the Modified Cam-Clay

(MCC) was derived from the triaxial tests of saturated

remoulded clay, and thus the MCC model is difficult to

predict other kind of tests or other soils. In addition, the

mathematical formulas become increasingly complicated

when involving many parameters, resulting in difficulties

of parameter identification and further limiting their engi-

neering applications.

Soil normally exhibits highly nonlinear characteristics.

To simulate such characteristics, machine learning (ML)

algorithms are very powerful and can thus be employed as

an alternative way to construct data-driven constitutive

models [88]. ML algorithms have three following advan-

tages in developing soil models [86]: (1) ML algorithms

can directly extract the stress–strain relationship from the

experimental data without making any assumptions

[9, 10, 12]. More stable and accurate results can be

obtained by ML-based models if the physical mechanism is

implied in training data and/or incorporated into the

training process; (2) ML algorithms have a strong ability to

capture complicated non-linear relationships [1, 5, 6, 17]

and (3) the prediction accuracy of ML-based models can

rise with the increasing datasets [83, 87]. Numerous ML-

based soil models have already been developed, and they

can be categorized according to the model’s training

strategy, whether (1) training models using the total values

of stress and strain or (2) training models in incremental

form [38]. However, up to now there is no comparative

study to discuss which one is more suitable to develop ML

based model for describing soil behaviours. Accordingly,

the performance of two stress–strain strategies in devel-

oping ML-based constitutive models deserves

investigation.

To construct a ML-based soil model, myriad ML algo-

rithms can be adopted, such as a back-propagation neural

network (BPNN) [2, 16, 19, 49, 51, 61], evolutionary

neural network (ENN) [32], recurrent neural network

(RNN) [52, 90], support vector machines (SVMs) [35],

evolutionary polynomial regression (EPR) [8, 24, 45] and

genetic programming (GP) [3]. To find an ML algorithm

that efficiently models soils’ stress–strain relationship, a

comparison of performance of different ML algorithms is

demanding. Furthermore, the performance of an ML-based

constitutive model is usually evaluated by the testing data

within the range of the training data (interpolation ability),

but this strategy neglects its performance on the unseen

data (extrapolation ability).

This study aims to comprehensively demonstrate the

process of constructing a ML-based constitutive model. To

this end, three representative ML algorithms that can give

explicit expression—BPNN, extreme learning machine

(ELM) and EPR—were selected. The k-fold cross-valida-

tion method was employed in the validation phase to

enhance the robustness of ML-based constitutive models.

A genetic algorithm (GA) was used to optimize parameters

for developing the global optimum model. A synthetic

database based on a simple shear soil constitutive model

was first built, which focuses on revealing the real

Table 1 Previous research works for identifying constitutive models of geomaterials**

Strategy ML algorithm Validation

method

Methods to determine

architecture

References

Total stress–strain BPNN No Trial & error He and Li [19]

BPNN No Trial & error Rashidian and Hassanlourad

[51]

BPNN No Trial & error Kohestani [38]

SVM No Trial & error Kohestani [38]

GP No Optimization Cabalar and Cevik [3]

Incremental stress–

strain

BPNN No Trial & error Ellis et al. [7]

BPNN No Trial & error Penumadu and Zhao [49]

BPNN No Optimization Basheer [2]

BPNN No Trial & error Habibagahi and Bamdad [16]

BPNN No Trial & error Turk et al. [61]

ENN No Trial & error Johari et al. [32]

RNN No Trial & error Zhu et al. [90]

RNN No Optimization Romo et al. [52]

EPR No Optimization Javadi and Rezania [24]

EPR No Optimization Faramarzi et al. [8]

EPR No Optimization Nassr et al. [45]

1404 Acta Geotechnica (2022) 17:1403–1422

123



capabilities of BPNN, ELM and EPR to model soil beha-

viours, including interpolation and extrapolation abilities

and the effects of the total and incremental stress–strain

strategies. Thereafter, the optimum ML algorithm and

modelling strategy were further applied to the experimental

tests for examining its robustness.

2 Methodology of machine learning

2.1 Back-propagation neural network

In this study, the BPNN denotes a feedforward neural

network characterized by propagation of errors from the

output layer to find a set of weights and biases able to

ensure that the output of the network is identical to the

actual value [54]. A BPNN includes an input layer, any

number of hidden layers and an output layer, which also

determine its performance. Based on a given framework,

the purpose of other hyper-parameters such as activation

function is to further improve the training efficiency or

optimize the model. Considering that this study focuses on

simulating mechanical behaviours of soils, the deep

investigation regarding the effect of each hyper-parameter

on the model performance is not conducted. Herein, the

optimum framework of the BPNN-based model is carefully

investigated, whereas remaining hyper-parameters are set

as the default value in Matlab toolbox. Once the hyper-

parameters are determined, weighting and bias values can

be calculated by gradient descent or optimization algo-

rithms. Figure 1a illustrates a typical BPNN with one

hidden layer. Taking the numbers of inputs and hidden and

output neurons to be r, p and q, respectively, and assuming

that there are n datasets in the training set, the output of the

hidden and output layers can be expressed as

H ¼ f WXþ hð Þ ð1Þ
O ¼ g VHþ hoð Þ ð2Þ

where X = matrix of input variables (r 9 n); H = matrix

of the hidden layer output (p 9 n); O = matrix of output

variables (q 9 n); W, V = weights matrix on the connec-

tions between input and hidden neurons (p 9 r) and

between hidden and output neurons (q 9 p), respectively;

h, ho = bias vectors on the connections between input and

hidden neurons (p 9 1) and between hidden and output

neurons (q 9 1), respectively; and f, g = activation func-

tions in hidden and output layers, respectively.

2.2 Extreme learning machine

The ELM is a type of feedforward neural network char-

acterized by a single hidden layer (see Fig. 1b). The hyper-

parameters in the ELM are equal to the number of hidden

neurons. The weights of the input layer and the biases of

the hidden layer are assigned randomly, and the weights of

the hidden layer (b) are determined analytically through a

simple generalized inverse operation of the hidden layer

output matrix [22], as shown in Eqs. (3)–(4), making the

ELM’s learning speed thousands of times faster than seen

in traditional feedforward networks:

H ¼ f WXþ hð Þ ð3Þ

minb

�
�Hb�O

�
� ð4Þ

where X = matrix of input variables (r 9 n), H = matrix

of the hidden layer output (p 9 n), O = matrix of output

variables (q 9 n), W = weights matrix connecting input

and hidden neurons (p 9 r), h = the bias vector connecting

input and hidden neurons (p 9 1), b = the weight matrix

connecting the hidden and the output layers (q 9 p) and

f = the activation function in the hidden layer.

2.3 Evolutionary polynomial regression

EPR is a genetic programming method characterized by the

modelling of a system using a mathematical expression in

the form of polynomial structures. Constructing an EPR-

based model consists of two phases: (1) structure identifi-

cation and (2) parameter estimation [14]. During the first

phase, optimization algorithms are used to search for

symbolic structures—that is, to determine the exponent

matrix. At the second phase, the parameters’ values are

estimated by solving a least squares (LS) linear problem.

Compared with BPNN and ELM, the training set in the

EPR does not require normalization. A typical EPR

expression can be formulated as

y ¼
Xm

j¼1

F X; fj Xð Þ; aj
� �

þ a0 ð5Þ

where y = predicted output, X = matrix of input variables,

F = a function constructed by the process, fj (X) = jth

transformed variable, aj = an adjustable parameter for the

jth term and a0 = an optional bias. fj (X) is determined by

Fig. 1 Schematic view of ML algorithms: (a) BPNN; (b) ELM
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the optimization algorithm, and aj and a0 are determined by

the LS.

The EPR’s key objective is to identify the number of

transformed variables and a combination of vectors of

independent input variables. Herein, the transformed vari-

able is obtained via

fj Xð Þ ¼ x
ES j;1ð Þ
1 � K � xES j;ið Þ

i � K � xES j;kð Þ
k ð6Þ

where xi = ith input variable, k = a total number of input

variables and ESm9k = exponent matrix.

2.4 Genetic algorithm

GA is a meta-heuristic optimization algorithm inspired by

natural evolution [20]. It has been extensively employed in

geotechnical engineering for tasks such as identification

of constitutive models’ parameters [26, 28, 73, 81], model

selection [27], slope [39, 60], embankment [15, 44], tun-

nelling [37, 40], pile foundation [29, 31] and excavation

[30]. In this study, the GA was selected to optimize initial

weights and biases in BPNN and ELM algorithms and to

search for symbolic structures in EPR. In GA, a population

of individuals is first generated. A chromosome based on a

coding scheme (real-coded GA) is then employed to rep-

resent each individual. After calculating the loss value of

each individual, the best individual having the lowest loss

value in the population is selected and then evolves through

crossover and mutation operations to generate a new pop-

ulation. The process continues until it satisfies the termi-

nation criterion, that is, whether it reaches the maximum

generation. Meanwhile, the loss value converges at a

constant value.

2.5 K-fold cross-validation

Three phases are involved in the integrated process of

constructing a ML model: training, validation and testing.

The validation phase seeks to improve the robustness of the

model and avoid overfitting. The k-fold cross validation

can detect whether the overfitting issue exists after the

training of model is completed. Moreover, the cross vali-

dation can also prevent the overfitting by integrating such

method into the training process as the loss function [50]

which is a commonly used method in the data-mining field.

Currently, the k-fold cross-validation (CV) method is

widely used to validate models [55]. In this method, the

original training set is randomly divided into k sub-data-

sets. Herein, k–1 sub-datasets, which form a new sub-

training set, are employed to train models, and the per-

formance of the trained model is validated by the

remaining sub-dataset. Each sample in the training set thus

has an opportunity to train and validate models. k is

generally set as 10 [34], thereby 10-fold CV method was

used in this study.

At each round, the ML model with a fixed set of hyper-

parameters was trained ten times based on nine sub-train-

ing sets, thereafter the performance of this ML model was

evaluated by the mean squared error (MSE) for the

remaining sub-dataset. Therefore, the loss function in the

GA can be expressed as

MSE ¼
Pm

i¼1 yi � yið Þ2

km
ð7Þ

where yi = predicted output, yi = actual output, m = the

number of datasets in the remaining sub-dataset and k =

the number of CV sets.

2.6 Evaluation indicators

Two commonly used evaluation indicators—mean absolute

error (MAE) and mean absolute percentage error

(MAPE)—were used to evaluate the performance of ML

models in this study. The combination of MAE and MAPE

helps overcome the deficiencies of both, so that both are

used extensively to evaluate model performance

[5, 84, 85]. Low values of these two indicators indicate that

a model has excellent performance. The expressions of

MAE and MAPE can be obtained by

MAE ¼ 1

n

Xn

i¼1

ri � pij j ð8Þ

MAPE ¼ 1

n

Xn

i¼1

ri � pi
ri

�
�
�
�

�
�
�
�
� 100% ð9Þ

where r = actual output value, p = predicted output value

and n = the total number of datasets.

2.7 Model framework

Figure 2a presents the flowchart for constructing a ML-

based constitutive model. This type of data-driven model

starts from the collection of datasets with which to form a

database. In the ML domain, 80% (for training the model)

and 20% (for testing the model) is a widely acknowledged

scheme for data split ratio in the community. Such sepa-

ration ratio can ensure the ML-based model being well

trained and tested, which has been theoretically proved

[13]. Therefore, 80% are used to train the model and 20%

are used to test it in this study. The total or incremental

stress–strain strategy is selected beforehand; thereafter, the

corresponding features or input variables can be deter-

mined. At the next step, the 10-fold cross-validation

method is used to divide the training set into ten subsets for

training and validating models. At each round, GA is

employed to identify the general parameters of ML
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algorithms. The hyper-parameters are determined by the

trial-and-error method. After determining three optimal

constitutive models based on BPNN, ELM and EPR, their

performance is compared using the test set.

Figures 2b, c illustrate the schematic view of the total

and incremental stress–strain strategy, respectively. In the

total stress–strain strategy, the stress in the ith step is

affected by the strain at the ith step and the physical

parameters (see Eq. (10)). In the incremental stress–strain

strategy, the stress at the ith step is affected by the strain,

the stress at the (i–1)th step, the strain increment at the ith

step and the physical parameters (see Eq. (11)):

ri ¼ f X; ei
� �

ð10Þ

ri ¼ f X; ri�1; ei�1;Dei
� �

ð11Þ

where X = [x1, x2,…, xr], the vector of independent vari-

ables; ri, ri-1 = stress at the ith and (i–1)th steps; ei, ei–1-

= strain at the ith and (i–1)th steps; Dei = axial strain

increment at the ith step; and f = formulation of stress–

strain relationship, as determined by the ML algorithms in

this study.

It should be noted that in the incremental stress–strain

strategy, the predicted stress at the ith step needs to update

the input stress variable in real time to predict the stress at

the (i ? 1)th step. In addition, the strain e at the (i ? 1)th

step is updated by the following:

ei ¼ ei�1 þDei ð12Þ

To eliminate the effect of scales of parameters on the

model performance and improve convergence, all datasets

need to be pre-processed. Herein, the independent variables

(such as rn0 and p) only have their initial values keeping

constant, and the strain and strain increment are manually

pre-set, which comply with uniform distribution. Consid-

ering the distributions of all variables are different from

each other and do not conform to Gaussian distribution,

Minmax normalization method instead of standardization

method is used in this study, as shown in follows:

xnorm ¼ x� xmin

xmax � xmin

xmax � xminð Þ þ xmin ð13Þ

where x = actual value of input variables, xmin = minimum

value of input variables and xmax = maximum value of

input variables. xmin = –1; xmax = 1.

3 ML–based constitutive models using
synthetic data

3.1 Synthetic data by a simple soil model

To comprehensively compare the performance of three ML

algorithms and two modelling strategies on developing

constitutive models, a simple sand shear constitutive model

was first used to generate synthetic datasets (see Eq. (14)).

The purpose of ML-based constitutive models developed

based on synthetic datasets rather than directly based on the

experimental data is to eliminate the interference of

experimental and measurement errors on the mapping

capability of ML algorithms [88]. Moreover, the experi-

mental data tend to be limited and insufficient for com-

parison of ML algorithms’ performance, whereas the data

can be generated infinitely by a theoretical function.

Fig. 2 Model framework: (a) flowchart of constructing ML-based constitutive models; (b) schematic view of the total stress–strain strategy;

(c) schematic view of the incremental stress–strain strategy
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s ¼ rn0

lc
1=Gþ c

ð14Þ

where rn0 = vertical stress; s = shear stress; c = shear

strain; G = shear modulus, 1000 kPa; and l = friction

angle, tan(p/6).

A total of fourteen curves were generated to develop

the ML-based constitutive model. Herein, the axial strain c
ranges from 0 to 10%, and a fixed set of axial strain

increment Dc, including 0.01%, 0.05%, 0.1%, 0.15% and

0.2%, was chosen for ten curves. Each curve consists of 91

data points. Nine curves (rn0 = 25, 50, 100, 200, 250, 300,

400, 500 and 600 kPa) with a total of 819 data points were

employed to train the ML-based constitutive model, and

the remaining five curves (rn0 = 15, 150, 350, 650 and

700 kPa) were used to test the model.

According to the stress–strain strategy, as mentioned in

Eqs. (11)–(12), the vector X of independent variables in

this soil model is rn0. As a result, the total and incremental

stress–strain strategies have two and four input variables,

respectively. Both have an output variable. The corre-

sponding total and incremental stress–strain strategy can be

expressed by

si ¼ f rn0; c
i

� �

ð15Þ

si ¼ f rn0; s
i�1; ci�1;Dci

� �

ð16Þ

where the definitions of s, c and Dc are similar to those of

r, e and De in Eqs. (11)–(12).

3.2 Determination of parameters in ML
algorithms

The parameters to be determined in the ML algorithms

include hyper-parameters and general parameters. The

search space of the hyper-parameters regarding the

framework of ML are presented in Table 2. A single-layer

BPNN was used to construct constitutive models, which is

sufficient to capture the stress–strain relationship. Table 3

summarizes several methods of determining the optimal

number of hidden neurons. The optimal number of hidden

neurons ranged from one to five in the total stress–strain

strategy and from one to ten in the incremental stress–strain

strategy. Because there is no method for determining the

optimal number of neurons and transformed terms in the

ELM and EPR, respectively, the ranges of hidden neurons

and transformed terms in these two algorithms increase

continuously until the number of hidden neurons and

transformed terms cannot improve the model’s perfor-

mance. In this way the ranges of hyper-parameters in three

ML algorithms can be determined, as shown in Table 2.

In addition to the hyper-parameters, the initial weights

and biases in BPNN and ELM as well as the exponent

matrix in the EPR were determined using the GA. Note that

the values of exponents must be non-negative in the EPR

algorithm, because the datasets include the initial stress–

strain stage (0, 0); indeed, negative exponents are wrong

under this condition. The values of exponents were thus

limited to [0, 1, 2, 3]. Table 4 presents the parameter values

in GA. Note that BPNN and EPR are set to a maximum of

500 generations, whereas for the ELM, because of its dif-

ferent convergence rate, the figure is 5000.

3.3 Results of the validation set

Figure 3 presents the evolution of loss value generated by

three types of ML-based constitutive models using the total

stress–strain strategy. It can be clearly observed that the

convergence rates of BPNN and EPR are much faster than

that of ELM. The loss value roughly holds steady when the

generation exceeds 350 and 200 in BPNN and EPR,

Table 2 Hyper-parameters regarding model framework in three

selected ML algorithm

Algorithm Description Range (T/I)

BPNN Number of hidden layers 1/1

Number of neurons in hidden layers 1–5/1–9

ELM Number of neurons in hidden layers 1–11/1–11

EPR Number of transformed variables 1–11/1–11

T = total stress–strain strategy, I = incremental stress–strain strategy

Table 3 Methods for determining the number of hidden neuron

Methods References Number of neurons (T/

I)

� 2Ni þ 1 Nielsen [47] 5/9

2þNi�Noþ0:5No� N2
o
þNið Þ�3

NoþNi

Paola [48] 1/1

2Ni=3 Wang [63] 2/3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni � No

p
Masters [43] 2/2

2Ni Iebeling and

Milton [23]

4/8

Ni = number of input variables, No = number of output variables,

T = total stress–strain strategy, I = incremental stress–strain strategy

Table 4 Values of parameters in the GA algorithm

Algorithm pcross pmutation Population Generation

GA 0.7 0.1 20 500/5000

500 = maximum generation for the BPNN and EPR; 5000 = maxi-

mum generation for the ELM
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respectively, whereas the loss value remains roughly con-

stant when the generation reaches 4000 in ELM. From the

perspective of the convergent loss value, as shown in

Fig. 3, the optimal number of hidden neurons in BPNN and

ELM are four and eight, respectively, and the optimal

number of transformed terms in EPR is eleven.

The evolution of loss value generated by three ML

algorithms using the incremental stress–strain strategy is

shown in Fig. 4. Overall, the convergence rate in three

types of ML-based constitutive models using the incre-

mental stress–strain strategy is faster than that using the

total stress–strain strategy. The loss value roughly holds

steady when the generation reaches 250, 1000 and 100 in

the BPNN, ELM and EPR, respectively. From the per-

spective of the convergent loss value, as shown in Fig. 4,

the optimal numbers of hidden neurons in BPNN and ELM

are four and ten, respectively, and the optimal number of

transformed terms in EPR is eleven. Note that the optimal

loss values are much less than those yielded using the total

stress–strain strategy.

Another important hyper-parameter used in ELM and

BPNN is the activation function. For comprehensively

comparing the performance of BPNN and ELM, the opti-

mum activation functions used in each algorithm should be

determined. The commonly used five activation functions

are applied, as shown in Eq. [18]. Figure 5 presents the

evolution of loss values generated by BPNN and ELM

based models (incremental strategy) with five activation

functions. It can be observed that the tanh is the optimum

activation functions in the hidden layers for both BPNN-
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Fig. 3 Evolution of loss value using the total stress–strain strategy for: (a) BPNN; (b) ELM; (c) EPR
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Fig. 5 Evolution of loss value generated by five activation functions in: (a) BPNN; (b) ELM
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(a)

(b)

(c)

Fig. 6 Predicted results on the training set using the total stress–strain

strategy for: (a) BPNN; (b) ELM; (c) EPR

(a)

(b)

(c)

Fig. 7 Predicted results on the training set using the incremental

stress–strain strategy for: (a) BPNN; (b) ELM; (c) EPR
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and ELM-based models, thereby the tanh is used as the

activation function in the following study.

sigmoid xð Þ ¼ 1

1 þ e�x

tanh xð Þ ¼ ex � e�x

ex þ e�x

ReLU xð Þ ¼
x; x[ 0

0; x� 0

(

ELU xð Þ ¼
x; x[ 0

a ex � 1ð Þ; x� 0

(

SwishðxÞ ¼ x

1 þ e�x

8

>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð17Þ

3.4 Results of the training set

The optimal hyper-parameters of the three ML algorithms

using two stress–strain strategies are determined as

heretofore mentioned. Accordingly, three optimal ML-

based constitutive models of each stress–strain strategy are

constructed based on the training set. Figure 6 presents the

predicted stress–strain curves using three optimally trained

models on the basis of the total stress–strain strategy,

compared with the measured curves. It is clear that the

predicted results of BPNN show perfect agreement with the

measured curves, whereas the results predicted by ELM

and EPR deviate from the measured curves. In particular,

the prediction error for the ELM- and EPR-based consti-

tutive models is much larger at the initial stage (0, 0), and

these models also yield a large error at the early stage of

stress–strain curves, attributable to the principles of these

two algorithms as described in Sect. 3.3.

Figure 7 presents the predicted stress–strain curves

using three optimal models based on the incremental

stress–strain strategy, compared with the measured curves.

It can be seen that all three models can accurately capture

the stress–strain curves, which indicates that the

incremental stress–strain strategy for simulating stress–

strain relationship shows a significant improvement.

3.5 Results of the test set

During the last phase, the performance of the ML-based

constitutive model is evaluated against the test set, with rn0
in the training set ranging from 50 to 600 kPa. Generally,

test datasets are taken within the range of training datasets,

so that test sets with rn0 = 150 and 350 kPa are taken into

consideration. To investigate the ability of the ML-based

constitutive model to extrapolate beyond the range of

training datasets, test sets for which rn0 = 15, 650 and

700 kPa are also conducted. Table 5 summarizes the val-

ues of indicators for these five test sets. For the interpolated

test sets, Fig. 8 presents the results of simulation using

three optimal ML-based constitutive models based on the

total stress–strain strategy. The predicted stress–strain

curve using BPNN largely agrees with the measured curve,

and the corresponding MAE and MAPE values are also

lower than those produced by ELM and EPR. Notably,

ELM and EPR cannot accurately predict initial stress when

strain equals zero, and ELM- and EPR-based constitutive

models cannot accurately predict the evolution of stress.

Figure 9 presents the results of simulation using three

optimal ML models based on the incremental stress–strain

strategy for the test set. The predicted stress–strain curves

using the BPNN-based constitutive model still agree per-

fectly with the measured curves and outperform the ELM-

and EPR-based constitutive models. The performance of

the ELM-based constitutive model is better than that of the

total stress–strain strategy, and it also accurately captures

the evolution of stress. Nevertheless, the change in the

performance of the EPR-based constitutive model is dif-

ferent from others, perfectly predicting the stress–strain

relationship for rn0 = 350 but exhibiting worse perfor-

mance at predicting the stress–strain relationship for rn0-

= 150. Note that prediction performance at the initial stage

Table 5 Values of indicators for the test set

Strategy Algorithm Interpolation (rn0, kPa) Extrapolation (rn0, kPa)

MAE MAPE MAE MAPE

150 350 150 350 15 650 700 15 650 700

T BPNN 0.58 1.36 1.22 1.02 1.95 2.84 3.35 28.81 1.13 1.21

ELM 9.42 22.58 18.88 20.63 8.88 34.16 41.34 142.46 19.60 19.64

EPR 6.28 14.66 14.06 14.06 0.63 27.23 29.32 14.06 14.06 14.06

I BPNN 2.07 3.69 4.17 2.97 0.88 5.02 8.03 12.79 2.45 3.13

ELM 4.44 5.46 9.05 4.09 6.96 15.36 18.88 151.64 7.92 9.31

EPR 26.95 10.25 33.25 6.33 23.90 56.08 49.59 290.27 17.98 18.06

T = total stress–strain strategy, I = incremental stress–strain strategy
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of ELM- and EPR-based constitutive models is clearly

improved from that seen with the total stress–strain strat-

egy. Overall, ML-based constitutive models that use the

incremental stress–strain strategy offer reliable perfor-

mance for interpolated test sets, and a BPNN-based con-

stitutive model exhibits the best performance.

The extrapolated test sets are used to further examine

the generalization ability of ML-based models. Figure 10

presents the results of simulation using three optimal ML-

based constitutive models based on the total stress–strain

strategy. For rn0 = 650 and 700 kPa, three ML-based

constitutive models can still capture the stress–strain rela-

tionship. The BPNN-based constitutive model performs

perfectly, followed by the EPR and ELM-based constitu-

tive models. However, for rn0 = 15 kPa, the predicted

stress–strain curve by the BPNN-based constitutive model

deviates from the actual stress–strain curve. The results of

simulation using three optimal ML-based constitutive

models based on the incremental stress–strain strategy are

shown in Fig. 11. In addition to stress–strain curves for

rn0 = 650 and 700 kPa, it can be observed that the BPNN-

based constitutive model’s ability to predict the stress–

strain relationship for rn0 = 15 kPa improves significantly.

Meanwhile, the performance of the ELM-based constitu-

tive model improves dramatically with lower MAE and

MAPE values, whereas the prediction performance of

EPR-based constitutive model decreases.

Overall, ML-based constitutive models are better at

predicting stress–strain relationships within the range of

the training datasets than at extrapolating beyond the range

of the training datasets. ML-based constitutive models

developed using the incremental stress–strain strategy

outperform those developed using the total stress–strain

strategy. A BPNN-based constitutive model developed

using the incremental stress–strain strategy is thus recom-

mended for describing the stress–strain relationship,

because this model makes highly accurate predictions of

the stress–strain relationship for the interpolated and

extrapolated test sets.

4 ML–based constitutive models using real
data

4.1 Database

To investigate ML-based constitutive models’ ability to

predict soil behaviour in engineering practice, this study

uses datasets from twelve sets of triaxial compression shear

tests conducted by [18] on Kaolinite clays having various

over-consolidation ratios (OCRs). The results of shear and

void ratio behaviour are collected as shown in Fig. 12.

Herein, datasets from nine tests having OCRs of 1, 2, 2.25,

2.5, 2.7, 4, 5, 10 and 20 are used to train the model, and the

remaining three, with OCRs of 3, 8 and 50 kPa, are used to

test it.

(a)

(b)

(c)

Fig. 8 Predicted results on the test set (interpolation) using the total

stress–strain strategy: (a) BPNN; (b) ELM; (c) EPR
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4.2 Selection of a simulation strategy

According to previous comparisons, BPNN integrating the

incremental stress–strain strategy is used to model

Kaolinite clays’ behaviour. According to the incremental

stress–strain strategy seen in Eq. (16), the vector X of

independent variables is the OCR, and there are two output

variables: deviatoric stress q and void ratio e. Accordingly,

(a)

(b)

(c)

Fig. 9 Predicted results on the test set (interpolation) using the

incremental stress–strain strategy: (a) BPNN; (b) ELM; (c) EPR

(a)

(b)

(c)

Fig. 10 Predicted results on the test set (extrapolation) using the total

stress–strain strategy: (a) BPNN; (b) ELM; (c) EPR
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ML-based Kaolin clays’ constitutive models can be

obtained by

qi ¼ f pi�1; qi�1; ei�1; ei�1
1 ;Dei1

� �

ð18Þ

ei ¼ g pi�1; qi�1; ei�1; ei�1
1 ;Dei1

� �

ð19Þ

where p i–1, q i–1, ei-1, ei�1
1 = mean stress, deviatoric stress,

void ratio and axial strain at the (i–1)th steps, respectively;

q i, ei, Dei1 = deviatoric stress, void ratio and axial strain

increment at the ith step, respectively; and f, g = formu-

lations of deviatoric stress–strain and void ratio–strain

relationships.

Figure 13 presents the framework of the BPNN-based

constitutive model for predicting Kaolinite clay behaviour.

Note that the predicted deviatoric stress and void ratio at

the ith step must update the deviatoric stress and void ratio

in real time to predict deviator stress and volumetric strain

at the (i ? 1)th step. Updates to strain e at the (i ? 1)th

step follow Eq. (12). After training, formulations of

BPNN-based Kaolinite constitutive models are found and

summarized in Appendix.

4.3 Results of simulation

Validation results of these simulations with which to

determine the optimal parameters of the BPNN-based

Kaolinite constitutive model are not presented, but

Appendix A presents the formulation of optimal

the BPNN-based Kaolinite clay constitutive model in

detail. It can be observed that the optimal number of hidden

neurons in BPNN is 8. Figure 14 presents the results of the

training set predicted by the optimal BPNN model, com-

pared with the measured results, showing that the BPNN-

based constitutive model can accurately capture non-linear

deviatoric stress–strain and void ratio–strain relationships.

Figure 15 presents the results of the predicted deviatoric

stress–strain and void ratio–strain relationships for the

interpolated test set. Because this study uses the recursive

simulation strategy, prediction error accumulates gradually

with increasing strain. The accumulated error is negligible

up to strain of 20% for simulation of the deviatoric stress–

strain relationship. By contrast, the predicted void ratio–

strain curve gradually deviates from the accrual curve

when strain exceeds 10%. Overall, the BPNN-based con-

stitutive model better simulates the deviatoric stress–strain

relationship, likely because the void ratio–strain relation-

ship is more complicated than the deviatoric stress–strain

relationship. Figure 15 shows that deviatoric stress

increases monotonically with strain for all experimental

tests, whereas the void ratio–strain relationship differs for

different OCR values because of the dilatant behaviour

associated with high OCR and the contractive behaviour

associated with low OCR.

Figure 16 presents the predicted deviatoric stress–strain

and void ratio–strain relationships for the extrapolated test

set. Absent experimental results for OCR = 22.5, 25, 27.5

and 30, the reasonability of predicted curves is referred

from the results for OCR = 20 and 50. For OCR = 50, a

(a)

(b)

(c)

Fig. 11 Predicted results on the test set (extrapolation) using the

incremental stress–strain strategy: (a) BPNN; (b) ELM; (c) EPR
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predicted deviatoric stress–strain curve using the BPNN-

based constitutive model agrees well with the actual curve,

although no experimental data are available in the training

set beyond OCR = 20. Predicted curves for OCR = 22.5,

25, 27.5 and 30 also suggest reasonable trends (deviatoric

stress increasing monotonically with increasing strain and

peak deviatoric stress increasing with decreasing OCR),

with all results falling into the range OCR = 20 and

OCR = 50. However, the BPNN-based constitutive mod-

el’s predicted void ratio–strain curves obviously deviate

from the actual curves when strain exceeds 5%. Overall,

the BPNN-based constitutive model performs well (in

terms of both interpolation and extrapolation) at simulating

actual soil behaviour so long as datasets are sufficient.

What’s more, the ability to obtain simple, explicit function

can further extend the application of the BPNN-based

constitutive model.

(a) (b)

Fig. 12 Experimental data of Kaolinite clay [18]

Fig. 13 Framework for predicting Kaolinite clay behaviours

(a)

(b)

Fig. 14 Predicted results on the training set using BPNN-based

constitutive model with incremental stress–strain strategy: (a) q–e1;

(b) e–e1
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4.4 Comparison of different ML based models

To further compare the performance of BPNN for mod-

elling soil behaviours with ELM and EPR, the latter two

ML algorithms are also used to predict the behaviours of

Kaolinite clays. It should be noted that the training, test

datasets and also the modelling framework for ELM and

EPR are consistent with that used in BPNN. Herein, the

optimum number of hidden neurons in ELM based model

is identified as 7, and the optimum transformed terms in

EPR based model is identified as 8. For brevity, the process

for determining the hyper-parameters of ELM and EPR are

not presented in detail.

The predicted stress–strain relationships on the testing

datasets using the optimum ELM-based model are pre-

sented in Fig. 17. It can be seen from Figs. 17a, b that the

predicted results on the interpolated datasets show a good

agreement with experimental results. In Figs. 17c, d, the

strain softening and volumetric contraction are obviously

observed from the predicted results on extrapolated data-

sets, which severely violates the measured results. Such

factors indicate the ELM-based model can well describe

the known soil behaviours, but may be not suitable to

predict the soil behaviours on the unseen datasets. Fig-

ure 18 presents the predicted stress–strain relationships on

the testing datasets using the optimum EPR-based model.

Similar to the results presented in Sect. 3, the predicted

error on both interpolated and extrapolated datasets are

larger than that generated by BPNN- and ELM-based

models. It indicates the generalization ability of EPR is

inferior to the neural networks-based algorithms; thereby it

has difficulty in modelling complicated soil behaviours.

Overall, the generalization ability of BPNN is excellent

(a)

(b)

Fig. 15 Predicted results on the test set (interpolation) using BPNN

based on the incremental stress–strain strategy: (a) q–e1; (b) e–e1

(a)

(b)

Fig. 16 Predicted results on the test set (extrapolation) using BPNN

based on the incremental stress–strain strategy: (a) q–e1; (b) e–e1
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and it can be used to simulate soil behaviours on both

known and unknown datasets.

It should be noted that the ML-based model is a kind of

data-driven model, thereby its application scope can be

expanded as the type and information of datasets increase.

For example, if the database involves data under unloading

and different stress paths, the ML-based model can be well

trained and used to simulate soil behaviours under such

conditions. Otherwise, more effective physical mechanism

needs to be added to refine the ML based model. Future

work will focus on such issues.

5 Conclusions

Determination of soil constitutive models is vitally

important to engineering practice. ML algorithms have

been used to model soil behaviour, because ML-based

constitutive models are free of assumptions and offer

strong non-linear mapping capabilities. This study sys-

tematically demonstrated the application of ML algorithms

for construction of a soil constitutive model, using three

commonly used ML algorithms able to present an explicit

formulation—BPNN, ELM and EPR—to develop models

and comprehensively comparing their modelling

performance.

A database based on a simple sand shear constitutive

model was first built to objectively reveal the capacity of

(a) (b)

(c) (d)

Fig. 17 Predicted results on the test set using ELM based on the incremental stress–strain strategy: (a) q–e1 (interpolation); (b) e–e1

(interpolation); (c) q–e1 (extrapolation); (d) e–e1 (extrapolation)
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three ML algorithms and two modelling strategies to model

soil behaviour, with the intent of eliminating potential

interference from noise-corrupted experimental data.

Although the ML algorithm can learn directly from data, an

incremental stress–strain strategy able to take loading path

into consideration was more suitable than the total stress–

strain strategy for constructing the ML-based constitutive

model. ML-based models’ hyper-parameters can be deter-

mined through the trial-and-error method, and the genetic

algorithm can identify general hypermeters for developing

the global optimum model. The application of k-fold cross

validation can enhance the robustness of the ML-based

model, facilitating the application of the ML-based model

to engineering practice.

Simulation results on theoretical and experimental data

indicated that the BPNN-based constitutive model is more

stable and accurate, including for interpolation and

extrapolation when modelling soil behaviour, than the

ELM- and EPR-based constitutive models. Notably, the

BPNN-based constitutive model’s predictions of deviatoric

stress–strain and void ratio–strain relationships for

Kaolinite clay agreed with actual experimental data.

Overall, the ML-based constitutive model can directly

capture non-linear soil behaviours based on limited

experimental data without making any assumptions; what’s

more, an explicit formulation for the constitutive model

can be determined that guarantees its application to

numerical analysis and engineering practice.

(c)

(a) (b)

(d)

Fig. 18 Predicted results on the test set using EPR based on the incremental stress–strain strategy: (a) q–e1 (interpolation); (b) e–e1

(interpolation); (c) q–e1 (extrapolation); (d) e–e1 (extrapolation)
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This study focuses only on the modelling of soil beha-

viours under monotonic loading. Besides, this study merely

explores a general modelling framework for ML algo-

rithms, and indicates that the neural network based algo-

rithm is superior to other types of ML algorithms in

modelling soil behaviours. As the rapid development in the

ML field, more advanced algorithms have been proposed.

Future works will investigate the performance of various

neural network -based algorithms and determine the most

appropriate one for modelling soil behaviours under more

complex loading paths.

Appendix A. Formulations of BPNN-based
Kaolinite constitutive models

H ¼ f WXþ hð Þ ð1AÞ
O ¼ g VHþ hoð Þ ð2AÞ

where, X = [p, q, e, e1, De1], matrix of input variables;

H = matrix of the hidden layer output; O = [q, e], matrix

of output variables; f = tansig formulation; g = purlin

formulation. Herein,

W ¼

�1:35315 1:907756 0:915302 � 2:02378 � 2:16087

2:595596 � 0:32869 � 2:48042 2:352501 � 2:32131

�1:36652 0:169634 3:622397 � 2:44086 � 3:21463

�0:72626 � 0:01880 � 0:22374 0:908566 1:41438

�0:02852 0:013743 0:634650 � 0:57525 � 0:11921

�0:13418 0:036866 0:933846 � 1:36281 � 1:07577

�0:19825 � 0:51040 � 6:04189 � 2:26296 � 1:74243

�0:19073 0:055012 1:177738 � 0:69086 � 2:03872

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

h ¼ 2:077058; 0:827601; 0:480095; �0:95727; �0:88088; �1:21919; 0:862033; �2:24696½ �

V ¼
�0:1350 � 0:04501 � 2:23939 � 1:11558 1:894278 � 1:86286 � 2:12292 1:08516

0:065208 � 0:02499 � 0:124950.603675 0:853076 � 0:0923 � 0:06472 � 0:63716

" #

ho ¼ 0:31; 0:113215½ �
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