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Abstract
This paper proposes an equivalent continuum model to describe the mechanical behavior of transversely isotropic rocks. In

this model, the transverse isotropy of deformation and strength was achieved based on the Mohr–Coulomb and maximum

tensile-stress criteria, and the damage was captured by adopting a statistical damage evolution rule. The application of the

model is verified through numerical simulation of conventional triaxial tests. The model is then used to reveal the non-

uniform mechanical response of the surrounding rock and the secondary lining for a tunnel situated in a weak layered rock

mass. The results show that: (1) The proposed model can capture the transverse isotropy in deformation and strength of

rocks, and the proposed damage formulation can represent the deterioration and degree of failure of rocks; (2) The

fracturing pattern, failure strength and stress–strain curves obtained from the proposed model agree well with test results

for three typical rocks with different directional variations in strength; (3) The damage distribution based on the proposed

model can identify the failure of layered rock mass; and (4) The damage zones of the surrounding rock and the loads on the

secondary lining after tunnel excavation show distinctly asymmetric behavior, that is, the damaged zones are concentrated

in the tunnel direction normal to the weak planes, and the positive bending moment and larger axial force are parallel and

vertical to the weak planes, respectively.

Keywords Damage mechanics � Elastoplasticity � Secondary lining � Transverse isotropy � Tunnel

1 Introduction

Layered structures due to bedding plane, foliation, strati-

fication and fissuring bring directional anisotropy in the

physical and mechanical behaviors of transversely iso-

tropic rocks [29, 44]. In turn, anisotropy affects the failure

patterns of rocks in almost all major engineering projects

involving foundations, slopes or underground excavations

[2, 17, 33, 57]. Thus, it is of vital importance to evaluate

the mechanical behavior of transversely isotropic rocks.

Numerous compression tests have been conducted to

study the strength anisotropy for transversely isotropic

rocks, including sedimentary rocks, such as sandstone

[14, 37, 58], limestone [12, 47], Marl [12], Coal [12],

mudstone [43] and argillite [45]; metamorphic rocks, such

as shale [3–6, 12, 21, 22, 27, 35, 47], phyllite

[8, 30, 42, 53], slate [10, 20, 30, 47], schist [1, 18, 34] and

gneiss [5]; igneous rocks, such as orthoquartzite [30]; and

synthetic rocks [56].

Typically, strength anisotropy of transversely isotropic

rocks shows three distinct features (Fig. 1): (1) the direc-

tional variations in strength can be classified into ‘‘U’’ type,

‘‘shoulder’’ type or ‘‘wavy’’ undulatory type, and the ‘‘U’’

type is the most common one among the three types [41]

(Fig. 1a); (2) The maximum strength occurs at h = 0� or

90� and mostly at h = 90�, where h is the angle between the

main loading direction and the orientation of the weak

planes. The minimum strength appears at h = 30�–45�; and

(3) The degree of anisotropy (the ratio between maximum
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and minimum strength) decreases as the confining pressure

increases in most cases and the strength types may change

due to the confining effect. As for fracturing, the pattern

changes according to the direction of loading with respect

to the orientation of the weakness planes (Fig. 1b): (1)

failure propagates through the rock matrix, i.e., the non-

sliding model; (2) across and along weak planes, i.e., the

composite model; and (3) along the weak planes, i.e., the

sliding model. The non-sliding model becomes more

dominant with the increase in the confining pressure.

In numerical simulations, the representation of the lay-

ered structures in the rock mass can be made implicitly

(i.e., continuum-based methods [39, 40]) or explicitly (i.e.,

discontinuum-based methods). The commonly used dis-

continuous approaches are block or particle discrete ele-

ment method (DEM) and discontinuous deformation

analysis (DDA) method. In these techniques, the geometry

and the behavior of the weak planes can be described

explicitly. Thus, they are suitable to be adopted to study the

anisotropic mechanisms of rocks from a mesoscopic view,

such as the initiation, propagation and coalescence of

cracks. For example, based on the Particle Flow Code

[24, 50], Gao et al. [19], Park and Min [36], Duan and

Kwok [16] and Xia and Zeng [51] adopted: (1) a set of

parallel continuous smooth joint contacts to represent the

weak planes, and (2) the parallel bonded contacts to sim-

ulate the rock matrix to reveal the mechanical behaviors of

transversely isotropic rocks with different micro-structures

and micro-parameters. Based on the platform of Universal

Distinct Element Code [25], the rock matrix is character-

ized by a plastic constitutive law and weak planes are

described by explicit joints by Debecker [15] and Tan et al.

[46] to study the fracturing features of transversely iso-

tropic rocks.

The use of discontinuum-based methods is limited when

dealing with complex and large-scale engineering appli-

cations due to greater computational requirements and

longer computation times compared to continuum-based

methods. Thus, some continuum-based constitutive mod-

els, mostly based on the equivalent continuum methods

(i.e., the effect of weak planes is diffused into each rock

matrix element and each element can describe both the

failure of rock matrix and weak planes), have been put

forward to address this issue. For example, Zhou et al. [59]

proposed an enhanced equivalent continuum model for

layered rock mass incorporating bedding structure and

stress dependence. Xu et al. [55] introduced the yield

approach index into a transversely isotropic elastic–plastic

model to estimate the yield degree of layered rock mass.

Ismael and Konietzky [23] put forward a constitutive

model for inherently anisotropic rocks based on the Hoek

and Brown failure criterion. These models have several

features such as: (1) the elastic matrix and the strength are

transversely isotropic; (2) the yielding behavior can be

non-linear and (3) the maximum tensile-stress criterion is

introduced in the rock matrix and the weak planes.

For transversely isotropic rocks, significant strain-soft-

ening behavior in the post-failure stage has been observed

[34, 35, 58]. Thus, an ideal model for layered rock mass

should also be able to describe the post-failure behavior.

Numerous models have been proposed to describe the

strength-weakening effect in the strain-softening stage for

isotropic rocks. Examples are: (1) the use of linear strength

reduction with the growth of strain in the softening stage

Fig. 1 Mechanical behavior of transversely isotropic rocks: a three different types of the directional variations of strength (Ramamurthy [41]);

b failure patterns for transversely isotropic rocks
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and constant strength in the residual stage [13, 31, 48]; and

(2) the use of damage evolution function to describe the

deterioration process of the rock due to micro-fracture

propagation [28, 38, 52]. However, to the authors’

knowledge, research regarding the damage-induced strain-

softening behavior of transversely isotropic rocks remains

quite limited [10, 11, 55]. In these papers, a scalar aniso-

tropy parameter, which is related to stress invariants and

structure orientation tensors, was adopted to reflect the

anisotropic behavior of rocks, and scalar internal variable

was introduced to account for the material softening. These

models have a strong theoretical basis and can retain

mathematical rigor. However, the formulations of such

models are complex compared to other phenomenological

models, which limits their applications in complex engi-

neering problems to some extent. Thus, it is essential to put

forward a constitutive model which can describe the strain-

softening and damage behavior of transversely isotropic

rocks containing weakness planes and deploy such model

in practical engineering application.

In this article, a constitutive model is developed to

provide a direct representation of the anisotropic and

damage behavior of rocks. The aims of the present study

are to: (1) Establish an elastic–plastic model to reflect the

transverse isotropy in rock deformation and strength based

on the Mohr–Coulomb and maximum tensile-stress failure

criteria; (2) Introduce a statistical damage evolution rule

into the elastic–plastic model to describe the damage and

strain-softening behavior of rocks and (3) Demonstrate the

use of the model in engineering applications by imple-

menting the model in the computer code FLAC3D [26] to

study the non-uniform mechanical response of the sur-

rounding rock and the secondary lining in tunnels situated

in a weak layered rock mass.

2 Mechanical properties of transversely
isotropic rocks

A summary of test results of transversely isotropic rocks

from the literature is given in Table 1, which indicates that

the ‘‘U’’ type rocks account for about 71.2% of the total

samples, and the proportion of the ‘‘wavy’’ type rocks is the

least with magnitude of 5.1%. The following two indices

are adopted to evaluate the degree of transverse strength

anisotropy:

k1 ¼ rmax
rmin

ð1Þ

k2 ¼ r0

r90

ð2Þ

where rmax, rmin, r0 and r90 (in MPa) are the maximum

strength, the minimum strength and the strength at h = 0�
and h = 90�, respectively.

Based on the test results of nine kinds of shale speci-

mens, Cheng et al. [7] obtained four types of curves

regarding the relation between k1 and confining pressures.

Five types of k1 * confining pressure curves and three

types of k2 * confining pressure curves have been classi-

fied by Xu [54] based on the test results in the existing

literature. Thus, the number of rocks is increased to 39 to

validate the former classification (Table 1). The statistical

analysis shows that the former classification has general

applicability. Specifically, three trends about the changing

trends of k1 with the increase of the confining pressure can

be found (Fig. 2): (1) Trend Tk1-1: k1 undergoes a slight

decrease of less than one with the increase of the confining

pressure; (2) Trend Tk1-2: k1 shows a decrease of larger than

one with the increase of the confining pressure; and (3)

Trend Tk1-3: k1 remains nearly constant over the entire

interval.

In addition, three trends can be categorized regarding

the changing trends of k2 with the increase of the confining

pressure (Fig. 3): (1) Trend Tk2-1: k2 undergoes a slight

increase of less than one with the increase of the confining

pressure; (2) Trend Tk2-2: k2 shows a slight decrease less

than one with the increase of the confining pressure, and (3)

Trend Tk2-3: k2 remains nearly constant over the entire

interval.

3 An equivalent continuum model
for the transversely isotropic rocks

This section presents the formulation of the equivalent

continuum model for the transversely isotropic rocks that

considers experimental observations discussed above.

3.1 Basic assumptions

The equivalent continuum model meets the following

assumptions: (1) The transversely isotropic rock comprises

rock matrix and weak planes and the influence of weak

planes is diffused into the rock matrix. In addition, the rock

matrix or the weak plane is described with its own plastic

criterion; (2) The elastic deformation of rocks obeys

transverse isotropy, that is, the elastic properties of rocks in

all directions are the same along the plane parallel to the

weak planes but different perpendicular to the weak planes;

(3) The rock matrix and weak planes follow the same

damage evolution law.
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Table 1 Results of triaxial compression test on transversely isotropic rocks

Number Rock lithology Type of

strength

curve

Weak planes-loading angle (�) Confining pressure

(MPa)

Anisotropy

indices

References

k1 k2

1 Xiangxi sandstone Shoulder 0, 15, 30, 45, 60, 75, 90 0, 5, 10, 15, 20 Tk1-1 Tk2-3 [14]

2 Quartz sandstone 0, 30, 45, 60, 90 0, 5, 20, 30, 50 Tk1-1 Tk2-1 [37]

3 Green river shale I 0, 15, 20, 30, 40, 60, 75, 90 7, 34, 69, 103, 172 Tk1-1 Tk2-2 [47]

4 Green river shale II 0, 15, 20, 30, 40, 60, 75, 90 7, 34, 69, 103, 172 Tk1-1 Tk2-2

5 Hunan sandstone 0, 22.5, 45, 67.5, 90 0, 20, 40, 60 Tk1-1 Tk2-1 [58]

6 Domomitic limestone 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 20, 40, 60, 80 Tk1-1 Tk2-2 [12]

7 Intra-reservoir marl 0, 15, 30, 45, 60, 75, 90 3, 14, 21 Tk1-2 Tk2-3

8 Synthetic rock 0, 15, 30, 45, 60, 75, 90 0, 5, 10, 15 Tk1-2 Tk2-2 [56]

9 Pengshui shale 0, 30, 60, 90 0, 10, 20, 30 Tk1-1 Tk2-3 [21]

10 Longmaxi shale II U 0, 15, 30, 45, 60, 75, 90 0, 10, 30, 45, 60 Tk1-1 Tk2-2 [22]

11 Carbonaceous phyllite 0, 45, 60, 90 0, 10, 20, 30 Tk1-3 Tk2-3 [8]

12 Isfahan schist 0, 30, 45, 60, 90 0, 7,15 Tk1-1 Tk2-3 [18]

13 Quartzitic schist 0, 15, 30, 45, 60, 75, 90 5, 15, 35, 50, 100 Tk1-1 Tk2-1 [34]

14 Chlorite schist 0, 15, 30, 45, 60, 75, 90 5, 15, 35, 50, 100 Tk1-2 Tk2-1

15 Tournemire shale 0, 20, 30, 45, 60, 75, 90 1, 5, 20, 40, 50 Tk1-1 Tk2-1 [35]

16 Jiujiang slate 0, 15, 30, 45, 60, 75, 90 0, 5, 10, 15, 20 Tk1-1 Tk2-2 [10]

17 Martinsburg slate 0, 15, 30, 45, 60, 75, 90 3.5, 10.5, 35, 50, 100 Tk1-2 Tk2-1 [47]

18 Austin slate 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 35, 67, 138, 207, 276 Tk1-1 Tk2-3

19 Penrhyn slate 0, 15, 30, 45, 60, 75, 90 0, 14, 28, 55 Tk1-2 Tk2-3

20 Black shale 0, 30, 45, 60, 90 0, 10, 20, 30, 40, 50 Tk1-1 Tk2-2 [4]

21 Moretown phyllite 0, 15, 30, 45, 60, 75, 90 50, 100, 200 Tk1-1 Tk2-3 [42]

22 Qingda slate 0, 30, 60, 90 0, 10, 20, 40, 60 Tk1-3 Tk2-2 [20]

23 Seal shale 0, 15, 30, 45, 60, 75, 90 3, 7, 14, 21, 35 Tk1-2 Tk2-1 [12]

24 Bituminous coal 0, 15, 30, 45, 60, 75, 90 0, 4, 14, 21 Tk1-2 Tk2-1

25 Bossier shale 0, 15, 30, 45, 60, 75, 90 0, 6.89, 20, 41.3, 68.9 Tk1-2 Tk2-1 [3]

26 Muerta shale 0, 30, 60, 90 0, 6.89, 17.2, 34.5, 138 Tk1-1 Tk2-3

27 Sandy mudstone 0, 30, 45, 60, 90 0.5, 1, 1.5 Tk1-1 Tk2-3 [43]

28 Longmaxi black shale 0, 15, 30, 45, 60, 75, 90 0, 20, 40, 60 Tk1-2 Tk2-1 [22]

29 Graphite schist 0, 30, 45, 60, 75, 90 0, 4, 10, 20 Tk1-2 Tk2-1 [1]

30 Dry phyllite 0, 15, 30, 45, 60, 75, 90 0, 5, 15, 30, 60 Tk1-1 Tk2-3 [30]

31 Saturated phyllite 0, 15, 30, 45, 60, 75, 90 0, 5, 15, 30, 60 Tk1-1 Tk2-3

32 Dry slate 0, 15, 30, 45, 60, 75, 90 0, 5, 15, 30, 60 Tk1-1 Tk2-3

33 Saturated slate 0, 15, 30, 45, 60, 75, 90 0, 5, 15, 30, 60 Tk1-2 Tk2-1

34 Dry orthoquartzite 0, 15, 30, 45, 60, 75, 90 0, 5, 15, 30, 60 Tk1-1 Tk2-3

35 Saturated Orthoquartzite 0, 15, 30, 45, 60, 75, 90 0, 5, 15, 30, 60 Tk1-1 Tk2-3

36 Phyllite 0, 30, 90 10,20,30 Tk1-3 Tk2-3 [53]

37 Tournemire argillite 0, 30, 45, 60, 90 0, 4, 10 Tk1-1 Tk2-2 [45]

38 Limestone Wavy 0, 25, 30, 45, 60, 75, 90 0, 7, 14, 28 Tk1-1 Tk2-3 [47]

39 Pittsburgh shale 0, 15, 30, 45, 60, 75, 90 0, 10, 20, 30 Tk1-2 Tk2-2 [6]

Some test results are from Table 1 in Xu et al. [54]
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3.2 Elastic behavior

For a transversely isotropic rock, its mechanical response is

isotropic at the x’y’ plane which is parallel to the weak

planes. The coordinate systems are shown in Fig. 4. The

elastic behavior of rock in the local coordinate system is:

½r0� ¼ ½C0�½e0� ð3Þ

where ½r0, ½e0� and ½C0� are the stress, strain and stiffness

matrix in the local coordinate system, respectively. The

stiffness matrix ½C0� (MPa) is expressed as follows:

½C0� ¼

C0
11 C0

12 C0
13 0 0 0

C0
21 C0

22 C0
23 0 0 0

C0
31 C0

32 C0
33 0 0 0

0 0 0 C0
44 0 0

0 0 0 0 C0
55 0

0 0 0 0 0 C0
66

2
6666664

3
7777775

ð4Þ

where C0
11 ¼ C0

22 ¼ E1ð1�nv2
2
Þ

ð1þv1Þð1�v1�2nv2
2
Þ; C0

12 ¼ C0
21 ¼

E1ðv1þnv2
2
Þ

ð1þv1Þð1�v1�2nv2
2
Þ; n ¼ E1

E3
; C0

13 ¼ C0
31 ¼ C0

23 ¼ C0
32 ¼

E1v2

1�v1�2nv2
2

; C0
33 ¼ E3ð1�v1Þ

1�v1�2nv2
2

; C0
44 ¼ C0

55 ¼ E1

1þv1
; C0

66 ¼

E1E3

E1ð1þ2v1ÞþE3
; E1 and v1 are the elastic modulus (MPa) and

Poisson’s ratio in the plane of isotropy, respectively; E3

and v2 are the elastic modulus (MPa) and Poisson’s ratio in

the direction normal to the plane of isotropy, respectively.

The elastic behavior of rock in the global coordinate

system is

½r� ¼ ½C�½e� ð5Þ

where ½r�, ½e� and ½C� are the elastic stress (in MPa), strain

and stiffness matrix in the global coordinate system,

respectively. The formulation of the stiffness matrix [C] is

shown in ‘‘Appendix I’’.

3.3 Plastic behavior

The undamaged Mohr–Coulomb criterion with a tension

cut-off was adopted to describe the plastic behavior of the

rock matrix (Fig. 5a):

f s ¼ r1 � r3Nu þ 2c
ffiffiffiffiffiffi
Nu

p
ð6Þ

f t ¼ rt � r3 ð7Þ

(a) (b)

(c)

Fig. 2 The changing trends of k1 with the increase of confining pressure: a trend Tk1-1; b trend Tk1-2; c trend Tk1-3
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where f s is the shear yield criterion, f t is the tensile yield

criterion, Nu = (1 ? sinu)/(1 - sinu), c, u and rt are

cohesion (MPa), friction angle (�) and tensile strength

(MPa) of the rock matrix, respectively.

The corresponding potential functions are:

gs ¼ r1 � r3Nw ð8Þ

gt ¼ �r3 ð9Þ

where gs is the shear potential function, gt is the tensile

potential function, Nw = (1 ? sinw)/(1 - sinw) and w is

the dilation angle (�).
The Mohr–Coulomb criterion with a tension cut-off was

also adopted to describe the plastic behavior of the weak

planes (Fig. 5b):

f s
j ¼ s� rn tanuj � cj ð10Þ

f t
j ¼ rn � rt

j; rt
jmax ¼ cj

�
tanuj

ð11Þ

where f s
j is the shear yield criterion, f t

j is the tensile yield

criterion, cj, uj and rj
t are cohesion (Pa), friction angle (�)

and tensile strength (Pa) of weak planes, respectively, rt-

jmax is the maximum tensile strength for a weak plane with

nonzero friction angle (Pa) and rn is the normal stress (Pa)

on the weak plane.

The corresponding potential functions are as follows:

gs
j ¼ s� rn tanwj ð12Þ

gt
j ¼ �rn ð13Þ

where gj
s is the shear potential function, gj

t is the tensile

potential function and Wj is the dilation angle of weak

planes (�).

3.4 Damage behavior

The damaged plastic behavior can be obtained by intro-

ducing a damage formulation into the Mohr–Coulomb

(a) (b)

(c)

Fig. 3 The changing trends of k2 with the increase of confining pressure: a trend Tk2-1; b trend Tk2-2; c trend Tk2-3
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criterion in Sect. 3.3. The damage evolution law based on

Weibull distribution [49] is:

Dt ¼ 1� exp � e
a

� �m� �
ð14Þ

e is the plastic strain related to the failure pattern of the

rocks.

The damage index is defined as:

D ¼ 1�Dt ð15Þ

Thus, D corresponds to the probability of survival of

rocks, with D = 1 corresponding to an undamaged mate-

rial, and D = 0 to a fully damaged material. As rock can

undergo either tensile or shear failure, the plastic strain e,

which controls the degree of damage, is defined as follows

[26]:

e¼

2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðep1 � ep2Þ

2 þ ðep2 � ep3Þ
2 þ ðep3 � ep1Þ

2
h ir

for shear failure

ep
3 for tensile failure

8>>><
>>>:

ð16Þ

For simplicity, the same damage magnitude D is applied

to the evolutions of the cohesion, friction and tensile

strength of rocks. Thus, all the plastic parameters vary with

the equivalent plastic strains:

cd ¼ Dc;ud ¼ Du; rtd ¼ Drt ð17Þ

cjd ¼ Dcj;ujd ¼ Duj; r
j
td ¼ Dr j

t ð18Þ

where cd, ud and rtd are the cohesion (Pa), friction angle (�)
and tensile strength (MPa) of the rock matrix after damage,

respectively, cjd, ujd and rj
td are the cohesion (MPa),

friction angle (�) and tensile strength (Pa) of the weak

planes after damage, respectively.

The implementation of the equivalent continuum model

for transversely isotropic rocks into the explicit finite dif-

ferent code FLAC3D is presented in the ‘‘Appendix II’’. In

the implementation, during a time increment, trial stresses

are first calculated; then, a determination is made whether

the rock mass will behave only elastically, or in addition to

elastic deformation, plastic deformations will occur in the

rock matrix, weakness planes or both. The trial stresses are

initially obtained assuming elastic loading. If the calculated

stress state does not agree with the mode of yielding, then

an iteration is performed until there is agreement with the

trial and final stresses for a given time increment.

4 Model calibration

As it can be seen, there exists many parameters for the

proposed model. Thus, a precise and rapid method deter-

mining these parameters is important. The procedures in

Fig. 4 Coordinate systems of the weak planes and the global

reference axes

Fig. 5 Yield criterion: a rock matrix; b weak planes (after Itasca [26])
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the calibration of the parameters (Fig. 6) are outlined as

follows [16]:

1. Determine the deformation parameters in the plane of

isotropy (E1 and v1) based on the elastic modulus of a

specimen with h = 0� obtained from the test;

2. Determine the deformation parameters in the direction

normal to the plane of isotropy (E3 and v2) based on the

elastic modulus of a specimen with h = 90� obtained

from the test. The other separate equivalent deforma-

tion parameter G13 (MPa) is obtained from the

equation [32]:

G13 ¼ E1E3=ðE1ð1 þ 2v2Þ þ E3Þ ð19Þ

3. Determine the rock matrix strength parameters (c, u, rt

and w) and the damage parameters (a and m) of the

rock matrix based on the test result regarding the

stress–strain of the specimen with h = 90�.
4. Calibrate the strength of the weak planes (cj, uj, r

j
t and

wj) to fit the strength versus h curve.

Following the above calibration steps, the parameters of

three typical rocks with ‘‘U’’ shape (Jiujiang slate, Chen

et al. [10]), ‘‘shoulder’’ shape (Longmaxi shale, He et al.

[22]) and ‘‘wavy’’ shape (Pittsburgh shale, Cheng et al. [6])

failure trends were calibrated. A cylindrical specimen with

diameter of 50 mm and height of 100 mm was built, as

shown in Fig. 7. The vertical deformation at the bottom of

the specimen was fixed, and the constant vertical dis-

placement at 1 9 10–6 m/step was applied at the top of the

specimen for triaxial compression tests. The calibrated

parameters are listed in Table 2. Good agreement between

numerical simulation and test results in strength and the

variation of anisotropic indexes with the increasing con-

fining pressure can be found in Fig. 8.

The numerical simulation and test results regarding the

fracture patterns (the localized damaged zones for numer-

ical simulation) and stress–strain curves of Jiujiang slate

with different confining pressures are shown in Figs. 9 and

10. Note that the predicted failure patterns were identified

by the distribution of damage index, and the damage dis-

tribution with a magnitude being less than 0.25 is suit-

able for identifying rock mass failure. Broadly speaking,

several fracturing surfaces along the weak planes occur

when rock breaks for h = 0�, and one fracturing surface

along the weak plane occurs when rock breaks for h = 15�–
75�, and one oblique fracturing surface passing through the

specimen occurs when rock breaks for h = 90�. Figure 10

shows that the simulated stress–strain curves agreed well

with the test results, even for the post-failure stages, which

indicate that the proposed model can describe the aniso-

tropy in the deformation and strength, and the strain-soft-

ening behaviors of transversely isotropic rocks.

In addition, the modelling results also show that the

transverse isotropy of rocks is affected by the confining

Fig. 6 Model calibration process Fig. 7 FLAC3D discretization of a triaxial compression test specimen

2150 Acta Geotechnica (2021) 16:2143–2164

123



stress. The reason is that, although the initial yield and

plastic potential functions are linear and the plastic

parameters do not depend on the confining stress, the yield

and plastic potential functions will become non-linear, and

the plastic parameters will become strain-dependent after

the occurrence of damage. Thus, the confining stress

dependency in transverse isotropy can also be reflected in

this model.

5 Application to tunneling

5.1 Background of the project

The Wenchuan–Maerkang Highway [9] is situated in the

northwestern part of Sichuan province, China. Metamor-

phic soft rocks are widely distributed in this region due to

the strong uplift and extrusion. The Zhegu mountain tunnel

[53] is two-way, four-lane, separated tunnel with width of

13.4 m and height of 10.5 m. The length and maximum

buried depth of Zhegu mountain tunnel is 8784 m and

1340 m, respectively. Figure 11a reveals that the tunnel

passes through strata consisting of carbonaceous phyllite,

carbonaceous slate and metamorphic sandstone. The foli-

ation planes of the carbonaceous phyllite are extremely

developed, and the dip angles are about 0�–60�. The sup-

porting structures are shown in Fig. 11b. Due to the

influence of the weak planes, non-uniform large deforma-

tions, such as the invasion of rock mass, cracking of

shotcrete, and distortion of the steel arches, appear fre-

quently when the tunnel passes through the phyllite stratum

[9].

5.2 Field measurements

Pressure cells, steel strain gauges and concrete strain

gauges were installed to measure the rock pressure born by

the secondary lining, the strain of the steel arch and the

strain of the secondary lining, respectively (Fig. 11c). The

inner forces of the steel arch and secondary lining can be

calculated as follows:

M ¼ W

2
Eðei � eeÞ ð20Þ

N ¼ A

2
Eðei þ eeÞ ð21Þ

where M and N are the bending moment (N�m) and axial

force (N), respectively, A, E and W are the area (m2),

elastic modulus (MPa) and bending stiffness (m3),

respectively, ei and ee are the strains of the inner and

external surfaces respectively.

For the section of Zhegu mountain tunnel with b (b is

the inclination angle of weak planes) of 30� or 60�, the rock

pressure and the inner forces were both asymmetrically

Table 2 Model rock parameters used in FLAC3D

Parameter Jiujiang slate Longmaxi shale Pittsburgh shale Phyllite

Elastic parameters

E1 (GPa) 30 34 24 15

E3 (GPa) 18 16 15 8.25

G13 (GPa) 8.9 8.3 7.1 4.1

l1 0.22 0.21 0.22 0.21

l2 0.21 0.23 0.24 0.23

Plastic parameters

c (MPa) 20 24 16 12

u (�) 36 33 23 16

rt (MPa) 1.6 1.8 1.3 0.9

W (�) 10 12 8 5

cj (MPa) 10 17 7 7.2

uj (�) 16 26 12 9.6

rj
t (MPa) 0.7 0.5 0.4 0.54

Wj (�) 6 7 5 3

Damage parameters

a 0.08 0.03 0.2 0.015

m 0.4 0.6 1.2 0.3
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(a)

(b)

(c)

Fig. 8 Comparison of strengths from numerical and test results: a Jiujiang slate (Chen et al. [10]); b Longmaxi shale (He et al. [22]); c Pittsburgh

shale (Cheng et al. [6])
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distributed (Fig. 12). Specifically, the maximum rock

pressure occurs near the left spandrel. The bending moment

at the left spandrel and right spring line regions are positive

with maximum value near the left spandrel, while that at

the remaining regions are negative with maximum value

near the right spandrel. The distribution of the axial force

had an elliptical shape, with the maximum values near the

left spring line and right spandrel.

5.3 Numerical model

The Zhegu mountain tunnel is modeled using FLAC3D

with a finite difference mesh with dimensions of

80 m 9 80 m 9 40 m (in the x, z and y dimensions,

respectively), and the results of section at y = 20 m is

chosen to study the mechanical behavior of the surrounding

rock and secondary lining after tunnel excavation, as

shown in Fig. 13. The rock bolt, steel arch0 and shotcrete

were represented by a cable element, a beam element, and

solid element with the Mohr–Coulomb failure criterion,

respectively. The parameters for the different elements are

presented in Tables 3, 4 and 5. The secondary lining was

represented by the elastic shell elements with Es of 30 GPa

and ms of 0.22. The phyllite was simulated using the pro-

posed model, and its parameters are listed in Table 2.

The following values were used in parametric studies of

the response of the tunnel:

1. Lateral pressure coefficient: k = ry/rx = 0.5 (rx-

= 20 MPa, ry = 10 MPa), k = 1 (rx = ry = 20 MPa),

k = 2 (rx = 10 MPa, ry = 20 MPa).

2. Inclination angle b: 0�, 30�, 45�, 60� and 90�.
3. Ratio between the stiffness of weak planes and that of

rock matrix: 0.3, 0.55 and 0.8.

4. Ratio between the strength of weak planes and that of

rock matrix: 0.4, 0.6 and 0.8.

5.4 Simulation results

The main results of the numerical simulations in terms of

the different parameters are presented and discussed below.

(1) Effect of the lateral to vertical stress ratio

Taking b = 45� as an example, the damage zones of

surrounding rock and the inner forces of secondary lining

are shown in Fig. 14. The following conclusions can be

drawn:

1. For k = 0.5, the damage of the surrounding rock is

evident in the region from the left spandrel to the right

spandrel, and from the invert to the right haunch. For

k = 1, the damage zones occur at the region from the

left haunch to the crown, and from the invert to the

right haunch. For k = 2, the damage zones happen in

the region from the left haunch to the crown, and from

the right spring line to the right spandrel. It can be

concluded that the damage zones occur in two

particular ranges in which the tangent of the tunnel

contour was parallel to the direction of the weak

planes, and the connecting line of the damage zones

(the red line in Fig. 14a) is nearly normal to the weak

planes for k = 1, while it deflected to the direction of

Fig. 9 Comparison of fracture patterns between test results (Chen

et al. [10]) and numerical simulation for Jiujiang slate: a r3 = 5 MPa;

b r3 = 10 MPa; c r3 = 15 MPa. Notes: The highlighted regions of the

simulated results indicate the fracturing planes with the damage index

being less than 0.25
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(a)

(b)

(c)

Fig. 10 The stress–strain curves of Jiujiang slate from experiments (Chen et al. [10]) and model simulations: a r3 = 5 MPa; b r3 = 10 MPa;

c r3 = 15 MPa
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minor principal stress to a certain extent for the non-

isotropic geo-stress field. The influence of geo-stress

field on the damage zone of surrounding rock may be

attributed to the reason that weak planes tend to slide

downward along the planes, while the difference of

principal stress in vertical and horizontal directions

hinders or promotes this movement when k = 0.5 and

k = 1, respectively.

2. For k = 0.5, 1 and 2, the bending moment of the

secondary lining at the regions of 75�–150� and 270�–
330�, 85�–165� and 280�–350�, and 105�–180� and

305�–25� is positive, respectively, while that at the

remaining regions are negative. The regions of the

positive bending moment are related to the damage

zones of the surrounding rock, and the maximum

bending moment appears at the section where the

connecting line of the damage zones intersects the

tunnel contour.

3. The axial force is positive (i.e., compression) along the

tunnel perimeter with an oval shape, and the maximum

value appears at the sections supported by the

surrounding rock with few damages, e.g., at 30� and

180�, 60� and 210�, and 85� and 235� for k = 0.5, 1

and 2, respectively.

(2) Effect of weak plane inclination

The damage zones of surrounding rock and the inner

forces of secondary lining for different inclination angles

(k = 1) are shown in Fig. 15. The following conclusions

can be drawn:

1. The damage region in the surrounding rock is greatly

influenced by the inclination angle of the weak

planes, and it shows similar distributed features for

each angle, that is, the damaged zones are concen-

trated in certain regions which extend from the

tunnel in the direction normal to the weak planes.

2. For h = 0� or 90� (the weak planes are horizontally

or vertically aligned), the inner forces are nearly

symmetrically distributed due to the uniform geo-

stress and symmetry of the surrounding rock. Spe-

cially, for h = 0�, the maximum axial force appears

at the haunch and it is much larger than that at the

crown and the invert, while the bending moment is

relatively large at the crown and the invert due to the

Fig. 11 Zhegu mountain tunnel: a longitudinal profile (Chen et al. [9]); b supporting structures; c layout of sensors
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damage of the surrounding rock in these regions. For

h = 90�, the maximum axial force occurs at the

crown and the invert, and the minimum one appears

at the haunch. The bending moment is positive in the

region near the left and right haunch, and the invert,

and it is negative in the remaining region.

3. For h = 30� or 60�, the distributed features of inner

forces are similar to those for h = 45�.
4. As the inclination angle increases, the shapes of the

inner forces for the secondary lining change gradu-

ally. Increasing the angle from 0 to 908 results in a

maximum axial force moving from the haunch to the

(a) (b) (c)

(e)(d)

Fig. 12 Measurement results: a rock pressure (unit: MPa); b bending moment of steel arch (unit: kN m); c axial force of steel arch (unit: kN);

d bending moment of secondary lining (unit: kN�m); e axial force of secondary lining (unit: kN)

Fig. 13 Numerical model: a surrounding rock; b supporting structures
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spandrel, and eventually to the crown. On the other

hand, the maximum of the positive bending moment

eventually moved from the crown to the haunch.

(3) Effect of the stiffness and strength of weak planes

Table 3 Rock bolt and grout parameters used in FLAC3D

Rock bolt Grout

Diameter (cm) Yield force F (kN) Elastic modulus E (GPa) Bulk modulus kg (MPa) Cohesion c (MPa) Friction angle u (�)

25 127.3 210 20 2 30

Table 4 Steel arch parameters used in FLAC3D

Elastic modulus

E (GPa)

Cross sectional area

A (cm2)

Moment of inertia Ix
(cm4)

Moment of inertia Iy
(cm4)

Ultimate bending moment

(kN�m)

210 30.75 1660 123 67.8

Table 5 Shotcrete parameters used in FLAC3D

E (GPa) m rt (MPa) c (MPa) u (�)

25.5 0.2 1.4 2.3 35

(a)

(b) (c)

Fig. 14 Effect of the lateral pressure coefficient: a damage zones of surrounding rock; b bending moment of secondary lining; c axial force of

secondary lining
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The mechanical responses of surrounding rock and the

inner forces of secondary lining after tunnel excavation for

different stiffness or strength of weak planes (k = 1,

b = 45�) are shown in Figs. 16, 17. The following con-

clusions are obtained:

1. With the increase in the stiffness or strength of weak

planes, the damage regions of surrounding rock get

smaller and their damage degrees decrease. While the

distributed features remain the same, e.g., the damaged

zones are concentrated in certain regions which extend

from the tunnel in the direction normal to the weak

planes for each case.

2. The inner forces get smaller with the increase in the

stiffness or strength of weak planes, while their

distributed features are similar. The bending moment

at the left spandrel and right spring line region are

positive with maximum value near the left spandrel,

while that at the remaining regions are negative with

maximum value near the right spandrel. The distribu-

tion of the axial force shows an elliptical shape, with

(a)

(b) (c)

Fig. 15 Effect of inclination angles of weak planes: a damage zones of surrounding rock; b bending moment of secondary lining; c axial force of

secondary lining
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the maximum values near the left spring line and right

spandrel.

The above phenomena indicate that the surrounding

rock becomes weaker with the decrease in stiffness and

strength of weak planes. Thus, shear sliding and tensile

splitting are more likely to emerge on weak planes. The

relative movement between fractured weak planes intro-

duces more damaged zones in rock matrix, which result in

a larger deformation of surrounding rock and larger inner

force of supporting structures as consequence.

6 Conclusion

In this study, an equivalent continuum model for trans-

versely isotropic rocks incorporating nonlinear damage

effects was presented. The advantages of this proposed

model are as follows: (1) it can describe the strain-soft-

ening behavior of rocks by introducing a statistical damage

evolution rule, and (2) it can be adopted to evaluate the

safety of practical engineering using a damage index,

which is more effective than the plastic zone distribution in

identifying the failure of layered rock mass. The validity of

the model was verified through the numerical simulation of

the conventional triaxial tests. The model was then used to

study the non-uniform mechanical responses of the sur-

rounding rock and the secondary lining for a tunnel situated

in rock containing weak planes. The main conclusions from

the study are summarized as follows:

1. The proposed mode can capture the transverse isotropy

in deformation and strength of rocks, and the damage

index can represent the failure and fracturing of rocks

containing weak planes.

(a)

(b) (c)

Fig. 16 Effect of the stiffness of weak planes: a damage zones of surrounding rock; b bending moment of secondary lining; c axial force of

secondary lining
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2. The triaxial compression simulation results from three

typical rocks with different directional variations in

strength indicate that the fracturing pattern, the failure

strength and the stress–strain curves obtained from the

proposed model agreed well with the test results. In

addition, damage distribution based on the proposed

model is effective to identify the failure of layered rock

mass.

3. The damaged zones of the surrounding rock after

tunnel excavation are concentrated in certain regions

which extend from the tunnel in the direction normal to

the weak planes for each inclination angle, and the

connecting line of the damage zones is nearly normal

to the weak planes for k = 1, while it deflected to the

direction of minor principal stress to a certain extent

for non-isotropic geo-stress field.

4. The distribution of inner forces of the secondary lining

shows distinctly asymmetric behaviors, that is, the

positive bending moment or larger axial force mainly

distributes in the regions where the tangent of tunnel

contour is parallel or vertical to the weak planes,

respectively.

5. The damage regions of surrounding rock get smaller

and their damage degrees decrease, and the inner

forces get smaller with the increase in the stiffness or

strength of weak planes.

Appendix I: Formulation of stiffness matrix
in the global coordinate

The stiffness matrix in the global coordinate ½C� is

expressed as

½C� ¼ ½Q�½C0�½Q�T ðI:1Þ

where ½Q� is the transformation matrix defined as follows:

where li, mi and ni (i = 1,2,3) are the directional cosines of

axis x’, y’ and z’, respectively. The matrix of directional

cosines [R] is

(a)

(b) (c)

Fig. 17 Effect of the strength of weak planes: a damage zones of surrounding rock; b bending moment of secondary lining; c axial force of

secondary lining
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½R� ¼
l1 m1 n1

l2 m2 n2

l3 m3 n3

2
4

3
5

¼
sin a cos b cos a cos b � sin b
� cos a sin a 0

sin a sin b cos a sin b cos b

2
4

3
5 ðI:3Þ

where a and b are the dip direction and dip angle of weak

planes, respectively.

Thus, final form of the stiffness matrix [C] is:

½C� ¼

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

2
6666664

3
7777775

ðI:4Þ

where the elements of matrix [C] can be calculated based

on Eqs. 4, I.2 and I.3.

Appendix II: implementation
of the proposed constitutive model in FLAC
3D

The three-dimensional explicit finite difference imple-

mentation of the proposed model are outlined in this

Appendix.

1. Deformations of the rock matrix

The function h(r1, r3) = 0, which is represented by the

diagonal between the strength envelopes of fs = 0 and ft-

= 0 in the principal stress plane (Fig. 18a), is defined to

determine the model of yielding of rock matrix:

h ¼ r3 � Drt þ apðr1 � rpÞ ðII:1Þ

where

ap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ N2

ud

q
þ Nud ðII:2Þ

rp ¼ DrtNud � 2Dc
ffiffiffiffiffiffiffiffi
Nud

p
ðII:3Þ

Nud ¼ 1 þ sin Duð Þð Þ= 1 � sin Duð Þð Þ ðII:4Þ

If the stress state falls within domain 1, then shear

failure occurs, and the new stress is revised using the flow

rule derived from gs. If the stress falls within domain 2,

then tensile failure occurs, and the new stress is re-calcu-

lated adopting the flow rule derived from gt.

For shear failure, partial differentiation of Eq. 8 with

damage yields

Fig. 18 Determination of yielding type: a definition of h and domains

used in determining yield type of the rock matrix; b definition of hj
and the domains used in determining yield type of the weak planes

(after Itasca [26])

½Q�

¼

l21 m2
1 n2

1 2m1n1 2n1l1 2l1m1

l22 m2
2 n2

2 2m2n2 2n2l2 2l2m2

l23 m2
3 n2

3 2m3n3 2n3l3 2l3m3

l2l3 m2m3 n2n3 m2n3 þ m3n2 n2l3 þ n3l2 l2m3 þ l3m2

l3l1 m3m1 n3n1 m3n1 þ m1n3 n3l1 þ n1l3 l3m1 þ l1m3

l1l2 m1m2 n1n2 m1n2 þ m2n1 n1l2 þ n2l1 l1m2 þ l2m1

2
666666664

3
777777775

ðI:2Þ
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ogs

orx
¼ 1;

ogs

ory
¼ 0;

ogs

orz
¼ �Nw;

ogs

osxy
¼ 0;

ogs

osyz
¼ 0;

ogs

osxz
¼ 0

ðII:5Þ

Thus, the expressions of the new stress are

rNx ¼ r̂Ix � k�ðC11 � C13NwÞ
rNy ¼ r̂Iy � k�ðC21 � C23NwÞ

rNz ¼ r̂Iz � k�ðC31 � C33NwÞ
rNyz ¼ r̂Iyz � k�ðC41 � C43NwÞ

ðII:6Þ

rNxz ¼ r̂Ixz � k�ðC51 � C53NwÞ
rNxy ¼ r̂Ixy � k�ðC61 � C63NwÞ

where

k� ¼
f s ¼ r1 � r3Nud þ 2Dc

ffiffiffiffiffiffiffiffi
Nud

p
ðC11 � C13ÞNw � ðC31 � C33NwÞNud

ðII:7Þ

For tensile failure, partial differentiation of Eq. 9 with

damage gives

ogs

orx
¼ 0;

ogs

ory
¼ 0;

ogs

orz
¼ �1;

ogs

osxy
¼ 0;

ogs

osyz
¼ 0;

ogs

osxz
¼ 0

ðII:8Þ

Thus, the expressions of the new stress are

rNx ¼ r̂Ix � k�C13 rNy ¼ r̂Iy � k�C23

rNz ¼ r̂Iz � k�C33 rNyz ¼ r̂Iyz � k�C43 ðII:9Þ

rNxz ¼ r̂Ixz � k�C53 rNxy ¼ r̂Ixy � k�C63

where

k� ¼ rtd � rt3
ðC11 � C13ÞNw � ðC31 � C33NwÞNud

ðII:10Þ

2. Deformations of the weak planes

The function hj(r1, r3) = 0, which is represented by the

diagonal between the strength envelope of fj
s = 0 and fj

t-

= 0 in the principal stress plane (Fig. 18b), is defined:

hj ¼ s� sp
j � ap

j ðrn � rt
jÞ ðII:11Þ

where

sp
j ¼ Dcj � tanðDujÞDrt

j ðII:12Þ

ap
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ tanðDujÞ

2
q

� tanðDujÞ ðII:13Þ

If the stress falls within domain 1, then shear failure

occurs, and the new stress is revised using the flow rule

derived from gj
s. If the stress falls within domain 2, then

tensile failure occurs, and the new stress is re-calculated

adopting the flow rule derived from gj
t.

Begin

Calculate the Ini�al 
deviatoric stress

Obtain the trial elas�c stress in 
global coordinates

Judge the plas�c yielding 
state of  rock matrix units 

using M-C strength criterion

Plas�c 
modifica�on

Stress state from local to global 
coordinates

Judge the plas�c yielding 
state of  weak planes units 

using M-C strength criterion

 Compute the new node unbalanced forces from the
current element stress

Judge the 
convergence of 

calcula�on

Finish

No yielding

Yielding

Yielding
No yielding

No 

Yes 

Stress state from global 
to local coordinates

Update the parameters 
of rock matrix based on 

the damage law

Plas�c 
modifica�on

Update the parameters 
of weak planes based on 

the damage law

Fig. 19 Flowchart of the implementation of the proposed model
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For shear failure, partial differentiation of Eq. 12 yields

ogs
j

orx0
¼ 0;

ogs
j

ory0
¼ 0;

ogs
j

orz0
¼ tanwj;

ogs
j

os
¼ 1 ðII:14Þ

Thus, the expressions of the new stress are

rNx0 ¼ rIx0 � ksC13 tanwj

rNy0 ¼ rIy0 � ksC13 tanwj

rNz0 ¼ rIz0 � ksC33 tanwj

sN ¼ sI � 2ksC44

8>>>><
>>>>:

: ðII:15Þ

where

ks¼
s� rn tanðDujÞ � Dcj

2C44 þ C33 tanwj tanðDujÞ
ðII:16Þ

For tensile failure, partial differentiation of Eq. 13 gives

ogt
j

orx0
¼ 0;

ogt
j

ory0
¼ 0;

ogt
j

orz0
¼ 1;

ogt
j

os
¼ 0 ðII:17Þ

Thus, the expressions of the new and updated stresses

are

rNx0 ¼ rIx0 � ktC13

rNy0 ¼ rIy0 � ktC13

rNz0 ¼ rIz0 � ktC33

8><
>:

ðII:18Þ

where

kt ¼
rn � Drt

j

C33

ðII:19Þ

The flowchart of the implementation of the proposed

model is shown in Fig. 19. The main steps are as follows:

1. Assume that the rock behaves elastically, and the trial

stresses in global coordinate are initially obtained.

2. Judge the yielding state of the rock matrix element

based on the M-C criterion and modify its stress and

strain if it yields. In addition, the plastic parameters of

the element will be updated based on the damage

evolutional law.

3. Convert the stress tensor from the global coordinate to

the local coordinate and judge the yielding state of the

weak plane element based on the M-C criterion and

modify its stress and strain if it yields. In addition, the

plastic parameters of the element will be updated based

on the damage evolutional law.

4. Steps 1–3 are repeated until convergence of calculation

is reached.
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