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Abstract
This paper presents an analytical solution to investigate the vertical dynamic response of an elastic pile embedded in

poroelastic soil overlying a rigid base. The pile top is subjected to vertical harmonic loading. The soil is modeled as a

poroelastic soil layer underlying the base of the pile and a series of independent infinitesimally thin layers along the shaft of

the pile. Using Biot’s poroelastodynamic theory and the method of Hankel integral transformation, the vertical dynamic

response describing by the complex impedance is obtained. Following the verification of the derived solution against an

existing solution, arithmetical examples are provided to parametrically analyze the influence of relevant parameters on the

vertical dynamic impedance.

Keywords Dynamic impedance � Pile � Poroelastic soil � Vertical vibration

List of symbols
a0 Dimensionless frequency

Kv Vertical impedance

Re(Kv) Real part of vertical impedance, denoting

stiffness of the system

Im(Kv) Imaginary part of vertical impedance, denoting

damping of the system

1 Introduction

The problem of the dynamic interactions between the soil

and the foundation plays an important role in the analysis

of structures subjected to seismic loading and machine

vibrations. Reissner [11] first studied a rigid cylindrical

foundation resting on the half-space subjected to a vertical

loading. To consider the contribution of the soil sur-

rounding the foundation to its dynamic response, several

simplified models including the Winkler model [8], the

plane-strain continuum model [10, 16] and the three-di-

mensional model [5–7, 13, 14] were developed to research

the dynamic response of foundations embedded in the soil.

The studies mentioned above represent the soil as an

elastic single-phase material; however, in certain cases it is

more appropriate to consider the soil as a two-phase fluid-

saturated medium. Based on Biot’s poroelastodynamic

theory [2], Cai and Hu [3] investigated the vertical

dynamic response of a rigid foundation embedded in

poroelastic half-space, and then Cai et al. [4] extended their

solution to the analysis of the vertical vibration of a rigid

foundation embedded in poroelastic soil overlying rigid

bedrock. Zheng et al. [15] proposed an analytical solution

of a pile embedded in a poroelastic half-space to a vertical

harmonic loading which allows considering the com-

pressibility of the elastic pile. However, as indicated by Cai

et al. [4, 16], in many cases of practical interest the

thickness of the substratum soil layer being infinite may no

longer be appropriate and may lead to substantial errors.

The objective of this paper is to propose an analytical

solution on the vertical vibration of an elastic pile

embedded in poroelastic soil overlying a rigid base. Fol-

lowing the method by Zheng et al. [15], the soil is divided
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into two parts: a poroelastic soil layer underlying the pile

base and a series of infinitesimally thin independent layers

surrounding the pile shaft. The base resistance and shaft

reactions are assumed to be uncoupled and calculated,

respectively. The dynamic response of the soil-pile system

is quantified by the dynamic impedance of the pile top.

2 Formulation of the governing equations

Owing to the difficulty in obtaining an exact analytical

solution for the dynamic response of an embedded pile,

several simplifying assumptions proposed by Baranov [1]

were extended and adopted by Novak and Beredugo [10],

Cai and Hu [3, 4] and Zheng et al. [15]. Following their

method, the soil is divided into two independent parts and

it is assumed that the soil along the pile shaft is composed

of a series of infinitesimally thin independent layers with

Lame’s constants �ks ¼ ksð1þ ibÞ and �Gs ¼ Gsð1þ ibÞ,
while the soil underlying the pile base is represented by a

poroelastic soil layer with Lame’s constants �kb ¼ kbð1þ
ibÞ and �Gb ¼ Gbð1þ ibÞ, where b is the damping ratio of

the soil, i ¼
ffiffiffiffiffiffiffi

�1
p

, as depicted in Fig. 1. The stress gradient

in the vertical direction and radial displacements for the

independent thin layers is ignored, the interfaces between

the thin layers are permeable, the contact surface between

the pile base and the soil is smooth and permeable, and the

pile shaft is assumed perfectly bonded to its surrounding

soil [15]. The cylindrical pile with a radius of R and a

length of h is modeled as a one-dimensional elastic rod

[15]. A harmonic loading Peixt acted at the pile top is

transferred to the soil via the pile shaft resistances fsðz; tÞ
and the base resistance fbðz; tÞ, where P is the amplitude of

the loading, and x denotes the exciting frequency. A

cylindrical coordinate system located at the center of the

pile base is defined such that the z-axis is normal to the

base.

In the axisymmetric problem the governing equation of

the soil underlying the pile base is given by Biot [2] as:

�Gb r2 � 1

r2

� �

urb þ ð�kb þ �GbÞ
oe

or
� a

opf
or

¼ q€urb þ qf €wrb

ð1Þ

�Gbr2uzb þ ð�kb þ �GbÞ
oe

oz
� a

opf
oz

¼ q€uzb þ qf €wzb ð2Þ

� opf
or

¼ qf €urb þ m €wrb þ b _wrb ð3Þ

� opf
oz

¼ qf €uzb þ m €wzb þ b _wzb ð4Þ

�pf ¼ M
o _wrb

or
þ _wrb

r
þ o _wzb

oz

� �

þ aM _e ð5Þ

where uzb and urb are the vertical and radial displacements

of the solid matrix underlying the pile base, respectively;

wzb and wrb are the vertical and radial displacements of the

fluid phase relative to the solid matrix, respectively; q and

qf are the density of the soil and pore fluid, respectively;

m ¼ qf =n with n being the porosity; pf is the pore fluid

pressure; b is a parameter accounting for the internal fric-

tion between the solid phase and pore fluid; a and M are

Biot’s parameters accounting for the compressibility of the

soil; e ¼ ourb
or þ urb

r þ ouzb
oz . A dot over the variable denotes

differentiation with respect to the time t.

The constitutive relations for the poroelastic soil are:

rz ¼ keþ 2G
ouz
oz

� apf ð6Þ

szr ¼ G
ouz
or

þ our
oz

� �

ð7Þ

The governing equation of pile motions is [15]:

EpAp
o2up
oz2

� fs ¼ qpAp €up ð8Þ

where Ep, Ap, qp and up are the Young’s modulus, sectional

area, density and vertical displacement of the pile.

2.1 Solution of the governing equations

The problem under consideration is assumed to be time-

harmonic with a factor eixt, but in the following term eixt is

suppressed from all variables for convenience.

2.2 Pile base resistance

The pile base resistance fbðz; tÞ can be calculated by

employing the solution for a foundation resting on the soil
Fig. 1 Sketch of computational model
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surface. The governing equations of the substratum soil can

be solved via Hankel integral transformations with respect

to the radial coordinate r. The pth-order Hankel transform

of a function f ðr; zÞ with respect to r is defined as [12]:

~f pðn; zÞ ¼
Z 1

0

rf ðr; zÞJpðnrÞdr ð9Þ

where JpðnrÞ is the Bessel function of the first kind of order
p; and n is the Hankel transform parameter.

Applying zeroth-order Hankel transforms on pf , uzb, wzb

and rzb as well as first-order Hankel transforms on urb and

srzb yields:

~p0f ¼ A1e
�v1z þ A2e

v1z þ B1e
�v2z þ B2e

v2z ð10Þ

~u0zb ¼ b1A1e
�v1z � b1A2e

v1z þ b2B1e
�v2z � b2B2e

v2z

þ C1e
�v3z � C2e

v3z ð11Þ

n~u1rb ¼ b3A1e
�v1z þ b3A2e

v1z þ b4B1e
�v2z þ b4B2e

v2z

þ v3C1e
�v3z þ v3C2e

v3z

ð12Þ

~w0
zb ¼ �b5A1e

�v1z þ b5A2e
v1z � b6B1e

�v2z þ b6B2e
v2z

� c1C1e
�v3z þ c1C2e

v3z

ð13Þ

~r0zb ¼ b7A1e
�v1z þ b7A2e

v1z þ b8B1e
�v2z þ b8B2e

v2z

� 2Gbv3C1e
�v3z � 2Gbv3C2e

v3z ð14Þ

~s1rzb ¼ �Gbðb9A1e
�v1z � b9A2e

v1z þ b10B1e
�v2z

� b10B2e
v2z þ b11C1e

�v3z � b11C2e
v3zÞ ð15Þ

where v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d1�
ffiffiffiffiffiffiffiffiffiffiffi

d2
1
�4d2

p
2

q

;v2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d1þ
ffiffiffiffiffiffiffiffiffiffiffi

d2
1
�4d2

p
2

q

;

v3 ¼
ffiffiffiffiffi

n2
p

þ ðqf c1�qÞx2

�Gb
;d1 ¼ n2 � ðc2 þ c3Þ;d2 ¼ c4 � ðc2þ

c5Þn2;c1 ¼
qfx

2

mx2�bxi; c2 ¼ mx2�bxi
M � n2; c3 ¼

a2�2ac1�qc1=qf
ð�kbþ2 �GbÞðmx2�bxiÞ; c4 ¼

qx2ðmx2�bxiÞ�q2f x
4

ð�kbþ2 �GbÞM
;c5 ¼

ðmx2�bxiÞða2�2ac1�q=qf Þ
�kbþ2 �Gb

; c6 ¼
ðv2

1
þc2Þc1

ðc1�aÞqfx2; c7 ¼
ðv2

2
þc2Þc1

ðc1�aÞqfx2;

b1 ¼
v1ðð�kbþ �GbÞc6þc1�aÞ

�Gbðv21�v2
3
Þ ; b2 ¼

v2ðð�kbþ �GbÞc7þc1�aÞ
�Gbðv22�v2

3
Þ ; b3 ¼ c6þ

b1v1; b4 ¼ c7 þ b2v2; b5 ¼ b1c1 þ v1
mx2�bxi;

b6 ¼ b2c2 þ v2
mx2�bxi; c7 ¼ kc6 � 2 �Gbb1v1 � a; b8 ¼ kc7�

2 �Gbb2v2 � a; b9 ¼ n2b1þv1b3
n ; b10 ¼ n2b2þv2b4

n ; b11 ¼
n2þv2

3

n ;

A1, A2, B1, B2, C1 and C2 are arbitrary coefficients.

As mentioned earlier, the boundary conditions can be

expressed as:

uzbðr; 0Þ ¼ u0; 0� r�R ð16Þ
rzbðr; 0Þ ¼ 0; R� r\1 ð17Þ
pf ðr; 0Þ ¼ 0; 0� r\1 ð18Þ

szrbðr; 0Þ ¼ 0; 0� r\1 ð19Þ

urbðr;HÞ ¼ 0; 0� r\1 ð20Þ
uzbðr;HÞ ¼ 0; 0� r\1 ð21Þ
wzbðr;HÞ ¼ 0; 0� r\1 ð22Þ

where u0 is the vertical displacement of the pile base.

The arbitrary coefficients can be determined by the

aforementioned boundary conditions. Substituting

Eqs. (16)–(22) into Eqs. (10)–(15) yields:

~u0zbðn; 0Þ ¼ f ðnÞ~r0z ðn; 0Þ ð23Þ

where f ðnÞ ¼ k1:ððI1 � I2k2I
�1
4 I3k2Þ�1 � ðI2 � I1k3I

�1
3 I4

k3Þ�1Þ:k4;k1 ¼ fb3; b4; 1g;k2 ¼ diagfe�v1H ; e�v2H ; e�v3Hg;
k3 ¼ diagfev1H ; ev2H ; ev3Hg;k4 ¼ f1; 0; 0gT;I1 ¼
b7 b8 �2 �Gbv3
b9 b10 b11
1 1 0

2

4

3

5;I2 ¼
b7 b8 �2 �Gbv3
�b9 �b10 �b11
1 1 0

2

4

3

5;I3

¼
b1 b2 1

b3 b4 v3
b5 b6 c1

2

4

3

5;I4 ¼
�b1 �b2 �1

b3 b4 v3
�b5 �b6 �c1

2

4

3

5.

By virtue of Eqs. (16)–(17), the following dual integral

equations can be obtained:
Z 1

0

n�1½1þ BðnÞ�NðnÞJ0ðnrÞdn ¼ u0
L
; 0� r�R ð24Þ

Z 1

0

NðnÞJ0ðnrÞdn ¼ 0; R� r�1 ð25Þ

where NðnÞ ¼ n~r0z ðn; 0Þ; BðnÞ ¼ ngðnÞ
L � 1;

L ¼ lim
n!1

ngðnÞ ¼ �ð1� mÞ; v denotes the Poisson’s ratio

of the solid phase.

Following the method proposed by Noble [9], we define

NðnÞ as:

NðnÞ ¼ 2nu0
pL

Z R

0

UðxÞ cosðnxÞdx ð26Þ

Substituting Eq. (26) into Eqs. (24)–(25), the following

Fredholm integral equation of the second kind can be

obtained:

UðxÞ þ 1

p

Z R

0

Kðx; yÞUðyÞdy ¼ 1 ð27Þ

where Kðx; yÞ ¼ 2
R1
0

HðnÞcosðnxÞcosðnyÞdn.
Now the base resistance fbðtÞ can be calculated as:

fb ¼ �Gb

Z 2p

0

dh
Z R

0

rzðr; 0Þrdr ¼ 2p �Gb ~r
0
z ð0; 0Þ ð28Þ

Substituting Eqs. (26) into (28) the pile base resistance

is obtained:

fb ¼
4 �Gbu0
1� m

Z R

0

UðxÞdx ð29Þ
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2.3 Pile shaft resistance

In the following the solution for pile shaft resistance fsðtÞ is
derived. As mentioned earlier, the gradient of normal

stresses is ignored; therefore, the governing equations of

the poroelastic soil along the pile shaft can be rearranged as

[15]:

�Gs
o2uzs
or2

þ 1

r

ouzs
or

� �

¼ qs €uzs þ qf €wzs ð30Þ

qf €uzs þ m €wzs þ b _wzs ¼ 0 ð31Þ

where uzs and wzs are the vertical displacement of the solid

matrix and that of the porous fluid relative to the solid

matrix at the side of the pile shaft.

Substituting Eq. (31) into Eq. (30), we can obtain the

general solution for the vertical displacement of the solid

phase:

uzs ¼ DK0ðqrÞ þ EI0ðqrÞ ð32Þ

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðc1qf � qÞx2= �Gs

q

, I0ðqrÞ and K0ðqrÞ are

zeroth-order modified Bessel functions of the first and

second kinds, respectively; D and E are arbitrary

coefficients.

The assumptions mentioned earlier can be translated to

the following boundary conditions:

uzs r!1j ¼ 0 ð33Þ
up ¼ uzs r¼Rj ð34Þ

fs ¼ �2pRsrz r¼Rj ð35Þ

Substituting Eqs. (32)–(34) into Eq. (32) we obtain:

D ¼ up
K0ðqRÞ

ð36Þ

E ¼ 0 ð37Þ

According to Eqs. (32)–(37), the shaft resistance fsðtÞ
can be obtained:

fs ¼ 2pR �Gsupq
K1ðqRÞ
K0ðqRÞ

ð38Þ

2.4 Vertical dynamic impedance

The dynamic response presented in this paper is described

by the vertical complex impedance of the pile top Kv,

which is defined as the amplitude of the axial load that

leads to a unit displacement at the pile top. The real part of

the impedance ReðKvÞ represents the dynamic stiffness of

the soil-pile system, and the imaginary part ImðKvÞ corre-
sponds to the material and radiation damping. Substituting

Eq. (38) into Eq. (8) yields:

o2up
oz2

� d2up ¼ 0 ð39Þ

where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2 �GsqK1ðqRÞ=RK0ðqRÞ � qpx2Þ=Ep

q

.

The general solution of Eq. (40) is:

up ¼ Je�dz þ Kedz ð40Þ

where J and K are arbitrary coefficients to be determined

from the boundary conditions at the head and base of the

pile, viz:

EpAp
oup
oz

z¼0j þ fb ¼ 0 ð41Þ

EpAp
oup
oz

z¼�hj þ P ¼ 0 ð42Þ

Substituting Eqs. (41)–(42) into (40) yields:

J ¼ Pv
EpApdðvedh � e�dhÞ ð43Þ

K ¼ P

EpApdðvedh � e�dhÞ ð44Þ

where v ¼ ð1�mÞEpApdþ4 �Gb

R R

0
UðxÞdx

ð1�mÞEpApd�4 �Gb

R R

0
UðxÞdx

:

According to Eqs. (40) and (43)–(44), the vertical

impedance Kv of the soil-pile system is obtained:

Kv ¼
P

upð�hÞ ¼
EpApdðvedh � e�dhÞ

vedh þ e�dh
ð45Þ

3 Verification and discussion

In this section arithmetical examples are presented to verify

the accuracy of the derived solution and discuss the sen-

sitivity of the vertical impedance on the relative stiffness of

the soil and contributions of soil surrounding the shaft and

underlying the base of the pile to the dynamic response.

The analysis presented is based on the plots that describe

the variation of the vertical impedance with the dimen-

sionless frequency a0 ¼ xR
ffiffiffiffiffiffiffiffiffiffiffi

q=Gb

p

. Unless otherwise

mentioned, the following parameters are adopted:m ¼ 0:3,

a ¼ 0:95, b ¼ 0:05, n ¼ 0:4, M� ¼ M=Gb ¼ 10,

q�p¼qp=q ¼ 1:25, q�f¼qf =q ¼ 0:53, h� ¼ h=R ¼ 10,

H� ¼ H=R ¼ 1, E�
p ¼ Ep=Gb ¼ 1000,

b� ¼ bR
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1=qGb

p

¼10, Gs ¼ Gb.

First we consider a pile embedded in half-space by

setting H� ¼ 50, which is large enough to simulate the

half-space [4, 16], to compare the derived results against

these of Zheng et al. [15]. As shown in Fig. 2, the present

solution matches well with that of Zheng et al. [15]. In

addition, Fig. 3 shows a comparison of the impedance

presented with the solution at the hand, against the results
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given by Zheng et al. [14]. The present solution is degen-

erated to the Zheng et al.’s solution [14] by setting a ¼ 1,

M� ! 1 as well as b� ¼ 10�6 and q�f ¼ 10�6, to eliminate

the effect of pore pressures on wave propagation [3, 4, 15].

Observe that there exist small differences in a relative low-

frequency range of 0\a0 � 0:2 owing to the ignorance of

the normal stress gradient for thin layers in the present

solution. On the other hand, the present solution agrees

well with that of Zheng et al. [14] in higher frequencies.

Figure 4 depicts the effect of the substratum soil H� on

the vertical dynamic impedance Kv. A special case of a

half-space is also considered for comparison. Notice that

the amplitudes of the impedance tend to decrease with the

increase of the value H� at the resonance frequencies.

However, the substratum thickness has a negligible influ-

ence on the dynamic response when H� [ 1.

Figure 5 presents the effect of the poroelastic parameter

of the soil b� on the vertical dynamic impedance Kv. It

should be noted that the value of b� is inversely propor-

tional to the permeability of poroelastic soil. A special case

of a single-phase medium is also presented for comparison.

Observe that the parameter b� only dominates the oscilla-

tion amplitudes of both the stiffness and damping at the

resonance frequencies but has little influence on the reso-

nance frequency, and the amplitudes of the impedance Kv

at the resonance frequencies decrease slightly with the

increase of the value of b�. The behavior of the pile

embedded in the single-phase medium is close to the pile

embedded in the poroelastic soil with low permeability.

Figure 6 shows the effect of the relative stiffness of the

soil layers Gs=Gb on the impedance Kv. We can observe

that the amplitudes of both the real and imaginary com-

ponents of the impedance Kv at the resonance frequencies

decrease significantly with the increase of the relative

stiffness Gs=Gb. Nevertheless, the relative stiffness Gs=Gb

has a trivial effect on the resonance frequencies.
Fig. 2 Comparison of dynamic impedance for the special case of a

pile embedded in half-space against the solution of Zheng et al. [15]

Fig. 3 Comparison of dynamic impedance for the special case of an

end-bearing pile embedded in elastic soil against the solution of

Zheng et al. [14]
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Fig. 4 Effect of substratum thickness H� on the dynamic impedance
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Figure 7 depicts the effect of the relative stiffness of the

pile E�
p on the dynamic impedance Kv. It is clear that both

the real and imaginary components of the impedance are

sensitive to the pile stiffness and exciting frequencies. The

amplitudes of the impedance Kv increase obviously with

the increase of the relative stiffness E�
p. The results also

indicate that considering a pile as an infinitely rigid foun-

dation may lead to substantial errors in certain cases.

4 Conclusions

An analytical solution for an elastic pile embedded in

poroelastic soil overlying rigid bedrock was presented in

this paper. The derived solution agrees well with the

existing solutions, and a parametric analysis was developed

to highlight the influence of the excitation frequency, the

substratum thickness, the poroelastic parameter and the

relative stiffness of the soil and the pile. Results suggest

that the stiffness of both the soil and the pile has a pro-

nounced effect on the impedance, and considering the

stratification of soil and elasticity of pile is more realistic to

the dynamic response. The effect of the substratum thick-

ness and poroelastic parameter is less prominent, but also

cannot be ignored if an accurate estimation is required. The

solution is convenient to code and provides a quick esti-

mation of the vertical dynamic response of an embedded

pile.
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