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Abstract
Most granular materials encountered in nature and industry lie either in the quasi-static regime or the intermediate dense

flow regime. Debris materials are a typical granular material with viscous interstitial fluid and show solid-like behaviors

before failure and fluid-like behaviors after failure. Based on Bagnold’s pioneering work on granular–fluid flows, we

propose a framework for constitutive model development, which has an additive form. Based on this framework, a unified

constitutive model for granular–fluid material in the quasi-static and dense flow regimes is developed. The main inter-

granular interactions and granular–fluid interactions controlling the mechanical behaviors are taken into account using the

Mohr–Coulomb model and a Bagnold-type relation. Dry granular flows in three simple configurations, i.e., plain shear,

vertical chute flow and flow on an inclined plane, are studied. Analytical solutions based on the presented unified model are

obtained. Comparisons between results from the presented model and the lðIÞ model indicate that the explicit partition of

frictional and collisional stress components provides insights into dense granular flows. In addition, the new model is used

to predict the stress–strain relations in two annular shear tests. The applicability and advantages of the unified model are

discussed.
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1 Introduction

Granular flows are widely presented in industry and nature,

e.g., raw material processing and geophysical flows. With

different material properties, external loads and boundary

conditions, granular materials can behave like solid, fluid

or gas. Debris flows are typical granular flows with viscous

interstitial fluid which show solid-like behaviors before

failure and fluid-like behaviors after failure. They are

normally treated as a fluid continuum with microstructural

effect in constitutive modeling for the fluid-like behaviors

[12, 13]. However, a constitutive model that can describe

both the solid-like and fluid-like behaviors is required for a

complete simulation of the process from quasi-static state

to the fast flowing state. In the quasi-static regime, the

solid-like granular materials can be sufficiently described

using plasticity theories in soil mechanics, whereas con-

stitutive equations based on kinetic theory have been pro-

posed for the gas regime [22]. However, most granular

flows lie neither in the slowly shearing quasi-static regime,

nor in the fully collisional gas regime. In the intermediate

flow regime, the granular volume fraction is close to its

critical value; thus, the flows can be considered incom-

pressible. This flow regime is usually referred to as dense

flow regime in the literature.

In the dense flow regime, the granular material behaves

like a liquid dominated by micromechanics of the granular

mass [7]. Two distinct features are observed for dense

granular–fluid flows. The first is that there exists a

threshold yield stress below which the granular media stops

flowing; the second is that the granular–fluid flows are
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shear rate dependent. These two features arise from three

types of dominant interactions in dense granular–fluid

flows: frictional contacts and collisions between solid

particles, and viscous drag forces between solid particles

and the interstitial fluid. The continuously evolving net-

work of frictional contacts results in the frictional behav-

iors in the dense granular flows, whereas the viscous rate-

dependent behavior has its source in the fluid viscosity and

the particle collisions. Which interaction is more dominant

depends on several factors, e.g., material property, external

load and boundary condition.

In a pioneering work on a gravity-free dispersion of

solid spheres sheared in Newtonian liquids, which can be

considered as a simple shear test shown in Fig. 1, Bagnold

[2] proposed a constitutive model in which the shear stress

has the relation

Tv ¼ 2:25k
3
2l

dU

dy
¼ k1

dU

dy
ð1Þ

in the so-called macro-viscous regime and

Ti ¼ 0:042qsðkdÞ2 dU

dy

� �2

sinai ¼ k2

dU

dy

� �2

ð2Þ

in the ‘grain-inertia’ regime, respectively. In the above

expressions, l is the dynamic viscosity of the interstitial

fluid; qs and d are the material density and the mean

diameter of the grains, respectively; dU=dy denotes the

shear strain rate; the tangent of ai corresponds to the ratio

between the shear and normal stress in the grain-inertia

regime; k is the linear concentration defined by

k ¼ d

s
¼ C0

C

� �1
3

�1

" #�1

; ð3Þ

where s is the free distance between two particles, C is the

mean solid volume fraction, and C0 is the maximum pos-

sible solid volume fraction when k ! 1 ðs ¼ 0Þ. In

Bagnold’s case, an analytical value for spheres, 0.74, was

employed for C0. In general cases, the maximum measured

solid volume fractions were found related to the size of the

particles and the container dimensions. Usually, C0 is

replaced by the asymptotic limit of the maximum measured

solid volume fraction C1 as the container dimensions

approach infinity [16].

A dimensionless value termed ‘Bagnold number’ is

defined as

B ¼ k
1
2qsd

2ðdU=dyÞ
l

/ Ti
Tv

ð4Þ

to characterize the granular flow regimes as macro-viscous

(B\40), grain-inertia (B[ 450), or a transitional state

(40�B� 450) between the two limits. The viscosity of the

interstitial fluid and the particle collisions are believed to

be dominant factor in the macro-viscous regime and grain-

inertia regime, respectively.

The normal stress P is observed proportional to the shear

stress T with a constant ratio, 0.75, in the macro-viscous

region which decreases progressively through the transition

region, till reaches another constant value at about 0.32 in

the grain-inertia region. It is formulated as

Tv

Pv

¼ tanav ¼ 0:75 ð5Þ

in the macro-viscous region and

Ti
Pi

¼ tanai ¼ 0:32 ð6Þ

in the grain-inertia region, where the tangents of av and ai
are the stress ratios in different regimes and related to the

material properties. In Bagnold’s experiments, the density

of the solid particles is equal to that of the interstitial fluids.

The effect of gravity was eliminated, and therefore, no

yield stress was observed in the experiment. This setup

highlights the effect of the fluid viscosity and the particle

collisions on the flowing behaviors after failure. The

models developed based on the experimental observations

never take yield criterion into account and cannot be

applied to describe the solid-like behaviors before flowing.

In addition, the constitutive relations of (1) and (2) are

developed for both the specific flow regimes. The consti-

tutive model for the transition region is unknown, and the

two flow regimes are not unified in a constitutive frame-

work. Bagnold’s model cannot achieve a complete

description of the stress state in the process from the quasi-

static state to the flowing state. The transition between the

two flow regimes cannot be investigated consequently.

Another widely accepted constitutive model for dense

granular flow regime is the lðIÞ model [19]. It employs an

overall phenomenological frictional coefficient related to a

dimensionless ‘inertial number.’ Frictional contact and

collision are not explicitly considered in this model. Fur-

thermore, as it is developed for dry granular flow, the dragFig. 1 Schematic of a simple shear test
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force imposed on the solid particles by the viscous inter-

stitial fluid is not taken into account. Boyer et al. [6]

extended this model to general cases with viscous inter-

stitial fluids. However, the mechanical behaviors inside the

yield surface are undefined in both of the models. Thus, the

lðIÞ model cannot be applied to granular materials in the

quasi-static regime.

This paper aims to develop a framework of constitutive

modeling to unify the constitutive theories for the solid-like

and fluid-like behaviors of a granular–fluid mixture. A

simple-shearing model is developed based on the frame-

work by employing the Bagnold-type relations for the

dense flow regimes and the elastoplastic theory, a Mohr–

Coulomb-type relation, for the quasi-static regime. The

applicability of the Mohr–Coulomb-type relation to

describe the solid-like behaviors is discussed. Based on the

effort devoted to examine Bagnold’s pioneer work

[5, 17, 21, 27], the constitutive relations for the macro-

viscous and grain-inertia regimes are modified and unified

in the new model to consider the dynamic behaviors. It was

demonstrated that this framework provides a complete

description for granular–fluid materials under slow plastic

deforming and fast collisional shearing. In this work, dry

granular flows in simple configurations are studied to get

analytical solutions based on the presented unified model.

The results are compared with the analytical solutions

obtained using the lðIÞ model. In addition, the new model

is employed to predict the stress–strain relations of two

annular shear tests, the numerical and experimental results

are compared. The applicability and advantages of the

unified model are discussed.

2 Framework of the constitutive model
for granular–fluid flows

As pointed out above, the constitutive relations (1) and (2)

were developed for two distinct regimes, respectively. The

constitutive relation for the transition region is absent so

that the continuous description of the flow regimes is

impossible. In granular–fluid flows, the intergranular fric-

tion, collisions and the fluid viscous force are believed to

coexist and transfer momentum simultaneously [18]. Thus,

an additive form combining (1) and (2), which reflect the

viscous fluid flow and the particle collisions, respectively,

is employed for the shear stress of a dense granular–fluid

flow. The total rheological shear stress Tr is the sum of Tv

and Ti, i.e.,

Tr ¼ Tv þ Ti: ð7Þ

Figure 2 shows the comparison between experimental data

and numerical predictions using Eq. (7). It is found that the

direct additive form can correctly capture the overall

dynamic behavior and provide an easy yet seamless tran-

sition. The material parameters introduced in Bagnold’s

experiments are used in the stress prediction by combining

equations (1) and (2) into (7).

The constitutive relation for the transition regime is

therefore determined. As the shear rate increases, the

domination of the mechanical behaviors changes from the

fluid viscosity to the particle collisions spontaneously in a

dense suspension. Likewise, the total rheological normal

stress Pr can be described by

Pr ¼ Pv þ Pi: ð8Þ

Ness and Sun [23] proposed a similar constitutive equation

based on the additive form combining viscous effects with

dry granular rheology. In their equation, the prolonged

frictional contact and the particle collisions are not dis-

tinguished. The former is believed to be rate independent

and cannot be sufficiently described by rate-dependent

rheological models. As mentioned before, the yield stress,

derived from the prolonged frictional contact, was not

accounted for in the Bagnold’s model since the effect of the

solid particles’ weight was eliminated in the experiments.

For general cases of granular–fluid mixture, the contact

friction in the quasi-static regime and residual stresses after

failure are essential parts of a complete model. The con-

stitutive equations for granular flows should satisfy a

generalized Mohr–Coulomb-type yield criterion as

dU=dy ! 0 [9, 25]. Shibata and Mei [27] assumed the

following relation for the quasi-static regime

T0 ¼ �fP0 sgn
dU

dy

� �
; ð9Þ

where T0 and P0 are the shear and normal stresses in the

quasi-static state; f is an empirical coefficient of dynamic

Fig. 2 Comparison between the shear stress predicted by (7) and

experimental data of k ¼ 11 in [2]
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friction. The ‘sgn’ function is applied to return the sign of

the shear strain rate.

The particle weight induced stresses are combined with

the rheological stresses by following the additive form to

yield a constitutive framework as

P ¼ P0 þ Pr ¼ P0 þ Pv þ Pi; ð10aÞ

T ¼ T0 þ Tr ¼ T0 þ Tv þ Ti; ð10bÞ

where P0 and T0 are regarded as the static portion of the

framework. Tr and Pr are the dynamic portion. The

framework is akin to the assumption of constitutive mod-

eling for granular materials in [29], in which the stress

tensor can be decomposed into a static (rate independent)

part and a dynamical (rate dependent) part from the per-

spective of statics. The framework based on the assumption

was preliminarily validated in cases of dry granular flow

where the viscous terms Pv and Tv are negligible [15, 24].

The constitutive model based on this framework is capable

to describe the stress state throughout the shearing process

from quasi-static to high-speed shearing stage.

The framework can predict steady uniform flows over a

range of bed slopes rather than only for one critical slope

for dry granular flows on an inclined plane, which is con-

sistent with the experimental observations [4, 25].

3 Constitutive model for dense granular–
fluid flows

In this section, a concrete simple-shearing model for

granular–fluid flow is developed based on the framework of

(10). A conventional approach is employed to determine

the static stresses P0 and T0. The specific expression for the

dynamic portion is determined by modifying the Bagnold’s

models. Both of the static and dynamic portions are for-

mulated for the solid phase and therefore regarded as

effective stress defined in soil mechanics. It is clear that the

stresses determined by (1) and (2) will vanish when the

solid volume fraction is equal to zero.

3.1 Constitutive relation for quasi-static state

As indicated by equation (9), the yield stress T0 is pro-

portional to the normal stress P0 with a constant friction

coefficient. The empirical friction coefficient, f, is deter-

mined as the tangent of the residual friction angle / since

the yield stress is assumed equal to the residual stress in the

Mohr–Coulomb-type relation. The friction angle can be

obtained in simple shear tests [26] and is assumed inde-

pendent of the shear rate. From (9), the shear stress in

quasi-static stage is expressed as

T0 ¼ �P0 sgn
dU

dy

� �
tan/: ð11Þ

Once P0 is determined, the shear stress T0 will be obtained

consequently. The normal stress P0 usually stems from the

gravity of the solid particles.

Take the free surface granular–fluid flow shown in

Fig. 3 as an example, the normal stress is the component of

gravity perpendicular to the flow plane,

P0 ¼ ðqs � qfÞCghcosh; ð12Þ

where qf is the density of the fluid. It is worth to mention

that the normal stress determined by (12) is considered as

the initial value of P0. The static stress P0 will decrease

with the increase in shear rate in the dense flow regime

since more fierce particle collisions lead to less prolonged

contact.

The simple relation (11) is widely employed as it is easy

to be understood and implemented in numerical calcula-

tions. The expression (12) was proved applicable in the

cases without shear softening (or liquefaction in saturated

granular material) in the quasi-static state [20]. For the

cases with excess pore pressure, more complicated con-

stitutive theories are required for the quasi-static regime. It

is stated that granular materials show rate-independent

hypoplastic behaviors under monotonous deformations

[14].

3.2 Constitutive relations for dense flow regime

From (1) and (2), together with (4), two dimensionless

quantities are obtained as

Tvqsd
2

kl2
¼ 2:25B ð13Þ

and

Fig. 3 Schematic of a steady granular–fluid flow on an inclined plane
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Tiqsd
2

kl2
¼ ð0:042 sin aiÞB2; ð14Þ

which depend only on the Bagnold number B. These rela-

tionships cannot describe the experimental observations

when the linear concentration, k, is greater than 12 [2, 17]. It

implies that the dimensionless quantities are also dependent

on the linear concentration. Thus, the dimensionless quan-

tities are extended to the following general expressions as

Tvqsd
2

kl2
¼ f1ðkÞB ð15Þ

and

Tiqsd
2

kl2
¼ f2ðkÞB2; ð16Þ

where f1ðkÞ and f2ðkÞ are functions of k to be specified.

3.2.1 (a) Shear stress in the macro-viscous regime

The shear stress in the macro-viscous regime is first

investigated with the goal to find a constitutive model

applicable in the whole spectrum of k studied in Bagnold’s

experiments. For the viscous regime, Bagnold derived the

expression of total shear stress as

Tv ¼ ð1 þ kÞ 1 þ 1

2
f ðkÞ

� �
l

dU

dy
; ð17Þ

in which Tv is the total shear stress consisting of the con-

tributions of grain and fluid, Tv and sv; f ðkÞ is a function of

the linear concentration and reflects the amplitude of the

shear velocity fluctuation, and f ð0Þ ¼ 0. In order to deter-

mine the shear stress of the solid phase, the total shear

stress needs to be divided into Tv and sv. Bagnold assumed

a simple relation for the fluid contribution in the total shear

stress in the grain-inertia regime as [3, 17]

si ¼
s0

ð1 þ kÞ ; ð18Þ

where s0 is the shear stress in pure fluid and formulated as

ldU=dy. The fluid contribution decreases as the linear

concentration increases. This relation is assumed to hold in

the macro-viscous regime as well. Thus,

sv ¼ l
ð1 þ kÞ

dU

dy
: ð19Þ

Based on (17) and (19), the contribution of gain is derived as

Tv ¼Tv � sv

¼ ð1 þ kÞ 1 þ 1

2
f ðkÞ

� �
� 1

1 þ k

� �
l

dU

dy
:

ð20Þ

Bagnold employed f ðkÞ ¼ k in (17). Thus, the expression

of Tv is preliminarily determined as

Tv ¼ ð1 þ kÞ 1 þ 1

2
k

� �
� 1

1 þ k

� �
l

dU

dy
: ð21Þ

The dimensionless quantity derived from (21) is

Tvqsd
2

kl2
¼ k�

3
2 þ 3

2
k�

1
2 þ 1

2
k

1
2 þ k�

3
2

1 þ k

 !
B; ð22Þ

which demonstrates a concrete formula of the proposition

of (15). The model (21) is capable to predict the experi-

mental results for granular–fluid mixture with high con-

centration to some extent. For exact prediction, a further

modification is needed.

A well-known phenomenon in granular–fluid flows is

that the shear stress is relatively insensitive to the solid

volume fraction C when the value of C is below approxi-

mately 0.5, but increases rapidly when the solid volume

fraction exceeds this critical value [16]. Some researchers

[11, 28] used a power series of the volume fraction (or the

linear concentration) combined with an exponential term to

describe the dynamic viscosity of granular–fluid mixture.

These expressions were determined by fitting shear stress

versus shear strain rate curves. The mechanism of the

phenomenon needs further clarification. As pointed out by

Bagnold [2] and Hanes and Inman [16], the solid volume

fraction must be less than a critical value Cc to assure a full

shearing to occur. The critical value was found to depend

on the packing pattern and lay between 0.53 and 0.65

[3, 27]. For the general case of a gravity flow shown in

Fig. 4, a stagnant zone with thickness of H � h will arise at

the bottom of the specimen when the mean solid volume

fraction C is greater than Cc. If the total thickness H rather

than that of the flowing zone h is used in the calculation of

the shear strain rate, an underestimated result will be

obtained. In a steady flow with C[Cc, the exchange of

particles between the flowing and the stagnant zone reaches

a balance. The mean solid volume fraction in the upper

layer, Cf , is deduced to be unchanged as the critical value

Fig. 4 Schematic of a simple-shearing granular–fluid flow with a

stagnant zone
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Cc. The mean value of the stagnant zone Cs should be

greater than Cc to keep static. Otherwise, solid particles

will move from the stagnant zone to the flowing zone till Cf

reaches the value of Cc. Thus, the experimental observation

that the shear stress increases dramatically when the solid

volume fraction exceeds the critical value Cc is attributed

to both the increase in the dynamic viscosity and the

decrease in the thickness of the flowing zone. Therefore,

the critical value of solid volume fraction should be taken

into account in the simple-shearing model for dense gran-

ular–fluid flow. Inspired by the way to take the critical

value into account in [27], the following model is proposed

for the macro-viscous regime.

Tv ¼ K1

dU

dy
; ð23Þ

where

K1 ¼ ð1 þ kÞ 1 þ 1

2
k

� �
� 1

1 þ k

� �
l 1 � C

Cc

� ��n

ð24Þ

is called effective viscosity; n is a fitting parameter. In

Shibata and Mei’s work [27], it was chosen n ¼ 1.

3.2.2 (b) Shear stress in the grain-inertia regime

The constitutive equation for the grain-inertia regime is

slightly modified based on Equation (16). The experimental

results in [2] show that shear stresses in different regimes

deviate as a whole with the change of the linear concen-

tration in the logarithm coordinates of qsd
2ðdU=dyÞ2

ver-

sus grain shear stress. It is assumed that the shear stress Ti
changes in the same rate with Tv when the value of k
varies. Based on this assumption, the original equation for

the ‘grain-inertia’ regime, (2), is modified to be

Ti ¼ K2

dU

dy

� �2

; ð25Þ

where

K2 ¼ 0:042RvqsðkdÞ2
sinai ð26Þ

and

Rv ¼
K1

k1

¼
ð1 þ kÞ 1 þ 1

2
k

� 	
� 1

1þk

h i
1 � C

Cc


 ��n

2:25k
3
2

ð27Þ

is termed as correction factor.

3.3 A simple-shearing model for dense
granular–fluid mixture

Substituting (23) and (25) into (7) yields the expression of

shear stress in the dense flow regime

Tr ¼ K1

dU

dy
þ K2

dU

dy

� �2

: ð28Þ

Based on (5), (6) and (8), the normal stress in the flowing

state is expressed as

Pr ¼
K1

tan av

dU

dy
þ K2

tanai

dU

dy

� �2

: ð29Þ

The modified models are capable of describing the

mechanical behaviors of a dense granular–fluid mixture

from the ‘macro-viscous’ regime to the ‘grain-inertia’

regime. As shown in Fig. 5, by choosing n ¼ 0:2 and Cc ¼
0:65 [16], (28) and (29) can predict Bagnold’s experi-

mental results with satisfactory agreement.

Furthermore, based on the framework (10), the dynamic

stresses (28) and (29) are combined with the static stresses

T0 and P0, respectively, to obtain a simple-shearing model

as

P ¼ P0 þ
K1

tan av

dU

dy
þ K2

tan ai

dU

dy

� �2

; ð30aÞ

T ¼ �P0 sgn
dU

dy

� �
tan/þ K1

dU

dy
þ K2

dU

dy

� �2

: ð30bÞ

This is a simple example of the unified model for granu-

lar–fluid mixture in the quasi-static and dense flow

regimes. The rate-independent constitutive component for

the unified model can be chosen according to the require-

ment in comprehensively modeling the behaviors inside the

yield surface.

4 Analytical solutions for steady granular
flows

Three dry granular flows under simple configurations are

studied. Analytical solutions from the simple-shearing

model are compared to the solutions from the lðIÞ model.

4.1 Plane shear flow

Consider shearing of a granular material made of particles

with diameter d and density qs, as shown in Fig. 1. The

confining pressure P is imposed on the top plate. The

granular material is sheared at a prescribed rate _c ¼ U=h,

where U is the velocity of the top plate and h is the depth of

the granular body. Gravity is not considered. To maintain a

steady plane shear, the shear force on the top plate depends

on the imposed confining pressure and shear rate.

In the lðIÞ model, the inertial number can be calculated

through

780 Acta Geotechnica (2021) 16:775–787
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I ¼ d _cffiffiffiffiffiffiffiffiffiffi
P=qs

p : ð31Þ

Consequently, we can obtain the shear stress T by [19]

T ¼ lðIÞP;withlðIÞ ¼ l1 þ
l2 � l1

I0=I þ 1
; ð32Þ

where l1, l2 and I0 are three parameters of the lðIÞ model.

With the presented unified model, considering the

steady shearing of dry granular materials where the viscous

terms are negligible, we have the following two

expressions

T ¼ rfyy sin/þ K2 _c
2; ð33Þ

and

P ¼ rfyy þ
K2

tan ai
_c2: ð34Þ

The frictional shear stress is computed as rfyy sin/, instead

of rfyy tan/, because simulations of plane shear flows

indicate that the difference between the vertical and the

horizontal normal stress is very small, i.e., rfxx � rfzz
[1, 10]. The frictional shear stress is then equal to rfyy sin/.

Based on Eqs. (33) and (34), the total shear force is

obtained as

T ¼ P sin/þ K2 _c
2 1 � sin/

tan ai

� �
: ð35Þ

Comparing Eqs. (32) and (35), it can be observed that the

shear stresses obtained by using the lðIÞ model and the

unified model have a similar structure. Both results consist

of two parts, one part is constant with given normal stress

P, and the other one depends on the shear rate. In the dense

flow regime, the shear stress obtained using the lðIÞ model

ranges from l1P to l2P. On the other hand, in the dense

flow regime, the dispersive pressure Pi ¼ K2 _c2= tan ai is

from 0 to P; therefore, the range of shear stress obtained

using the unified model is from P sin/ to P tan ai. It is

observed that the constants sin/ and tan ai in the unified

model are equivalent to the constants l1 and l2 in the lðIÞ
model.

Both of the models enable precise classifications of the

three flow regimes of dry granular materials: quasi-static,

dense flow and gaseous. Small values of _c ( _c ! 0) corre-

spond to the quasi-static regime in the sense that defor-

mation is very slow. In the lðIÞ model, the threshold of I

corresponds to the rapid and dilute flow regime is I � 1,

which is obtained from experiments [1]. Contrarily, in the

unified model, the gaseous regime can be theoretically

determined: it corresponds to the state when the network of

frictional contacts disappears, that is, when rfyy ¼ 0. Based

on the aforementioned analysis, the shear rate corresponds

to the dense flow regime in the plane shear is

forthelðIÞmodel : 0\ _c.
ffiffiffi
P

p
=
ffiffiffiffiffiffiffiffiffi
qsd

2
p

;

fortheunifiedmodel : 0\ _c\
ffiffiffi
P

p
=
ffiffiffiffiffiffi
K2

p
:

ð36Þ

Again, the ranges of shear rate corresponding to the dense

flow regime obtained using the lðIÞ model and the unified

model have similar form. Note that the constant K2 is

related to particle diameter, density and solid volume

fraction. It can be observed that in both of the models, the

Fig. 5 Comparison between the stresses predicted by (28) and (29)

with n ¼ 0:2 and Cc ¼ 0:65 and the data from a the figure 3 and b the

figure 4 in [2]. The experimental data are indicated by various

symbols. The dashed lines (upper panel) denote the shear stresses,

while the solid lines (lower panel) are the normal stresses
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upper limits of the shear rate depend on the confining

pressure P and physical properties of the granular material.

Although these two models bear some similarities, there

are fundamental differences. The lðIÞ model employs an

inertial-number-dependent phenomenological frictional

coefficient, which changes with shear rate and confining

pressure. However, the model does not give any clue why

the phenomenological frictional coefficient lðIÞ changes

with different shear rate and confining pressure. On the

other hand, the unified model explicitly considers the origin

of different stress components. In the unified model, the

change of phenomenological frictional coefficient can find

its explanation as follows. The ratio between shear stress

and normal stress in the network of frictional contacts is

related to the internal friction angle / of the material,

whereas the ratio of the collision-induced shear/normal

stresses is related to another angle ai. Experiments show

that ai is generally larger than /. Therefore, when the flow

state moves from the quasi-static regime to the gaseous

regime, the collision-induced stresses become more and

more significant. In this process, the phenomenological

frictional coefficient increases from sin/ to tan ai. The

evolution of the phenomenological frictional coefficient in

the two models is written, respectively, as

inthelðIÞmodel :l ¼ l1 þ
_cdðl1 � l2Þ

I0
ffiffiffiffiffiffiffiffiffiffi
P=qs

p
þ _cd

;

intheunifiedmodel :l ¼ sin/þ _c2K2ðtan ai � sin/Þ
P tan ai

:

ð37Þ

Comparing Eq. (37) with Eq. (32), the evolutions of the

phenomenological frictional coefficient in the two models

have a similar structure, but different dependences on shear

rate and confining pressure.

4.2 Vertical chute flow

Consider a granular material flowing between two vertical

plates with a distance of 2W, as shown in Fig. 6. The

confining pressure on the two vertical plates is P, which

implies that rxx ¼ P within the flow in the steady state.

According to the unified model, the possible range of

shear stress sxy in the chute flow is from P sin/ to P tan a.

Because of symmetry, the shear stress at the center of the

flow is zero. Based on the force balance along the x axis,

the shear stress can be written as

sxy ¼ qgx; ð38Þ

where q is the bulk density of the granular material. The

steady flow condition requires that the shear stress

increases linearly from the flow center to the vertical

plates. Consequently, there exists an unsheared zone in

which sxy\P sin/. Namely, when x\xp
(xp ¼ P sin/=qg), the granular material is unyielded and

moves as a plug layer. If xp [W , the whole granular body

is unyielded and no granular flow is possible. Furthermore,

the maximum shear stress required for the force balance

does not exceed the maximum shear stress that can be

provided, i.e., sxy\P tan ai. Therefore, according to the

unified model, a steady granular flow is possible in the

vertical chute only if

qgW= tan ai\P\qgW= sin/: ð39Þ

Now we proceed to derive the velocity profile of the steady

flow. The stress components for the present vertical chute

flow, as specified in (33) and (34) for the plane shear flow,

take the forms

P ¼ rfxx þ
K2

tan ai

dUy

dx

� �2

;

sxy ¼ rfxx sin/þ K2

dUy

dx

� �2

:

ð40Þ

Substituting Eq. (40) into Eq. (38), we have

dUy

dx

� �2

¼ ðqgx� P sin/Þ tan ai
K2ðtan ai � sin/Þ : ð41Þ

Solving the above equation using the boundary condition

Uy ¼ 0 at x ¼ W , we can obtain the velocity profile

UyðxÞ ¼ Up
y þ

2
ffiffiffiffiffiffiffiffiffiffiffi
tan ai

p ðqgx� P sin/Þ3=2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2ðtan ai � sin/Þ

p
qg

if

xp � x�W ;

ð42Þ

where Up
y is the velocity of the unsheared plug layer

Up
y ¼ � 2

ffiffiffiffiffiffiffiffiffiffiffi
tan ai

p ðqgW � P sin/Þ3=2

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2ðtan ai � sin/Þ

p
qg

if x\xp: ð43Þ

Analytical solutions can also be obtained using the lðIÞ
model [8]. Similarly, an unsheared plug layer exists, and

there is a confining pressure range, only with confining

pressure in this range a steady granular flow is possible. If

the parameters in the lðIÞ model are taken as l1 ¼ sin/

Fig. 6 Schematic of vertical chute flow
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and l2 ¼ tan ai, the width of the plug layer and the range of

the confining pressure are identical to those obtained from

the unified model. However, the velocity profiles obtained

using these two models are not identical.

To quantitatively compare the solutions obtained using

these two models, the velocity profiles are calculated. The

following material properties are used: q ¼
1470 kg=m

3; qs ¼ 2450 kg=m
3

and d ¼ 0:002 m. The

parameters for the lðIÞ model are chosen as l1 ¼ 0:38,

l2 ¼ 0:64 and I0 ¼ 0:279. For the unified model, we take

sin/ ¼ l1, tan a ¼ l2 and K2 ¼ 0:2. The width of the

chute is 0.2 m, the confining pressure P is 3000 Pa. Owing

to the symmetric geometry, only the right half of the

granular material is considered. The calculated results are

shown in Fig. 7. Using the given parameters, the two

models predict identical unsheared velocity. However, the

velocity profiles in the shear zone are somewhat different.

4.3 Flow on an inclined plane

The problem of a granular mass on an incline is considered.

As shown in Fig. 3, the granular mass has a free surface

and is subjected to gravity. The inclination angle is h. The

height of the granular layer is h.

For this steady granular flow, the stress distribution

should be hydrostatic

ryy ¼ qgðh� yÞ cos h; rxy ¼ qgðh� yÞ sin h: ð44Þ

For an infinite inclined plane, we assume that the frictional

stresses rfyy ¼ rfxx in the flowing state; thus, the shear/

normal stress ratio of the frictional contacts is

sfxy=r
f
yy ¼ sin/.

The following force balance must be satisfied in the

steady state

ryy ¼ qgðh� yÞ cos h ¼ rfyy þ
K2

tan ai

dU

dy

� �2

;

sxy ¼ qgðh� yÞ sin h ¼ rfyy sin/þ K2

dU

dy

� �2

:

ð45Þ

Here, once again, the stress consists of the contributions

from frictional contacts and collisions, described by the

Mohr–Coulomb model and the Bagnold-type rheology,

respectively. Based on the force balance equations, the

following differential equation is derived

ð1 � sin/= tan aiÞK2

dU

dy

� �2

� qgðsin h� cos h sin/Þðh� yÞ ¼ 0:

ð46Þ

Solving the above equation, the velocity profile is obtained

as

UðyÞ ¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qgðsin h� cos h sin/Þ
ð1 � sin/= tan aiÞK2

s
ðh3=2 � ðh� yÞ3=2Þ:

ð47Þ

The velocity profile, evolving as ðh� yÞ3=2
, corresponds to

the Bagnold profile. Once the velocity is obtained, the stress

components from frictional contacts and collisions can be

determined. From the velocity profile, it is noted that velocity

and shear rate increase with the inclination h. With

increasing h, the normal and shear stresses induced by col-

lisions become more significant. This increase in the dis-

persive normal stress results in a trend of dilation, tending to

reduce the stress components caused by frictional contacts.

If the granular material is modeled using the lðIÞ model,

dense granular flow can only happen if the inclination h is

between tan�1 l1 and tan�1 l2. With the unified model, a

similar inclination range can be derived as follows

tan h ¼ sxy
ryy

¼ sin/þ
rczz
rzz

ðtan ai � sin/Þ; ð48Þ

where rczz is the dispersive normal stress. The steady dense

flow condition requires 0\rczz\rzz, because if rczz [ rzz
the network of frictional contacts disappears completely,

which means that the granular material enters the gaseous

regime. Consequently, according to the unified model, the

inclination range for dense granular flow is

tan�1ðsin/Þ\h\ai; ð49Þ

which is exactly the inclination range derived from the lðIÞ
model. It is easily seen that the obtained velocity profile is

valid only under the condition (49).

The velocity profiles of the granular flow with two dif-

ferent inclinations are calculated. The material parameters

used in the calculation are the same as those used in theFig. 7 Velocity profiles obtained using the unified model and the lðIÞ
model in the vertical chute flow
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former vertical chute flow. For the unified model, the

parameters are taken as sin/ ¼ l1 ¼ 0:38 and

tan ai ¼ l2 ¼ 0:64. Figure 8 shows the results obtained

using K2 ¼ 0:3 for h ¼ 23�, and K2 ¼ 0:1 for h ¼ 25�.
Using the given parameters, the two models provide similar

predictions.

5 Performance of the proposed model

In this section, the performance of the unified simple shear

model is demonstrated by modeling two tests, respectively,

for a dry granular flow and a granular–fluid mixtures flow.

5.1 Case 1: Dry granular materials

The experimental results of dry granular materials sheared

in an annular shear cell were reported by Savage and Sayed

[26]. In the experiments, the shear velocity was adjusted to

keep the height of the granular mass constant and thus keep

the volume unchanged. This steady state is equivalent to an

undrained simple shear of saturated granular materials. The

experimental data for 1.0 mm spherical polystyrene beads

are predicted by the new model. The shear stresses were

measured on the top surface of the sample. As stated in

[26], the loads applied by the upper disk range from 100 to

1500 N=m
2
. However, the specific load for each single

sample was not reported. By checking the measured normal

stress for 1.0 mm beads, we assume that the normal stress

in the quasi-static regime P0 has a value around 100 N=m
2

which is also regarded as the residual normal stress after

yielding. As mentioned before, the theoretical maximum

value of solid volume fraction, C0, will be replaced by the

asymptotic limit of the maximum measured solid volume

fraction, C1, in the calculation for a specific experiment.

Since the exact value of C1 was not reported in Savage

and Sayed’s work, we use 0.65 which is a typical value for

monosized spheres [3, 16]. The critical volume fraction Cc

is approximately 0.62 [27]. All the parameters for the

prediction are listed in Tables 1 and 2.

As shown in Fig. 9, the predicted curves can fit the

experimental data at high shear strain rate very well. For

the dense specimen, the non-quadratic dependence of the

stresses on the shear rate in the slow shear stage is also

captured by the new model. However, the predicted results

for the specimens with C\0:524 show a slight overesti-

mation, especially in the slow shear stage. The assumed

value of P0, 100 N=m
2
, is believed to be greater than the

real value of the tests with C\0:524. However, as men-

tioned before, P0 ¼ 100 N=m
2

is the minimum value which

can be imposed on the specimens by the upper disk. A

plausible explanation is that shear softening occurs in the

relatively loose specimens under undrained condition. In

this case, the normal stress P0 which corresponds to the

effective stress in soil mechanics would decrease to a

residual value to eliminate the tendency of volume com-

pression. A looser specimen will present lower residual

strength. The Mohr–Coulomb-type relations (11) and (12),

used as the static portion of (30), cannot capture the

decrease in P0 in the quasi-static stage. However, the

dynamic portion is validated in the describing of the stress–

strain rate relations for dry granular flows with different

solid volume fraction.

5.2 Case 2: Granular–water mixture

Another elementary modeling by the unified simple-

shearing model is based on the laboratory tests from Hanes

and Inman [16] with spherical particles sheared in water.

The data for particles with diameter of 1.85 mm are

selected since they are claimed to be of good quality. The

Fig. 8 Velocity profiles obtained using the unified model and the lðIÞ
model in the flow on inclined plate

Table 1 Parameters for the shear tests of 1.0 mm beads in [26]

d C1 Cc qs qf l / h
(mm) (–) (–) (kg=m3) (kg=m3) (Pa s) (�) (�)

1.0 0.65 0.62 1095 1.29 1:83 � 10�5 23 0

Table 2 Stress ratios measured in the shear tests of 1.0 mm beads in

[26]

C (–) tan av (–) tan ai (–)

0.461 0.50 0.51

0.483 0.40 0.51

0.504 0.30 0.51

0.524 0.30 0.51
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maximum measured volume fraction for 1.85 mm particles

was reported to be 0.55 [16]. The asymptotic limit C1 is

presumed to be approximately 0.61. The critical volume

fraction is assumed to be 0.52 as a partially shearing with

C ¼ 0:53 was reported. The load from the upper disk, P0,

is about 200 N=m
2
. The angle av is equal to the dynamic

angle of repose, 28�. All the parameters are listed in

Tables 3 and 4.

The predicted results are shown in Fig. 10. The pre-

dicted curves of C ¼ 0:51 show a good agreement with the

experimental data. The stresses of the specimen with C ¼
0:49 are slightly overestimated. Similar to the case 1, the

overestimation of P0 and T0 may be responsible for this

Fig. 9 Elementary modeling results for dry granular flow with

different grain linear concentration: a normal stress and b shear stress.

The experimental data are indicated by various symbols. The dashed

lines (upper panel) denote the normal stresses, while the solid lines

(lower panel) are the shear stresses, predicted by the postulated model

Table 3 Parameters for the shear tests of 1.85 mm beads in [16]

d C1 Cc qs qf l / h
(mm) (–) (–) (kg=m3) (kg=m3) (Pa s) (�) (�)

1.85 0.61 0.52 2780 1000 1:0 � 10�3 0.59 0

Table 4 Stress ratios measured in the shear tests of 1.85 mm beads in

[16]

C (–) tan av (–) tan ai (–)

0.49 0.53 0.59

0.51 0.53 0.59

Fig. 10 Elementary modeling results for granular–water flow with

different solid volume fraction: a normal stress and b shear stress. The

experimental data are indicated by various symbols. The solid lines

denote the normal stresses in the upper panel and the shear stresses in

the lower panel, predicted by the postulated model
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discrepancy. Nevertheless, the dynamic portion of the

presented model is capable of describing the stress versus

shear rate relation in the dense flow regime for a granular–

water mixture.

6 Conclusions

A framework for the constitutive modeling of granular–

fluid mixture is developed by combining a rate-indepen-

dent static part with a rate-dependent rheological part in an

additive form. In this framework, the effect of the pro-

longed contact, the viscosity of the interstitial fluid and the

particle collisions are considered explicitly. The Mohr–

Coulomb-type relation for the quasi-static regime and the

Bagnold-type rheological model for the dense flow regime

are unified in the framework to obtain a simple-shearing

model which can describe the mechanical behaviors

throughout the shear process from yielding to high-speed

shearing. In the modified Bagnold-type model, the con-

version between the so-called macro-viscous and grain-

inertia regimes can be captured continuously. The critical

solid volume fraction to assure the occurrence of a full

shearing is taken into account. The existence of the stag-

nant zone is identified as the main reason for the dramatic

increase in the dynamic viscosity as the solid volume

fraction exceeds the critical value.

Analytical solutions for dry granular flows in three

configurations, i.e., plane shear, vertical chute flow and

flow on inclined plate, are derived based on the presented

model. The solutions are compared with those obtained

using the lðIÞ model. The following observations can be

made. (1) Both models show that in order to switch from

the quasi-static to the gaseous regime, one can either

increase the shear rate or decrease the pressure. (2) The

overall phenomenological frictional coefficient is depen-

dent on flow kinematics, material properties and boundary

conditions. In both models there are lower and upper limits

for this phenomenological frictional coefficient. The lðIÞ
model shows that the friction angle increases as the gran-

ular material approaches the gaseous regime, but does not

give a physical background. The presented unified model

shows that the increase in the phenomenological frictional

coefficient is because of particle collisions.

The developed model is used to predict the stress–strain

rate relations of two granular–fluid flows. The predicted

results for specimens with different solid volume fraction

show a good agreement with the experimental data in the

high shear rate stage. However, when the static (or resid-

ual) normal stress in the beginning of the flowing is

determined as the component of gravity or the external load

on the solid phase, the total stresses in the low shear rate

stage are overestimated by the new model for the relatively

loose specimens. A possible explanation is that shear

softening occurs in the relatively loose specimens in the

quasi-static regime and the Mohr–Coulomb model cannot

capture this behavior.

Nevertheless, the unified model has some favorable dis-

tinct features. First, the quasi-static solid-like behaviors of

granular materials are fully defined in the rate-independent

part of the model. The modeling of the quasi-static regime,

such as critical state, plastic flow and nonlinear elasticity, can

be further improved by changing the static part in the unified

model to more sophisticated models. Thus, the model is quite

flexible for a modification. Second, granular materials in the

quasi-static and dense flow regime can be described using the

model uniformly, which simplifies numerical implementa-

tion. Third, the model reveals that in the dense flow regime,

especially when granular materials are quite close to the

gaseous regime, particle collisions contribute to a significant

part of the stress.
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