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Abstract
In this study, a simple PFEM approach for analyzing large deformation problems in geotechnical practice is implemented

in the commercial FEM package Abaqus. The main feature of the proposed Abaqus-PFEM approach lies in its capability to

absorb the advantages of the functionality available in Abaqus and integrate them into PFEM with a single Python script,

which leads to a considerable reduction in coding work. By utilizing the built-in functions in Abaqus to fulfil the standard

incremental FEM analysis, as well as the powerful mesh-to-mesh solution mapping technique, the proposed Abaqus-PFEM

approach allows for the large deformation analysis automatically running with a single Python script and requires no

intervention from the user. The accuracy of the proposed Abaqus-PFEM approach is firstly validated through a simple

elastic cantilever beam bending problem. Then, the performance and robustness of the proposed Abaqus-PFEM approach

are further examined by three illustrative numerical examples: penetration of rigid footing, penetration of T-bar and

pipeline–soil interaction problem. The numerical results demonstrate that the proposed Abaqus-PFEM approach as a

powerful and easily extensible numerical tool is capable of handling large deformation and soil–structure interaction

problems in geotechnical engineering, and consequently, it offers an alternative way to tackle such problems.

Keywords Abaqus � Large deformation � Offshore geotechnical engineering � Particle finite element method (PFEM) �
Python

1 Introduction

The modelling and numerical simulation of large defor-

mation problem have aroused much interest in geotechnical

engineering for many decades. Since large deformation

phenomena occur frequently in various geotechnical prac-

tices (i.e., the deep penetration of CPT, installation of

spudcan foundations into seabed soils and run-out of

landslides). In modelling such large deformation problems,

application of the traditional finite element method is often

inappropriate, because it suffers from excessive mesh dis-

tortion and results in errors, inaccuracy, and premature

termination of the calculation.
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To solve the large deformation problems, various

numerical approaches have been proposed over the past

decades. For example, the framework of Arbitrary

Lagrangian–Eulerian (ALE) is the most common approach

to deal with large deformation in geotechnical engineering

[45]. Three ALE-based approaches that are widely used in

geotechnical engineering are the so-called interpolation

technique by small strain (RITSS) proposed by Hu and

Randolph [14, 15, 35], the efficient ALE approach (EALE)

developed by Nazem [25, 26] and the Abaqus built-in

Coupled Eulerian–Lagrangian (CEL) method [1, 32].

Another class of approach commonly utilized is the so-

called particle-based method, in which the mesh distortion

is avoided by utilizing a set of particles to replace the mesh

that used in ALE-based approaches. Various particle-based

methods for large deformation analysis have been proposed

and applied in geotechnical engineering, such as smoothed-

particle hydrodynamics (SPH) [2, 5– 7, 30], material point

method (MPM) [9–11, 38, 40], and particle finite element

method (PFEM) [27].

The particle finite element method (PFEM) was origi-

nally developed by Oñate et al. [27] and has been widely

used in geotechnical analyses. In PFEM, a set of nodal

points or particles are used to represent the continuum

body, and the computational mesh is built by connecting

these points using the Delaunay triangulation. A large

deformation analysis is divided into standard Lagrangian

increments with periodic remeshing. After each remeshing,

the state variables are remapped from the old mesh to the

new mesh. This remeshing and mapping process prevents

mesh distortion and allows modelling very large defor-

mations. Therefore, PFEM approach has distinct advan-

tages as it inherits both the flexibility of mesh-free particle

methods on the arbitrary changes in geometry, and the

solid mathematical foundation of the FEM. Moreover, the

independence of the remeshing and mapping from the

standard Lagrangian incremental analysis allows PFEM to

be implemented easily based on the existing standard finite

element program.

The PFEM was originally developed to solve problems

of fluid mechanics [27] as well as fluid–structure interac-

tion problems [17, 28, 29]. It has recently been developed

for solving large deformation problems in geotechnical

engineering, in which applications such as granular flow

problems [8, 53, 54], slope stability problems and land-

slides [34, 54–57, 59, 60], structure–soil interaction

[3, 4, 22, 23], and coupled analysis of a fluid-saturated

porous media [22, 24, 50]. Very recently, the so-called

smoothed-particle finite element method (SPFEM)

[51, 52, 58, 61] was developed, in which a node integration

technique is incorporated into the PFEM framework. The

SPFEM allows storing and calculating the state variables at

the node/particles, and thus, the frequent state variable

transfer between old Gauss points and new Gauss points

associated with the remeshing procedure is avoided. In

addition, linear elements can be used directly without

suffering from volumetric locking.

To date, the ALE-based approaches (i.e., RITSS and

CEL) were mainly implemented in commercial FEM

software Abaqus, which make those methods be widely

used in geotechnical engineering [42–45]. However, there

is yet no PFEM software package commercially available

for analyzing practical problems in geotechnical engi-

neering. The available PFEM implementations were

mainly based on in-house codes, which require users to

handle a large amount of coding work. This is now con-

sidered as the major obstacle that hinders a wide applica-

tion of the PFEM approach. Thus, it is worth implementing

PFEM in an existing commercial software package. In this

paper, the Abaqus software is chosen as a platform to

implement PFEM approach, due to its popularity in

geotechnical engineering. It is known that Abaqus is a

well-recognized commercial software that been widely

used in various industries, including the field of geotech-

nical engineering. Furthermore, complicated soil beha-

viours (e.g. [18, 19, 44, 46–48) can also be considered in

Abaqus through user subroutines. The combination of the

PFEM and the commercial software Abaqus is obviously

an appropriate alternative approach to tackle the large

deformation problems. The implementation of PFEM at the

platform provided by the Abaqus is able to make the use of

PFEM more convenient, owing to the powerful pre- and

post-processing functions, as well as the special modules

built in the software. Moreover, it will then help promote

the applicability and popularity of PFEM in the fields of

computational mechanics and geotechnical engineering.

This paper presents a PFEM implementation in the

commercial FEM package Abaqus for large deformation

problem analysis in geotechnical engineering. This simple

implementation allows using the built-in Abaqus capabili-

ties for solving standard incremental FEM analysis and the

mapping state variables. Moreover, this simple imple-

mentation has additional advantages as it can make use of

the constitutive models, structure–soil interaction analysis

algorithm and pre- and post-processing features in Abaqus.

Therefore, it is especially helpful for the inexperienced

user, as problems involving large deformation can be

solved without the use of a large amount of user defined

code. The following sections are organized as: First, fun-

damentals of PFEM solving procedures are given. Then,

details of the PFEM implementation in Abaqus are given.

Finally, four numerical examples are presented to bench-

mark and validate the proposed Abaqus-PFEM imple-

mentation against the published results.
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2 Fundamentals of PFEM approach

2.1 Basic idea of PFEM

In PFEM, a Lagrangian description of the motion is

employed, thus, the governing equation of a continuum

body is solved in an updated Lagrangian (UL) manner. A

cloud of Lagrangian particles is used to discretize the

continuum body, in which the information such as mass

and velocity, as well as other state variables such as stress

and strain, are stored. Then, a computational mesh is

generated by connecting the cloud of Lagrangian particles

using the Delaunay triangulation. After that, the so-called

alpha shape method is utilized to identify the boundaries of

the computational domain. The computational mesh is then

used to solve the governing equations via a standard FEM

solving procedure. The particle positions are updated after

each computational step, and thus the motion of the con-

tinuum body is tracked during the solution, which is a

standard updated Lagrangian approach. Excessive mesh

distortion is avoided by frequently rebuilding the mesh, and

the state variables are remapped from the old mesh to the

new mesh. Now, considering a typical load incremental

step with mesh rebuilding, the primary procedures of

PFEM are as follows (see also Fig. 1):

1. Discretize a continuum body into a cloud of particles.

2. On the basis of a cloud of particles, build the triangular

finite element mesh based on Delaunay triangulation,

and identify the boundaries of the computational

domain via alpha-shape method.

3. Mapping the state variables from the old mesh to the

new mesh.

4. Solve the discrete governing equations via a standard

finite element approach to obtain the node

displacements.

5. Update the positions of particles to form a new cloud of

particles.

6. Go back to step 2 and repeat until problem-dependent

stop condition is satisfied.

A flowchart of the PFEM solving procedure is given in

Fig. 2. In PFEM, the computation steps 2–5 are repeated

until the problem-dependent stop condition is achieved,

obviously step 4 is the most computational time consuming

step among steps 2–5, and thus, the computation efficiency

of a PFEM implementation can be improved significantly

by conducting step 4 with the commercial FEM package

Abaqus by enabling the parallel computing features of the

solver. Moreover, from the above computational cycles of

PFEM, we notice that step 4 is a standard FEM analysis

process, and it actually can be conducted with any FEM

package. Therefore, the PFEM approach can be easily

implemented into Abaqus software package, which

requires limited amount of coding work and contributes to

high computation efficiency.

2.2 Governing equations

In PFEM, the motion of a continuum is modelled in an

updated Lagrangian fashion, in order to solve the govern-

ing equation; all quantities are transferred to the current

configuration. The stress equilibrium equation of the

boundary value problem for a simple body X with

boundary S in the current configuration can be expressed

by

r � rþ b ¼ 0

uðX; t0Þ ¼ u0 in 0Xu

uðX; tÞ ¼ �u on tSu

n � rt¼t on tSt;

ð1Þ

where r represents the total Cauchy stress vector and b

represents the body force vector, u0 stands for the initial

displacement, �u and t are prescribed displacement tractions

on the boundary of the domain, and n is the outward nor-

mal to the boundary. Thus, the virtual work equation for a

deformable body of volume tX written in the current

configuration may be expressed as:Z
tX

dtþDtE:tþDtSdV ¼ tþDtR ð2Þ

where E ¼ � 1
2
ðruþ ðruÞT þ ðruÞT � ruÞ is the Green–

Lagrange strain tensor, S is the second Piola–Kirchhoff

(PK2) stress tensor, and du are the virtual displacements. R

is the external forces in the current deformed configuration

at time t, and is given by

tþDtR ¼
Z
tX

du �tþDt bdV þ
Z
tS

du � tþDttdSt ð3Þ

where b, t and S are the body force, prescribed traction

vectors and surface area, respectively. Since the above

mentioned large strain updated Lagrangian formulation has

been implemented in Abaqus originally, the details of the

finite element discretization and solution of the governing

equations are not introduced. Moreover, the discretized

stress equilibrium equation is solved directly in Abaqus

using an implicit iterative solution scheme.

3 Implementation framework in Abaqus

The PFEM approach is integrated into the Abaqus FE

software mainly due to its powerful pre- and post-pro-

cessing tools and computational efficiency. In addition,
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another advantage of using Abaqus FE package is that the

Abaqus’s built-in mesh-to-mesh solution mapping (MSM)

algorithm provides comparable accuracy and efficiency as

compared with user-coded solution mapping algorithm

[42, 43]. The Abaqus-based PFEM is implemented using

the Abaqus built-in script language Python. The whole

process is controlled by a single master Python script,

which repeatedly calls Python subroutines and Abaqus

solver to accomplish the analysis automatically without the

intervention of the user. A flow diagram is given in Fig. 3

to describe the detailed flow of the general algorithm and

the data exchanges between Python script and Abaqus FE

package.

A detailed explanation of the implementation is given:

an initial mesh is generated with proper boundary condi-

tions and soil geometry for the first incremental step of

analysis. The model input file (Abaqus usually uses a file

extension ‘‘.inp’’ to read model input information) is sub-

mitted to standard Abaqus solver with large deformation

considered.

Upon the completion of the first standard analysis step,

the Abaqus output database (odb) file (Abaqus usually uses

a file extension ‘‘odb’’ to store model solution for all nodes

(i.e., displacements, pore pressure, reaction forces) and

element (i.e., stress and strain) variables) are read by a

Python subroutine. The structure of an ‘‘odb’’ file generally

includes two blocks: model data and results data. Model

data contain the information of the mesh, i.e., the coordi-

nation of nodes, the element connectivity and the type of

elements. On the other hand, the results data comprise all

of the results of finite element computation (e.g., stress,

strain, displacements, etc.). Only the node coordinates and

element connectivity needed to be read/extract from the

‘‘odb’’ file.

The deformed mesh is extracted from the ‘‘odb’’ file in

the form of node/particle coordinates/positions using the

built-in Python function in Abaqus. Then, a new mesh is

generated using Delaunay triangulation technique based on

a cloud of deformed particles. In the current implementa-

tion, the Delaunay triangulation is done by adopting a

function called scipy.spatial.Delaunay in the scipy library

(other computational geometry libraries (i.e., CGAL [41],

A cloud of particles Delaunay tessellation Alpha shape method 

Solution via a standard FEM
External loads

Boundary conditions

Update postions of particles 

Next step

Fig. 1 Sequence of steps in the PFEM approach

Fig. 2 General flow of the PFEM procedure
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Triangle [36]) in Python are available for Delaunay trian-

gulation as well). In order to improve the quality of the

newly constructed mesh, additional mesh-adaptive or

mesh-smoothing techniques have been employed [33],

such as addition of particles based on distance between

particles and optimization of particle positions using

Laplacian smoothing algorithm. More specifically, if the

distance of two nodes is smaller than a characteristic length

in the domain boundary, one of the nodes is moved to the

domain; on the contrary, if the distance of two nodes is

larger than a characteristic length in the domain boundary

or radius of the element circumcircle in the domain a new

particle is added. Moreover, the external boundary of the

computational domain is identified via an alpha-shape

method. The general flowchart of mesh refinement proce-

dure is given in Fig. 4. Again, the above mentioned new

techniques in mesh generation, mesh quality improvement

and external boundary identification are accomplished by

the corresponding Python subroutines.

After the new mesh is generated, the boundary condi-

tions need to be recovered. For the loading boundaries,

because the node/particle positions are continuously

updated during the computation process, it is easy to trace

the location of these boundaries in every step. Thus, the

boundary conditions can be easily recovered. For contact

boundaries, besides the location of the boundary, the con-

tact normal stress also needs to be recovered after each

remeshing. For this purpose, a dummy step defined in each

step (but not the first step) before the real loads is applied

[49]. In the dummy step, no external loads or prescribed

displacement are applied, the only purpose of this step is to

let Abaqus iterates and re-balance the contact stress based

on the field stress mapped. For other boundaries, their

geometry is kept unchanged during the computational

process, so they can be recovered directly. Next, a model is

set up with the newly generated mesh containing the

boundary conditions and soil geometry for the next incre-

mental step of analysis, and the model is written into an

Abaqus input file using another Python subroutine.

In order to proceed with the analysis, the state variables

(such as stress and strain) stored in the Abaqus output

database file (‘‘odb’’ file) are needed to be recovered from

old Gauss points to new Gauss points. In this paper, the

Abaqus built-in solution mapping or state variable trans-

ferring method MSM is used, the Abaqus automatically

maps the necessary information from the old database file

to the new analysis by writing the keyword of MSM into

the Abaqus input file. The mesh-to-mesh solution mapping

(MSM) is a built-in Abaqus function that used to map field

variables from mesh to mesh. It can be applied between

Fig. 3 Implementation of PFEM in ABAQUS
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meshes with different topologies. The field variables are

extrapolated from the Gauss points to the node points in the

old mesh and then interpolate to the Gauss points in the

new mesh. To use the MSM, the users need to insert the

keyword ‘‘map solution’’ into the Abaqus input file and

specify the old ‘‘odb’’ file name where the state variables

are mapped from. However, there is no need to specify

which variables to map, and the Abaqus automatically

maps the necessary variables for successful continuation of

the analysis [13]. The MSM method has been proven to

possess acceptable accuracy and numerical stability

[42, 43], and more importantly, it greatly reduces the

coding work for implementing solution mapping algo-

rithms. Note that the MSM is not yet applicable for

dynamic problems in Abaqus, and to further extend the

Abaqus-PFEM implementation for dynamic problems, in-

house code for state variables remapping is needed.

Finally, a new incremental analysis is executed by

submitting the new input file to Abaqus Solver, and the

incremental analysis steps are repeated until the desired

stop condition is achieved. By organizing the above men-

tioned Python subroutines as a single Abaqus Python

script, the computation cycles of PFEM analysis is auto-

mated. The PFEM analysis is executed by submitting the

single master Python script to Abaqus-FEM package.

4 Numerical examples

In this section, four numerical examples are presented to

first verify and further illustrate the accuracy and robust-

ness of the proposed approach. For all examples in this

section, only quasi-static single phase is considered and the

governing equations are solved using the implicit solver in

Abaqus. The first example studies the large deformation

bending of an elastic cantilever beam; the second one

involves the penetration of rigid footing into a soft Tresca

soil. Afterward, two more deep penetration problems

involving soil–structure interactions, namely the T-Bar and

pipeline–soil interaction are discussed to demonstrate the

efficacy of proposed Abaqus-PFEM approach.

4.1 Bending of an elastic cantilever beam

The first demonstration problem is the elastic cantilever

bending beam subjected to a point load at the vertical

midpoint of its free end. As shown in Fig. 5, the beam is

10 m long and 1 m deep, and the following linear elastic

parameters are assumed: Young’s modulus of 12 MPa and

a Poisson’s ratio of 0.2. The left hand end of the beam is

fully fixed; a point load of 100 kN is applied at the vertical

midpoint of the right hand end over 50 equal load steps.

Figure 6 shows the normalized horizontal and vertical

displacements at the loading point versus the load force.

The load–displacement curves predicted by the Abaqus-

PFEM approach agree well with the results obtained by

both the analytical and traditional FEM solutions. The

Abaqus-PFEM analysis is carried out using six-node tri-

angular elements. The FEM analysis is carried out using

eight-node quadratic elements with reduced integration,

and the domain is discretized into 1000 elements with mesh

size of 0.1 m to ensure the accuracy of the results. The

analytical solution of the elastic beam bending problem

considering large deformation is elaborated in the thesis of

Molstad [21]. In addition, the final configuration and the

vertical stress ry distribution of both Abaqus-PFEM and

FEM are given in Fig. 7; again, good agreement in vertical

Fig. 4 General flow of the mesh refinement procedure
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stress distribution can be seen between Abaqus-PFEM and

FEM, indicating the accuracy of the proposed approach.

In order to further study the performances of the pro-

posed approach, the influence of the load steps per analysis

as well as mesh size is investigated. Figure 8 shows the

curves of load versus displacement for 20 steps, 50 steps

and 100 steps per analysis. The load–displacement curves

of all cases are identical to the analytical solution, which

indicates that the mapping error introduced during

remeshing after each step is limited and the results con-

verge for different number of steps per analysis. The load–

displacement curves of h = 0.25 m, h = 0.125 m and

h = 0.1 m (h is the characteristic length of the element) are

shown in Fig. 9. The relations of load versus displacement

for h = 0.25 m, h = 0.125 m and h = 0.1 m show good

agreement with the analytical solution and there is very

little difference in the numerical results of the three mesh

sizes. The response of load versus displacement converges

on h = 0.125 m, and further decreasing the characteristic

element length to h = 0.1 m would not improve the

numerical results.

4.2 Penetration of rigid footing

The second numerical example considers the penetration of

a rigid footing into weightless homogeneous clay in plane-

strain condition. The clay is modeled as an elastic-perfectly

plastic Tresca material with undrained shear strength of cu

and Young’s modulus E. The footing is gradually pushed

into the clay to a depth equal to the footing width by

prescribing an incremental vertical displacement. This

benchmark example has been considered by PFEM, ALE

and MPM and the analytical solutions of both small and

large deformation are also available. Thus, it can be used to

further validate the proposed Abaqus-PFEM approach. The

following Tresca material parameters are considered:

undrained shear strength cu = 1 kPa, Young’s modulus is

E = 100 kPa and Poisson’s ratio is t = 0.495.

L = 10 m

H = 1 m

p = -100 kNE = 12 MPa, = 0.2
Fi

xe
d

Fig. 5 Geometry and boundary conditions of the elastic cantilever beam problem

Fig. 6 Normalized load versus horizontal and vertical displacements

-500

y (kPa)
400

200

0
-200

-400

500

Abaqus-PFEM FEM

Fig. 7 Deformed configurations and the vertical stress ry distribution

Fig. 8 Normalized load versus horizontal and vertical displacements

with different number of steps per analysis
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Due to symmetry, only the right half of the problem

geometry is considered, with the boundary conditions

properly applied along the symmetry plane. The simulated

rigid footing B is assumed to be 2 m wide, the computation

domain has a depth of 5B and a width of 5B, with the

bottom boundary fixed in both vertical and horizontal

direction, and the lateral boundary is fixed only in hori-

zontal direction, as illustrated in Fig. 10. A prescribed

vertical displacement of 2 m is applied on the footing over

200 load steps, with an incremental displacement of 0.01 m

per step. To maintain reasonable computation efficiency, a

3-node linear plane-strain triangle element with hybrid

formulation of pressure in Abaqus is used for the analysis.

The CPU time consumed for simulating this problem (200

incremental steps) is 39 min on a Laptop with Intel Core

i7-4700MQ 2.4 GHz processor using four cores.

The normalized vertical resistance force (q/cu) versus

penetration depth (z/B) obtained from the proposed

approach is shown in Fig. 11. This result is comparable to

results obtained from the analytical solutions (da Silva

et al. [37], Prandtl [31], and Meyerhof [20]) as well as from

numerical solutions such as PFEM (which used an in-house

developed program) [23], MPM [39], ALE [16] and

SPFEM [51, 58]. It is shown that all results lie between the

analytical solution obtained by Prandtl [31] (in small strain

assumptions: pþ 2ð Þcu ¼ 5:14cu) and by Meyerhof [20]

(in large strain assumptions: 2pþ 2ð Þcu ¼ 8:28cu). In

general, the resistance force verse penetration depth

response of the proposed Abaqus-PFEM implementation

agrees well with the solutions of PFEM, MPM and ALE,

and is higher than that obtained by the SPFEM. Note that

the small oscillations in the curve (black line) of resistance

force versus penetration depth are related to the errors

caused by remeshing which changes the element topology

relations and also by the mapping of state variables. It is

apparent that these oscillations are relatively small and

acceptable; the oscillations can be reduced by fining the

particle density near the footing region.

The contours of incremental displacement magnitude,

accumulated plastic strain invariant ep
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2
3
ep:ep

q
, vertical

stress ry, and the shear stress sxy, are given in Fig. 12. The

failure extends up to the free surface according to the

classical bearing capacity rules, as depicted by the contours

of incremental displacement magnitude shown in Fig. 12a.

A wedge-shaped zone develops below the loaded area,

which is defined by the failure surface starting from the

edges of the footing. Below this wedge-shaped zone is a

transition zone with plastic strain, as shown in Fig. 12b. In

addition, Fig. 12c shows that a zone of high vertical stress

(up to - 7.0 kPa) occurs right below the footing and it

decrease with depth. It is seen from Fig. 12d that there is a

shear stress bulb with a maximum value of 1.0 kPa (which

Fig. 9 Normalized load versus horizontal and vertical displacements

with different mesh sizes

5B

5B

B/2

Rough

Sm
oo

th

Sm
oo

th

Soil:
E = 100 kPa

 = 0.495
cu = 1.0 kPa

Fig. 10 Rigid footing on Tresca soil

Fig. 11 Normalized resistance force versus penetration depth
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exactly equals to the cohesion of the soil) below the footing

corner, and it spreads downwards to the bottom of the

domain. Moreover, another wing-shaped shear stress bulb

develops next to corner of the footing and spreads upwards

into the soil, and the shear stress in this region shows a

minimum value of - 1.0 kPa. Moreover, the mesh evolu-

tion during the large deformation penetration process is

given in Fig. 13.

4.3 Penetration of T-bar

This numerical example considers a deep embedded T-bar

penetrating into elastic-perfectly plastic and weightless

Tresca clay. This case has been studied by researchers with

various large deformation numerical methods, and thus, it

is considered here to further validate the accuracy and

efficiency of the proposed approach. The following Tresca

material parameters are considered: undrained shear

strength cu = 5 kPa, Young’s modulus is E = 2.5 MPa and

Poisson’s ratio is t = 0.49. As shown in Fig. 14, the width

and depth of computation domain are taken as 10 times and

20 times the T-bar diameter, respectively. The T-bar pen-

etrometer has a diameter D = 0.04 m and it is initially

embedded at a depth of 9D. A plane-strain condition is

assumed and only half of the T-bar and soil domain is

considered due to symmetry. The bottom boundary is fixed

in both vertical and horizontal direction while the lateral

boundary is fixed only in horizontal direction, as illustrated

in Fig. 14. To guarantee the full contact between the T-bar

and the soil during the whole penetration process, a uni-

form vertical pressure of 100 kPa is applied at the top

surface. The penetration is executed in 200 displacement

intervals, and each interval is equal to 0.0002 m (D/200).

Two roughness conditions are considered for the interface

between T-bar and soil: frictionless and rough contact. A

3-node linear plane-strain triangle element with hybrid

formulation of pressure in Abaqus is used for the analysis.

The structural (T-bar) is simplified as a rigid body, and the

standard surface to surface contact method with hard core

contact model and penalty algorithm in Abaqus is used.

The CPU time consumed is 0.5 h for frictionless contact

and 1.0 h for rough contact on a Laptop with Intel Core i7-

4700MQ 2.4 GHz processor using four cores.

The normalized limit resistance force gives a resistance

factor of T-bar, Nc= q/Dcu, which is the vertical stress

(exerted by the T-bar) divided by the projected area. The
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Fig. 12 Contour of incremental displacements (a), accumulated plastic strain invariant (b), vertical stress (c) and shear stress (d) at a penetration

depth of 1B
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calculated relationship between the normalized resistance

force and the normalized penetration depth is shown in

Fig. 15. The results of the proposed Abaqus-PFEM

approach are compared with the upper bound solutions

[12]. It is seen that the Abaqus-PFEM results are slightly

larger than those given by the upper bound solution.

Moreover, the T-bar ultimate resistance factor, Nc, is 9.78

and 12.22 for frictionless and rough contact, respectively.

The upper bound solution method gives the ultimate

resistance factor as 9.22 and 11.94 for frictionless and

rough contact. The differences between the Abaqus-PFEM

and upper bound solutions are 6.3% and 2.3% for fric-

tionless and rough contact, respectively. In order to com-

pare the results obtained by Abaqus-PFEM with other

methods, Fig. 16 presents the results on the same problem,

which are obtained by PFEM (which used an in-house

developed program) [23], RITSS [42] and the upper bound

solutions [12], showing that the result differences among

the concerned numerical methods are around 2–6%.

Figure 17 presents the contours of incremental dis-

placement magnitude, accumulated plastic strain invariant,

and the shear stress sxy of the frictionless case at a pene-

tration depth of 1D. From Fig. 17a, it is seen that the soil

deformation is fully localized around the T-bar, and the

incremental displacement profile indicates a rotational flow

mechanism, which is consistent with the results of PFEM

analysis on the same problem [23]. The accumulated

plastic strain profile shown in Fig. 17b further confirms the

rotational failure mechanism, since there is a wedge of clay

moving together with the T-bar. Figure 17c shows that two

wing-shaped shear stress bulbs (with a maximum value

equal to the cohesion of the clay) develop next to the T-bar

cylinder and spread out upwards and downwards at

approximately 45� relative to the horizontal direction,

respectively. In addition, another stress bulb with a mini-

mum shear stress of - 5.0 kPa spreads out horizontally.

(a) d=0.01 m (b) d=1.0 m (c) d=2.0 m

Fig. 13 Mesh evolutions during the large deformation process
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Fig. 14 T-bar penetration on Tresca soil

Fig. 15 Normalized resistance force versus penetration depth
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4.4 Pipeline interaction with Tresca soil

To further demonstrate the performance of the proposed

method, the fourth numerical example considers the

interaction of a rigid weightless pipeline with an elastic-

perfectly plastic Tresca soil. Deep-water offshore pipeline

is often penetrated into the seabed at a depth of a fraction

of its diameter due to wave force and self-weight; on the

other hand, large lateral movement of pipeline may be

induced by thermal expansion combined with high internal

pressure. In this section the vertical penetration and lateral

movement of offshore pipelines are simulated using the

proposed Abaqus-PFEM approach.

The Tresca material parameters used in this section are

as follows: undrained shear strength is cu = 5 kPa, Young’s

modulus is E = 1.0 MPa, Poisson’s ratio is t = 0.49 and

soil density is q = 1600 kg/m3. The pipeline has a diameter

D = 0.04 m and is initially located at the top of surface

with a distance of 6D from the left domain boundary, and

the computation domain is taken as 15D and 5D in width

and depth, respectively. A plane-strain condition is

assumed and the bottom boundary is fixed in both vertical

and horizontal direction while the lateral boundaries are

fixed only in horizontal direction, as illustrated in Fig. 18.

The pipeline is first subjected to a vertical penetration of

0.5D, which is followed by a horizontal movement of 2.0D.

The analysis is performed through 250 displacement

intervals (50 for the vertical penetration and 200 for the

subsequent horizontal movement), and each interval is

equal to 0.008 m (D/100). The pipeline-soil interface is

assumed to be frictionless. The element type and contact

setup used are the same as in the Sect. 4.3. The CPU time

consumed for simulating this problem (250 incremental

steps) is around 8 h on a Laptop with Intel Core i7-

4700MQ 2.4 GHz processor using four cores.

The normalized resistance force (q/Dcu) obtained from

the Abaqus-PFEM approach is plotted against the vertical

and horizontal displacements (Ux/D, Uy/D), as shown in

Fig. 19. In the vertical penetration stage, the maximum

normalized vertical resistance force reaches around 5.7,

while the normalized horizontal resistance force remains

zero. In the subsequent horizontal movement stage, the

vertical displacement of the pipeline is fixed at 0.5D, and

the pipeline is only allowed to move horizontally, which

results in a rapid increase in horizontal resistance force and

a decrease in vertical resistance force. After that, the hor-

izontal resistance force experiences a mild linear increase

and eventually reaches around 3.5 at a final horizontal

displacement of 2.0D. On the other hand, the vertical

resistance force decreases in an approximately linear

manner down to around 2.5 at a final horizontal displace-

ment of 2.0D.

The contours of incremental plastic strain invariant at

various vertical and horizontal displacements are given in

Fig. 20. A classical Prandtl-type failure mechanism is

observed as illustrated in Fig. 20a. A W-shaped strain

localization shear band is observed, and the shear band

Fig. 16 Comparison of T-bar resistance factors of different numerical

methods
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Fig. 17 Contour of incremental displacements (a), accumulated plastic strain invariant (b) and shear stress (c) at a penetration depth of 1D
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starts from the bottom of the pipeline and develops in the

soil layer before intersecting the free surface. Figure 20b–e

shows the soil failure mechanisms at various subsequent

movement stages. It can be seen that a shear band starts

from the bottom of the pipeline and spreads upwards

almost in a straight line to the soil surface. The pipeline

pushes the soil to the right side and forms an active berm

next to the pipeline, as the pipeline keeps moving hori-

zontally, the volume of the active berm increases. This also

explains why the horizontal resistance force increases lin-

early during the later movement stage in Fig. 19.

5 Conclusions

A PFEM program for analyzing geotechnical problems

involving large deformation is implemented in the com-

mercial FEM package Abaqus in this study. The presented

approach combines the built-in Abaqus capabilities for

solving standard incremental FEM analysis and the pow-

erful MSM state variables mapping technique. The Abaqus

built-in script language Python is used to implement the

whole solution procedure. A single master Python script is

developed, which repeatedly calls Python subroutines and
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Fig. 18 Pipeline soil interaction problem

Fig. 19 Normalized resistance force versus displacements
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Fig. 20 Contour of incremental plastic strains invariant at various

displacements
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Abaqus solver to accomplish the large deformation analy-

sis automatically without the intervention of the user.

The theoretical background of the PFEM approach is

briefly introduced first. Then, the detailed implementation

of PFEM in Abaqus is given. The proposed approach is

first verified through a simple elastic cantilever beam

bending problem. Good agreement is found between the

Abaqus-PFEM results and the analytical solution. The

results obtained by the Abaqus-PFEM approach are con-

vergent in terms of different mesh sizes and computation

steps. Additionally, the performance of the proposed

Abaqus-PFEM approach is further examined by two

numerical examples: penetration of rigid footing and pen-

etration of T-bar. Also, good agreement with published

results of other numerical methods has further validated the

accuracy and robustness of the proposed approach. Finally,

an illustrative numerical example, the pipeline-soil inter-

action problem, is simulated by the proposed Abaqus-

PFEM approach with Tresca soil model. The results show

that the proposed Abaqus-PFEM approach can well handle

these large deformation problems in geotechnical

engineering.

Although only quasi-static single-phase problems are

studied in this paper, the proposed approach can be easily

extended to other geotechnical applications, including the

axisymmetric and three-dimensional problems, the

dynamic problems, and hydro-mechanical coupled con-

solidation problems.

Acknowledgements The research is supported by the National key

technologies Research & Development program (Grant No.

2017YFC1502603), the Natural Science Foundation of China (NSFC)

(Grant No. 41807223, No. 51908175 and No. 52078507), the Natural

Science Foundation of Guangdong Province (No. 2018A030310346),

and the Water Conservancy Science and Technology Innovation

Project of Guangdong (No. 2020-11).

References

1. ABAQUS (2016) ABAQUS analysis user’s manual. Version

2016. Dassault Systemes Simulia Corp

2. Bui HH, Fukagawa R, Sako K, Ohno S (2008) Lagrangian

meshfree particles method (SPH) for large deformation and

failure flows of geomaterial using elastic-plastic soil constitutive

model. Int J Numer Anal Methods Geomech 32(12):1537–1570
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(Härte) plastischer Baustoffe und die Festigkeit von Schneiden.

ZAMM J Appl Math Mech Z Angew Math Mech 1(1):15–20

32. Qiu G, Henke S, Grabe J (2011) Application of a Coupled

Eulerian–Lagrangian approach on geomechanical problems

involving large deformations. Comput Geotech 38(1):30–39

33. Rodriguez JM, Carbonell JM, Cante JC, Oliver J (2016) The

particle finite element method (PFEM) in thermo-mechanical

problems. Int J Numer Methods Eng 107(9):733–785
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