Acta Geotechnica (2021) 16:977-983
https://doi.org/10.1007/s11440-020-01033-4

SHORT COMMUNICATION

=

Check for
updates

Vertical dynamic response of a pile embedded in a poroelastic soil

layer overlying rigid base

Changjie Zheng'? - Shishun Gan®

- Lubao Luan® - Xuanming Ding*

Received: 18 September 2019/ Accepted: 13 July 2020/ Published online: 30 July 2020

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

This paper presents an analytical solution to investigate the vertical dynamic response of an elastic pile embedded in
poroelastic soil overlying a rigid base. The pile top is subjected to vertical harmonic loading. The soil is modeled as a
poroelastic soil layer underlying the base of the pile and a series of independent infinitesimally thin layers along the shaft of
the pile. Using Biot’s poroelastodynamic theory and the method of Hankel integral transformation, the vertical dynamic
response describing by the complex impedance is obtained. Following the verification of the derived solution against an
existing solution, arithmetical examples are provided to parametrically analyze the influence of relevant parameters on the

vertical dynamic impedance.

Keywords Dynamic impedance - Pile - Poroelastic soil - Vertical vibration

List of symbols

ao Dimensionless frequency
K, Vertical impedance
Re(K,) Real part of vertical impedance, denoting

stiffness of the system
Imaginary part of vertical impedance, denoting
damping of the system

Im(Ky)

1 Introduction

The problem of the dynamic interactions between the soil
and the foundation plays an important role in the analysis
of structures subjected to seismic loading and machine
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vibrations. Reissner [11] first studied a rigid cylindrical
foundation resting on the half-space subjected to a vertical
loading. To consider the contribution of the soil sur-
rounding the foundation to its dynamic response, several
simplified models including the Winkler model [8], the
plane-strain continuum model [10, 16] and the three-di-
mensional model [5-7, 13, 14] were developed to research
the dynamic response of foundations embedded in the soil.
The studies mentioned above represent the soil as an
elastic single-phase material; however, in certain cases it is
more appropriate to consider the soil as a two-phase fluid-
saturated medium. Based on Biot’s poroelastodynamic
theory [2], Cai and Hu [3] investigated the vertical
dynamic response of a rigid foundation embedded in
poroelastic half-space, and then Cai et al. [4] extended their
solution to the analysis of the vertical vibration of a rigid
foundation embedded in poroelastic soil overlying rigid
bedrock. Zheng et al. [15] proposed an analytical solution
of a pile embedded in a poroelastic half-space to a vertical
harmonic loading which allows considering the com-
pressibility of the elastic pile. However, as indicated by Cai
et al. [4, 16], in many cases of practical interest the
thickness of the substratum soil layer being infinite may no
longer be appropriate and may lead to substantial errors.
The objective of this paper is to propose an analytical
solution on the vertical vibration of an elastic pile
embedded in poroelastic soil overlying a rigid base. Fol-
lowing the method by Zheng et al. [15], the soil is divided
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into two parts: a poroelastic soil layer underlying the pile
base and a series of infinitesimally thin independent layers
surrounding the pile shaft. The base resistance and shaft
reactions are assumed to be uncoupled and calculated,
respectively. The dynamic response of the soil-pile system
is quantified by the dynamic impedance of the pile top.

2 Formulation of the governing equations

Owing to the difficulty in obtaining an exact analytical
solution for the dynamic response of an embedded pile,
several simplifying assumptions proposed by Baranov [1]
were extended and adopted by Novak and Beredugo [10],
Cai and Hu [3, 4] and Zheng et al. [15]. Following their
method, the soil is divided into two independent parts and
it is assumed that the soil along the pile shaft is composed
of a series of infinitesimally thin independent layers with
Lame’s constants A, = A(1 +iB) and G, = G,(1 +if),
while the soil underlying the pile base is represented by a
poroelastic soil layer with Lame’s constants A, = 4,(1 +
if) and G, = G, (1 + iB), where f is the damping ratio of
the soil, i = v/—1, as depicted in Fig. 1. The stress gradient
in the vertical direction and radial displacements for the
independent thin layers is ignored, the interfaces between
the thin layers are permeable, the contact surface between
the pile base and the soil is smooth and permeable, and the
pile shaft is assumed perfectly bonded to its surrounding
soil [15]. The cylindrical pile with a radius of R and a
length of & is modeled as a one-dimensional elastic rod
[15]. A harmonic loading Pe’® acted at the pile top is
transferred to the soil via the pile shaft resistances f;(z, 1)
and the base resistance f}(z,t), where P is the amplitude of
the loading, and o denotes the exciting frequency. A
cylindrical coordinate system located at the center of the
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Fig. 1 Sketch of computational model
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pile base is defined such that the z-axis is normal to the
base.

In the axisymmetric problem the governing equation of
the soil underlying the pile base is given by Biot [2] as:

_ 1 - _ . Oe 0
Gy <V2 - r_2> Uy + (Ao + Gp) — — a Lt Pltry + PWrp

or or
(1)
. - _  Oe 0
GyVuz + (Jy + Gp) — — - Plich + Pz (2)
0z 0z
Opy
- 5 = pfurb + mwrb + bwrb (3)
opy
o = pylizp + MWy, + bwy, (4)
oWy Wi OWy .
Df <a+r+az + oaMe (5)

where u,, and u,;, are the vertical and radial displacements
of the solid matrix underlying the pile base, respectively;
wy, and w,,, are the vertical and radial displacements of the
fluid phase relative to the solid matrix, respectively; p and
py are the density of the soil and pore fluid, respectively;
m = py/n with n being the porosity; py is the pore fluid
pressure; b is a parameter accounting for the internal fric-
tion between the solid phase and pore fluid; o and M are
Biot’s parameters accounting for the compressibility of the
soil; e = a“”’ 4t 4 S a”” A dot over the variable denotes

dlfferentlatlon w1th respect to the time 7.
The constitutive relations for the poroelastic soil are:

0
o, = le + 2625 ops (6)
0z ‘
Ou, Ou
=G| — g 7
& (E)r + Gz) @
The governing equation of pile motions is [15]:
62
B3, =2 —f = pppy (8)

where E,, A, p, and u, are the Young’s modulus, sectional
area, density and vertical displacement of the pile.

2.1 Solution of the governing equations

The problem under consideration is assumed to be time-
harmonic with a factor e/, but in the following term e/ is
suppressed from all variables for convenience.

2.2 Pile base resistance

The pile base resistance f,(z,7) can be calculated by
employing the solution for a foundation resting on the soil
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surface. The governing equations of the substratum soil can
be solved via Hankel integral transformations with respect
to the radial coordinate . The pth-order Hankel transform
of a function f(r,z) with respect to r is defined as [12]:

f(ez) = / " (2 () 9)

where J,(&r) is the Bessel function of the first kind of order
p; and ¢ is the Hankel transform parameter.

Applying zeroth-order Hankel transforms on py, u,, W
and o, as well as first-order Hankel transforms on u,;, and
T,z yields:

p}(c) = Ale_XlZ —i—AzeXlZ + Ble_lzz + BzexzZ (]O)
@, = frAre™ " — iAse"T + ByBre T — By Bret
+ Cre B3 — Cre3* (11)
ity = Bore % 4 foaeh + fyBre o 4 fyBre
+ X3C16723Z + X3C2613Z
(12)
vf/gb = —fsA1e” % + BsAre”t — BeBie” 2 4 fgBye*
—91C1e B 4 9, Cre”*
(13)
6% = BrAie % 4 frAret? + PyBie T + fyBre®
—2Gpx3Cr1e™ 5% — 2Gp 3 Cre™* (14)
rzb = —Gp(BoAre™ % — ByAse™ + BoBre ">
— BroB2e®* + By, Cre” % — B, Cre”¥) (15)
_ 2 _ 2 _
where Xl — /DA, Vj% v, = dity/di—4dy \/:1‘“"2;
= LI p’” = dl =& = (m+73)idy =74 — (ot
v5>€ 7= —,,wi’zf'i’bw,-; 7y = meptel — & vs =
=20, —py, /pp . _ po*(me=boi)—pie*
(Z5+2Gyp) (me? —bwi)’ Y4 = (7o+2Gy)M —V5 =
(ma —bawi) (o 20y, P/P/) R G+ . _ (Btvdn .
Jp+2Gy Y6 = (n1—2)ppw?® V7= (1 —)pre?

_ ul /thGh)/6+V1*“). _ )hfth)n*‘/l*“). —
By Gy(11—13) B G(13-13) 0 By =vet
Bixis Bin +

ﬁ4 =7 + BZXZ; B ﬁS mw2 hmt’
Be = Baya "‘m? V7 = A6 — 2GpPiyy — o Py = Ay;—
— 2 N
2GpPaya — a5 Po = %§ Bro

— izﬂz‘fXZth. B _ %
& 0 Kl ¢
A1, Ay, By, B, Cq and C, are arbitrary coefficients.
As mentioned earlier, the boundary conditions can be
expressed as:

Uy (r,0) = up, 0<r<R (16)
o (r,0) =0, R<r<oo (17)
pr(r,0) =0,0<r<oco (18)
Tp(r,0) =0, 0<r<oo (19)
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up(r,H) =0,0<r<o0 (20)
uy(r,H) =0,0<r<oo (21)
wa(r,H) =0,0<r<oo (22)

where u is the vertical displacement of the pile base.
The arbitrary coefficients can be determined by the

aforementioned  boundary  conditions.  Substituting
Egs. (16)-(22) into Egs. (10)—(15) yields:

i,(8,0) = f(£)82(&,0) (23)
where (&) = ki.((I) — Lbkoly ' ko)™ — (b — Liksl3 'y

k3)71)‘k4;k1 = {ﬁ37 547 1};k2 = diag{eileveisz7 671311};

ky = diag{en ent e}k, = {1,0,0}":1 =
B Bs —2Gpys B Bs  —2Gpys
Bs  Bio Bui sh =1 —By —Bio  —Bu |l
1 1 0 1 1 0
Bi B 1 =B B, -1
=1\Bs Bs 13|sla=| B3 Ba 13
Bs Bs i —Bs —Bs —ni

By virtue of Eqgs. (16)—(17), the following dual integral
equations can be obtained:

| =", osr<r @4
/OO N(EJo(Er)dé =0, R<r<oo (25)
0

where N(¢)=¢

L= lim ég(9) =

of the solid phase.
Following the method proposed by Noble [9], we define

N(&) as:

2 R
N(E) = 2t / (x) cos(&x)dx
L 0
Substituting Eq. (26) into Egs. (24)—(25), the following
Fredholm integral equation of the second kind can be
obtained:

62(&,0); B(E) =2~ 1
—(1 —v); v denotes the Poisson’s ratio

(26)

o) 1 [ Kley)o0ay =1 (27)

where K(x,y) =2 [ H(&)cos(Ex)cos(Ey)dé.
Now the base resistance f;,(¢) can be calculated as:

2n R
fy = G / do / a.(r,0)rdr = 21G6°(0,0) (28)
0 0

Substituting Egs. (26) into (28) the pile base resistance
is obtained:

4G_b Uup R
— ®(x)dx
5 xE

1—v

(29)
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2.3 Pile shaft resistance

In the following the solution for pile shaft resistance f;(¢) is
derived. As mentioned earlier, the gradient of normal
stresses is ignored; therefore, the governing equations of
the poroelastic soil along the pile shaft can be rearranged as
[15]:

_ (?%u s 10u . ..
(G 132 = i + oy (30)
Pyl + Moy + by =0 (31)

where u,; and w,, are the vertical displacement of the solid
matrix and that of the porous fluid relative to the solid
matrix at the side of the pile shaft.

Substituting Eq. (31) into Eq. (30), we can obtain the
general solution for the vertical displacement of the solid
phase:

u;s = DKo (gr) + Ely(gr) (32)

where g = /(y1p; — p)©?/Gs, Io(qr) and Ko(gr) are

zeroth-order modified Bessel functions of the first and
second kinds, respectively; D and E are arbitrary
coefficients.

The assumptions mentioned earlier can be translated to
the following boundary conditions:

Uzslr—oo =0 (33)
Up = Uz|r—r (34)
fs = —27R7T|,=r (35)
Substituting Egs. (32)—-(34) into Eq. (32) we obtain:
u
b= KO(ZR) (39)
E=0 (37)

According to Egs. (32)—(37), the shaft resistance f;(¢)
can be obtained:

. Ki(gR
f, = 27RGyupq 1(aR)
Ko(gqR)

(38)

2.4 Vertical dynamic impedance

The dynamic response presented in this paper is described
by the vertical complex impedance of the pile top K.,
which is defined as the amplitude of the axial load that
leads to a unit displacement at the pile top. The real part of
the impedance Re(K,) represents the dynamic stiffness of
the soil-pile system, and the imaginary part Im(K,) corre-
sponds to the material and radiation damping. Substituting
Eq. (38) into Eq. (8) yields:

@ Springer
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0 up,
072

w@m5:¢m@mwmmm@m_%mwg
The general solution of Eq. (40) is:

U, = Je % 4 Ke* (40)

—8%u, =0 (39)

where J and K are arbitrary coefficients to be determined
from the boundary conditions at the head and base of the
pile, viz:

Ou
EpApa_p |z:0 +fb =0 (41)
Z
Ouy,
EpAp oz o= +P =0 (42)
Substituting Eqs. (41)-(42) into (40) yields:
Py
J= - - 43
E,A,8(yeth — ¢=oh) (43)
P
(44)

K = _ .
EPAP5(XeOh —e %)

_ R
—v )0 dx
where 7 — (1=v)E,A, +4?b j; X o(x) '
(1—-V)E,A,0—4G,, j; o(x)dx

According to Egs. (40) and (43)-(44), the vertical
impedance K, of the soil-pile system is obtained:
K — P E,,A,,é(xe‘Sh — e"”’)

v up(_h) - Xeéh + e—0h

(45)

3 Verification and discussion

In this section arithmetical examples are presented to verify
the accuracy of the derived solution and discuss the sen-
sitivity of the vertical impedance on the relative stiffness of
the soil and contributions of soil surrounding the shaft and
underlying the base of the pile to the dynamic response.
The analysis presented is based on the plots that describe
the variation of the vertical impedance with the dimen-

sionless frequency a9 = wR+\/p/Gj,. Unless otherwise
mentioned, the following parameters are adopted:v = 0.3,

o= 0.95, p =0.05, n=04, M =M/G, = 10,
py=pp/p =125 p;=p;/p=053, k" =h/R=10,
H*=H/R=1, E; = E, /G, = 1000,

b* = bR\/1/pG,=10, Gs; = Gp.

First we consider a pile embedded in half-space by
setting H* = 50, which is large enough to simulate the
half-space [4, 16], to compare the derived results against
these of Zheng et al. [15]. As shown in Fig. 2, the present
solution matches well with that of Zheng et al. [15]. In
addition, Fig. 3 shows a comparison of the impedance
presented with the solution at the hand, against the results
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given by Zheng et al. [14]. The present solution is degen-
erated to the Zheng et al.’s solution [14] by setting o = 1,
M* — oo as well as b* = 107% and p; = 107°, to eliminate
the effect of pore pressures on wave propagation [3, 4, 15].
Observe that there exist small differences in a relative low-
frequency range of 0 <ap <0.2 owing to the ignorance of
the normal stress gradient for thin layers in the present
solution. On the other hand, the present solution agrees
well with that of Zheng et al. [14] in higher frequencies.

Figure 4 depicts the effect of the substratum soil H* on
the vertical dynamic impedance K,. A special case of a
half-space is also considered for comparison. Notice that
the amplitudes of the impedance tend to decrease with the
increase of the value H* at the resonance frequencies.
However, the substratum thickness has a negligible influ-
ence on the dynamic response when H* > 1.

Figure 5 presents the effect of the poroelastic parameter
of the soil b* on the vertical dynamic impedance K,. It
should be noted that the value of b* is inversely propor-
tional to the permeability of poroelastic soil. A special case
of a single-phase medium is also presented for comparison.
Observe that the parameter b* only dominates the oscilla-
tion amplitudes of both the stiffness and damping at the
resonance frequencies but has little influence on the reso-
nance frequency, and the amplitudes of the impedance K,
at the resonance frequencies decrease slightly with the
increase of the value of b*. The behavior of the pile
embedded in the single-phase medium is close to the pile
embedded in the poroelastic soil with low permeability.

Figure 6 shows the effect of the relative stiffness of the
soil layers G;/G) on the impedance K,. We can observe
that the amplitudes of both the real and imaginary com-
ponents of the impedance K, at the resonance frequencies

500 .
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400 | present solution, h=20 i %g ;
*  Zheng et al. [13], h=10 I 5 ;
300 | Zheng et al. [13],h=20 - Ok
L . 5 B
Imagin: art— o =
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T /_00\\\ -l
& 100 P aai® o y
s T s
0r- See
-100 | “~.
I Real part _— e
200 - .~
.
L e
.
-300 -,
1 1 1 1 1 ]
0.0 0.5 1.0 1.5 20 2.5 3.0

2

Fig. 2 Comparison of dynamic impedance for the special case of a
pile embedded in half-space against the solution of Zheng et al. [15]
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Fig. 3 Comparison of dynamic impedance for the special case of an
end-bearing pile embedded in elastic soil against the solution of
Zheng et al. [14]
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Fig. 4 Effect of substratum thickness H* on the dynamic impedance

decrease significantly with the increase of the relative
stiffness G;/G),. Nevertheless, the relative stiffness G,/Gp,
has a trivial effect on the resonance frequencies.

@ Springer
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Fig. 5 Effect of permeability b* on the dynamic impedance

Figure 7 depicts the effect of the relative stiffness of the
pile £ on the dynamic impedance K,. It is clear that both
the real and imaginary components of the impedance are
sensitive to the pile stiffness and exciting frequencies. The
amplitudes of the impedance K, increase obviously with
the increase of the relative stiffness E. The results also
indicate that considering a pile as an infinitely rigid foun-
dation may lead to substantial errors in certain cases.

4 Conclusions
An analytical solution for an elastic pile embedded in

poroelastic soil overlying rigid bedrock was presented in
this paper. The derived solution agrees well with the

@ Springer

Fig. 6 Effect of relative stiffness of soil G,;/G, on dynamic
impedance

existing solutions, and a parametric analysis was developed
to highlight the influence of the excitation frequency, the
substratum thickness, the poroelastic parameter and the
relative stiffness of the soil and the pile. Results suggest
that the stiffness of both the soil and the pile has a pro-
nounced effect on the impedance, and considering the
stratification of soil and elasticity of pile is more realistic to
the dynamic response. The effect of the substratum thick-
ness and poroelastic parameter is less prominent, but also
cannot be ignored if an accurate estimation is required. The
solution is convenient to code and provides a quick esti-
mation of the vertical dynamic response of an embedded
pile.
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