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Abstract
In order to solve the analytical solution of the general rate-dependent model and make the theoretical model better reflect

the creep behavior of soil, the fractional calculus theory is applied to the EVP (elastic–viscoplastic) model based on the

overstress theory. A fractional strain rate model is proposed to construct a constitutive equation of fractional strain rate.

The analytical solution of the fractional creep model is solved by applying Laplace integral transformation, and the

fractional creep equation under undrained conditions is discussed. Then, the undrained shear creep test results of isotropic

consolidated Fukakusa clay and K0 consolidated Sackville clay are used to verify the validity of the time-based fractional

creep equation and the sensitivity analysis of the analytical solution. The effectiveness of the fractional creep model for

predicting the creep behavior of soil such as soft clay is revealed. The results show that the fractional EVP creep model is

obviously better than the traditional integer EVP model. Moreover, when the fractional order is 1, the fractional strain rate

model can be reduced to an integer strain rate model, but the fractional creep equation degenerates into a linear creep

equation.
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1 Introduction

Soil is a kind of soft and loose porous medium. Its special

structural characteristics and physical properties enable it

to have certain creep characteristics. The uneven secondary

compression is an important component in practical engi-

neering to reduce the safety and durability of slope engi-

neering and bridge engineering et al. [4, 32].

In recent years, a number of soil creep models have been

proposed by researchers, such as empirical model, element

model, and rate dependent model. Considering the pre-

diction ability and model parameters of the model, the

creep model based on the theory of EVP (elastic–vis-

coplastic) constitutive and overstress theories is highly

recognized. Based on this, scholars have established many

strain rate models describing soil creep [13]. Adachi [1]

and Katona [11] established the creep model with certain

prediction ability by cited the Cam-Clay yield model [19]

and the modified Cam-Clay model proposed by Roscoe

[20], respectively. Katona solved the implicit solution of

the creep model through displacement finite element

analysis and Newten–Raphson iteration theory. Hinch-

berger and Rowe [9, 10, 21] combined the EVP model and

Biot consolidation theory to describe the non-structural

creep response of clay using Druck–Prager failure envelope

and critical state theory. The creep model with the Cam-

Clay model and the modified Cam-Clay model as the

dynamic yield surface was compared and analyzed. The

conclusion that the latter is better than the former was

obtained. Yin et al. [35, 36] constructed a constitutive

model that can reflect soil anisotropy by adopting the

improved viscoplastic flow law and rate dependent. Fur-

thermore, a series of discussions on the parameter values of

the improved model were carried out. In this model, the
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nonlinear creep solution is obtained by solving the strain

rate equation by numerical analysis, and the analytical

solution of nonlinear creep cannot be obtained. It is a little

weak to describe the anomalous diffusion of memory aging

and path dependence during soil creep.

Fractional differential theory can obtain nonlocal rela-

tions with power-law memory kernels in time and space.

This makes the fractional differential method more accu-

rate to describe the anomalous diffusion characteristics

such as memory aging and path dependence of soil creep.

Welch et al. [30] proposed a four-parameter fractional

model describing material rheology. Enelund and Adolfs-

son [2, 6] presented a fractional model to describe vis-

coelastic solids based on internal variables and performed

rheological analysis with finite element program. Zhou

et al. [37, 38] replaced the viscous element in the Nishihara

model with Abel damper, eliminated the limitation of the

element model’s complete elasticity and ultimate viscosity.

The expression of variable viscosity coefficient on the basis

of rock damage mechanism was determined, and the

damage creep model was constructed. Yin et al. [34] put

forward a fractional model describing the stress–strain

relationship between loading–unloading and the triaxial

rheological effect of geomaterials. The model was verified

by combining with the results of rock salt rheological tests

including Cristescu [5] and Yang [31]. Liao et al. [17]

proposed a theoretical model that can describe the three-

stage creep behavior of warm frozen soil under three-di-

mensional stress by introducing damage factors into Abel

integral principle and rheological elements.

Some scholars try to perfect elastic–plastic model by

using fractional differential theory. Sumelka [22–25] used

fractional differential theory to describe the viscoplastic

flow equation, carried out a series of studies on the flow

rule under non-normal and plastic anisotropy of continuous

medium. Sun et al. [26–29] attempted to use the fractional

differential theory to describe the cumulative deformation

under cyclic loading, thus developing a local fractional

plastic flow rule. Lu et al. [14–16] proposed a non-

orthogonal plastic flow rule based on fractional differenti-

ation and optimized the description of the critical state

properties and plastic flow direction of the soil by the three-

dimensional elastoplastic model.

However, the existing fractional creep models are

mostly based on the element models to describe the creep

behavior of hard materials such as rock salt. The fractional

creep model is thus limiting to viscoelastic solid and vis-

coelastic plastic models. In this work, the analytical solu-

tion of soil rate correlation model is solved by fractional

calculus theory, and the fractional EVP creep model is

established by using fractional theory. It makes up for the

defects of integer EVP model in path description and

solution complex. Therefore, Sumelka’s fractional flow law

is combined with the EVP model theory to establish a

fractional EVP creep rate model. The nonlinear fractional

EVP creep equation was obtained by Laplace integral

transform. Finally, the model validity is carried out and the

strain analysis of the order r in combination with the

existing creep test results.

2 Basic framework

2.1 Fractional theory

According to the research results of Agrawal [3], it is found

that Riesz fractional differential is a powerful differential

operation method, which can expand the power operation

inside the interval by Caputo fractional derivative, Rie-

mann–Liouville fractional derivative [12]. Therefore, the

fractional derivative of Riesz–Caputo [8] defined on the

interval t 2 a; bð Þ and n� 1\r\n is:

RCDrf ¼ 1

2
C
a D

r
t f þ �1ð ÞnCt Dr

bf
� �

ð1Þ

where Caputo’s fractional derivative within the finite

interval t 2 a; bð Þ and n� 1\r\n is defined as:

C
a D

r
t f tð Þ ¼ 1

C n� rð Þ

Z t

a

f nð Þ xð Þ
t � wð Þr�nþ1

dx

C
t D

r
bf tð Þ ¼ �1ð Þn

C n� rð Þ

Z b

t

f nð Þ xð Þ
t � wð Þr�nþ1

dx

ð2Þ

where C �ð Þ is Gamma function, that is:

C vð Þ ¼
Z 1

0

tv�1e�tdt ð3Þ

Caputo fractional derivative has the following properties

based on the Laplace integral transformation:

1. for f tð Þ ¼ const:

C
a D

r
bf tð Þ ¼ C

a D
r
t f tð Þ ¼ C

t D
r
bf tð Þ ¼ 0 ð4Þ

2. for f tð Þ ¼ tx:
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2.2 Elastic–viscoplastic description

Yin et al. [33] proposed the compression deformation of soil

can be divided into the recoverable instantaneous elastic

deformation and the unrecoverable delayed viscoplastic

deformation on the basis of Bjerrum [4]. They believed that

viscoplastic deformation exists at the same time. Therefore,

the creep strain of soil can be expressed as:

eij ¼ eeij þ evpij ð6Þ

where the superscript e and vp represents the elastic

deformation and the viscoplastic deformation, respectively.

Fractional derivative is used to express the fractional

strain rate of soil creep based on the concept of strain rate.

Namely, the r-order derivative of strain is used to express

the r-order strain rate of soil creep:

Dreij tð Þ ¼ Dreeij tð Þ þ Drevpij tð Þ ð7Þ

It is assumed that elastic deformation is only related to

effective stress and has nothing to do with time. Therefore,

the calculation formula of elastic strain is:

eeij ¼
j

3 1þ e0ð Þ ln
rm
rmo

� �
dij þ

1

2G
sij ð8Þ

where j is the slope of the e� ln r curve in the rebound

compression range and e0 is the initial void ratio, rm is the

average principal stress, which mean rm ¼ rii=3, rmo is the
initial average principal stress, and sij is the deviatoric

stress tensor. The shear modulus, G, is related to the

deviatoric stress q and initial shear strain evp0 namely is

G ¼ q
�
3evp0 .

EVP models are mostly based on the overstressed flow

rule [18]. That is, the basic form is as follows:

_evpij ¼ cvp U Fð Þh i of

orij
ð9Þ

where cvp is the viscoplastic coefficient and U Fð Þ is a

description of the overstress function. However, when the

model adopts the non-associated flow rule, a new vis-

coplastic potential function needs to be introduced in

Eq. (9), which increases the complexity of the model. Sun

et al. [26–28] and Lu et al. [14–16] studied the character-

istics of fractional flow rule based on fractional differential.

Specifically, the fractional plastic strain rate Drepij or frac-

tional gradient Drf=Drrij is established by using the partial

definition (one side) of fractional derivative. Among them,

the non-orthogonal flow rule is a new flow rule [16, 28],

which not only realizes the non-orthogonal flow of the

model, but also avoids the limitation caused by considering

the potential function.

Viscoplastic deformation is an unrecoverable compres-

sion deformation that changes with time after the

instantaneous compression is completed. It can be con-

sidered that there is always a nonzero viscoplastic strain

rate Drevpij in the process of delayed compression, that is,

drevpij
.
drt 6¼ 0. Therefore, it is assumed that the vis-

coplastic strain rate can be expressed as:

Drevpij tð Þ ¼ nDrf rij
� �

ð10Þ

In Eq. (10), n and Drf rij
� �

determine the magnitude and

direction of viscoplastic strain rate Drevpij , respectively,

where n is a scalar multiplier and f rij
� �

is yield function.

The direction of Drevpij is determined by the non-orthogonal

gradient Drf rij
� �

of the yield function. Obviously, Eq. (10)

contains two key problems, namely, the solution of frac-

tional strain rate and non-orthogonal gradient. Hence, the

solution of Eq. (10) is expanded below.

According to the research results of Fodil et al. [7] and

Yin et al. [35], exponential function is used to predict the

value of scalar multiplier n:

n ¼ a � exp b � rmd
rms

� 1

� �� �
ð11Þ

where a and b are viscoplastic parameters of the model,

respectively. rms and rms are the intercept of the static

reference yield surface and the dynamic loading yield

surface on the mean stress axis, respectively.

2.3 Yield function

Hinchberger and Rowe [9] compared the two three-pa-

rameter EVP models using the Cam-Clay yield surface and

the elliptical cap model. It is found that when the elliptical

cap model is used as the dynamic loading surface, not only

the prediction ability of EVP model is optimized, but also

the description ability of damage path is improved (Fig. 1).

Therefore, the modified Cam-Clay model of Roscoe [20]

is selected as the dynamic yield surface equation:

Fig. 1 Flow yield rule based on integer theory
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fd ¼ A r21 þ r22 þ r23
� �

þ B r1r1 þ r2r3 þ r3r1ð Þ

�M2

3
rmd r1 þ r2 þ r3ð Þ

ð12Þ

where A ¼ 1þM2
�
9, B ¼ 2M2

�
9� 1, M is the slope of

the critical state line.

3 Fractional elastic–viscoplastic model

The fractional calculus theory can be used to introduce a

phenomenological theoretical model to describe the real

mechanical behavior of complex media. Meanwhile, frac-

tional creep model is used to study the creep mechanism of

soil in a stress interval a; bð Þ. According to the analysis

results in Figs. 1 and 2, it is found that the viscoplastic flow

direction of the fractional model changes with the change

of order r, while the study of the integer is limited to one

point. This is because the integer flow direction is defined

in a point, while the fractional flow direction is taken into

account all the information within the stress interval a; bð Þ.

3.1 Creep model

In order to solve the fractional derivative, the yield func-

tion fd can be expressed as the terminals relation between

the power function and the stress interval a; bð Þ, that is:

1. for ri [ a and i; j; k 2 1; 2; 3f g but i 6¼ j 6¼ k

fd ¼ A ri � að Þ2þ 2Aaþ B rj þ rk
� �

�M2

3
rd

� �

� ri � að Þ þ A r2j þ r2k þ a2
	 


þ B rjrk þ arj þ ark
� �

�M2

3
rmd rj þ rk þ a

� �

ð13Þ

2. for ri\b and i; j; k 2 1; 2; 3f g but i 6¼ j 6¼ k

fd ¼ A b� rið Þ2� 2Abþ B ri þ rkð Þ �M2

3
rmd

� �

� b� rið Þ þ A r2j þ r2k þ b2
	 


þ B rjrk þ brj þ brk
� �

�M2

3
rmd rj þ rk � b

� �

ð14Þ

Now, fractional gradient of fd under general stress can

be expressed as:

Drfd rij
� �

¼
Drfd rið Þ 0 0

0 Drfd rj
� �

0

0 0 Drfd rkð Þ

2

4

3

5 ð15Þ

For a\ri\b and i; j; k 2 1; 2; 3f g but i 6¼ j 6¼ k

C
a D

r
ri fd rið Þ ¼ A

C 3ð Þ
C 3� rð Þ ri � að Þ2�r

þ 2Aaþ B rj þ rk
� �

�M2

3
rmd

� �

C 2ð Þ
C 2� rð Þ ri � að Þ1�r

ð16Þ

and

C
ri
Dr

bfd rið Þ ¼ A
C 3ð Þ

C 3� rð Þ b� rið Þ2�r

� 2Abþ B rj þ rk
� �

þM2

3
rmd

� �

C 2ð Þ
C 2� rð Þ b� rið Þ1�r

ð17Þ

From Eqs. (4), (10), (11), (16) and (17), the equation of

r-order fractional viscoplastic strain rate can be given by:

RCDrevpij tð Þ ¼ a � exp b
rmd
rms

� 1

� �� �
RCDrf rij

� �
ð18Þ

The r-order fractional derivative of the elastic strain

of Eq. (8) and Eq. (18) are brought into Eq. (7). The

fractional EVP constitutive model of soil creep is given

by:

RCDreij ¼
1

3 1þ e0ð Þ dij
RCDr ln

rm
rmo

� �
þ 1

2G
RCDrsij

þ a � exp b
rmd
rms

� 1

� �� �
RCDrf rij

� � ð19Þ

Fig. 2 Flow yield rule based on fractional differential theory
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For the fractional strain rate defined in Eq. (7) to be

valid, the integral and derivation process of fractional

strain rate and strain should be reversible in theory. When

considering the viscoplastic strain in the creep process of

the soil, it can be obtained by taking the r-order integral of

the r-order fractional viscoplastic strain rate. In addition,

according to the operation process of solving the Abel

equation by Laplace transform [17, 37, 38], the above

fractional equation can be solved by Laplace integral

transform. Hence, by taking a Laplace transform on both

sides of Eq. (18), the following equation can be obtained:

srE sð Þ ¼ 1

s
a � exp b

rmd
rms

� 1

� �� �
RCDrf rij

� �
ð20Þ

Equation (20) can be rewritten as:

E sð Þ ¼ 1

srþ1
a � exp b

rmd
rms

� 1

� �� �
RCDrf rij

� �
ð21Þ

Applying the inverse Laplace transformation to

Eq. (21), evpij tð Þ can be calculated by:

evpij tð Þ ¼ tr

C r þ 1ð Þ a � exp b
rmd
rmd

� 1

� �� �
RCDrf rij

� �
ð22Þ

From Eqs. (6), (8) and (22), the creep equation of soil

under general stress state can be given by:

eij ¼
j

3 1þ e0ð Þ ln
rm
rmo

� �
dij þ

1

2G
sij

þ tr

C r þ 1ð Þ a � exp b
rmd
rms

� 1

� �� �
RCDrf rij

� � ð23Þ

3.2 Discussion on triaxial undrained conditions

The soil does not produce volumetric strain during undrained

creep, and only shear creep occurs. Therefore, the strain

relation of undrained soil creep can be expressed as:

ev ¼ 0; RCDrev ¼ 0; esij ¼ e1;
RCDresij ¼ Dre1 ð24Þ

where the subscripts v and s represent the volume defor-

mation and shear deformation of soil, respectively.

Through the undrained condition, Eqs. (24), (19) and

(23) are transformed into the r-order strain rate and creep

equation for triaxial shear creep:

RCDresij ¼
1

2G
RCDrsij

þ a � exp b
rmd
rms

� 1

� �� �
RCDrf rij

� � ð25Þ

esij ¼
1

2G
sij

þ tr

C r þ 1ð Þ a � exp b
rmd
rms

� 1

� �� �
RCDrf rij

� � ð26Þ

4 Parameter analysis

Based on the overstress theory and the modified Cam-Clay

model, the model describes the EVP characteristics of soil

by fractional derivatives and integrals. Therefore, the

model parameters are mainly divided into the following

aspects.

(i) j and e0 are determined by the environmental state

and material properties of the material, and they

can be measured by traditional consolidation test.

Figure 3 shows the specific determination method.

(ii) M and G are measured by conventional triaxial

tests under different confining pressures, where M

can also be calculated by effective stress ratio or

effective internal friction angle

(M ¼ 6 sinu0= 3� sinu0ð Þ). And G can also be

calculated according to G ¼ q
�
3evp0 .

(iii) a and b are parameters describing the viscoplastic

flow. They are determined by the nature of the

material itself, independent of the stress state.

According to the results of Fodil et al. [7], its

value can be determined by secondary compres-

sion in creep test, stress relaxation test and

consolidation test. Yin et al. [36] used the power

function form to describe the viscoplastic strain

rate and deduced the calculation formulas of a and

b on the basis of the consolidation test of constant

strain rate and traditional consolidation test.

However, in view of the complexity of scalar

multiplier and fractional strain rate in this paper,

the parameters a and b are obtained by fitting

analysis with the results of the triaxial creep test.

The consistency between the calculated value and

the actual value is ensured to be the best.

(iv) The overstress ratio rmd=rms or fd=fs determines

the viscoplastic strain rate. Hinchberger and Rowe

[9] proposed a new method to determine the

Fig. 3 Oedometer test results at 24 h
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overstress ratio rmd=rms, utilizes parallel yield

surface tangents to predict apparent yield surface

expansion due to strain rate effects in stress space

through elliptical cap formulation, where rms and
rmd are the current pressures corresponding to

static and dynamic yield surface (fs and fd),

respectively. rmd represents the current stress state
of the soil. rms reflects the initial state of the soil,

which is related to the current stress state, and

together with rmd determines the initial creep

strain of the soil. Adachi et al. [1] fitted the

calculation formula of the parameter rms based on

the plastic hardening law and the consolidation

test. However, the fractional model will limit the

calculation formula of Adachi, which is also

complex and requires additional fitting parameters.

Therefore, parameter rms is obtained by triaxial

creep strain fitting.

(v) The value range of fractional order r is 0\r\1.

When r ¼ 1 is taken into account, the fractional

strain rate of Eq. (19) can be simplified to an

integer EVP model, but the fractional creep

equation of Eq. (23) can only be degenerated into

a linear creep equation. Figure 4 shows the

influence of order on strain under the same

conditions. It is found that with the increase of

r from 0.1 to 1, the creep strain and strain rate of

soil show a phenomenon of rapid increase, and

when r is 1, the strain and time are linear. It is

worth noting that the creep strain at 0–1 h in

Fig. 4 is close to zero. Zhou et al. [37, 38] also

showed a similar situation when discussing creep

strain based on the fractional element model.

However, this phenomenon does not occur in all

cases, and it seems to be more obvious only when

the time step is large. The initial stress of the

fractional stress relaxation model established by

Yin et al. [34] is unbounded. Both the fractional

creep model and the fractional stress relaxation

model have partial errors at the initial moment.

But the reason for both is the opposite. In the

fractional creep model, the time step cannot be

performed in an infinite time interval, and the

fractional stress relaxation model is just the

opposite of the former.

(vi) a and b are the terminals of the stress interval of

the fractional derivatives. To some extent, they

can qualitatively reflect the growth process of

stress. In a specific stress space, all stress compo-

nents rij satisfy a\rij\b. Sumelka [24]

expressed this phenomenon as the virtual field of

the stress state and defined the stress interval

terminals a and b:

aij ¼ raij � DLij and bij ¼ rbij þ DRij ð27Þ

where DLij and DRij are the lengths of the left and

right axes in the six-dimensional stress space,

respectively, and both are positive, raij ¼ rmin
ij ,

rbij ¼ rmax
ij . When the virtual field is discussed in

the conventional triaxial test, it can be considered

that the transverse stresses are all equal and uni-

formly distributed. The normal stress is applied by

the sample cap, so it can be considered that the

stress is uniformly distributed. Therefore, in the

virtual field of the conventional triaxial stress

state, it can be considered that there are only two

main stresses—confining pressure and normal

stress. a and b are the terminals of the stress

interval introduced when using the RC fractional

derivative is used to predict soil creep. In this

paper, a and b are defined as the stress state of soil

before creep and after creep stabilization, respec-

tively. It can also be understood as the pre-con-

solidation pressure and the existing consolidation

stress of soil. In conventional triaxial creep tests,

a and b can be defined as consolidation pressure

and axial pressure of constant load creep

respectively.

5 Model validation and discussion

Based on the triaxial undrained shear creep test results of

Adachi [1] and Hinchberger and Rowe [9], the effective-

ness verification of fractional EVP model and the sensi-

tivity analysis of fractional order r were carried out. The

required parameter values are shown in Table 1.

Fig. 4 Value range of order r
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5.1 Model verification

Adachi [1] conducted a series of triaxial creep tests on

normally consolidated Fukakusa clay. In the undrained

shear creep test, the samples were first consolidated for

24 h under the effective stress of 392 kPa. Then, the creep

was started under the action of the deviatoric stresses of

118, 157, 196 and 235 kPa, respectively.

Hinchberger and Rowe [9, 21] carried out a series of

laboratory tests on silty clay in the shallow foundation of

an artificial experimental embankment in the Sackville

area. In the K0 consolidation creep test, the samples were

normally consolidated for 24 h under the K0 = 0.76. Then,

the creep is started under the action of the deviatoric

stresses of 35, 44.5 and 50 kPa, respectively. The model

parameters in Table 1 are taken from the above literatures.

Figure 5 shows that the prediction results of Fukakusa

clay creep by fractional EVP model and two integer EVP

models (Adachi, 1982; Yin, 2008), as well as the com-

parison with the results of triaxial shear creep test. It is

found from the figure that the prediction ability of the

integer EVP model is relatively low. When the deviatoric

stress is 157 and 235 kPa, Adachi’s EVP model can basi-

cally predict the creep behavior of Fukakusa clay. How-

ever, the integer EVP model and the test results showed

significant differences when the deviatoric stress is 118 and

196 kPa. It is worth noting that the fractional EVP model

maintains good accuracy in predicting the creep of Fuka-

kusa clay at different stress levels.

Figure 6 shows the undrained shear creep results of

Sackville clay when the action of deviatoric stress of 35,

44.5 and 50 kPa, respectively, and without considering

initial elastic deformation. The prediction capabilities of

the fractional model are compared with those of Adachi

and Hinchberger’s integer EVP model by means of

Fig. 6a–c. It is found that the accuracy of the fractional

EVP model in Fig. 6a, b is slightly higher than that of the

integer EVP model. In Fig. 6c, the fractional EVP model

exhibits slightly lower accuracy at the initial creep

moment. This is because the fractional model is built to

(a)

(b)

(c)

(d)

Table 1 Model parameters

Fukakusa clay Sackville clay

e0 0.74 1.5

j 0.02 0.06

M 1.5 1.03

G/kPa 9600 5400

a/s�1 � kPa 6.98 9 10-7 1.157 9 10-4

b 12.9 13
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describe nonlinear creep, so it is weak to describe linear

creep.

According to the analysis results in Figs. 5 and 6, it is

shown that the fractional EVP model maintains good pre-

dictive ability when describing the creep behavior of dif-

ferent soils. In addition, the solution process of the

fractional EVP model is relatively simple and can reflect

the change mechanism of the viscoplastic flow direction

(non-orthogonal flow). Therefore, the establishment of

fractional EVP model has great significance for predicting

soil creep behavior.

5.2 Sensitivity analysis

Figure 7 shows the comparison between the shear creep

test data under different conditions and the calculated

results when the fractional EVP model’s order increment

Dr ¼ 0.01. Figure 7a, b shows the correlation analysis of

creep strain and order increment of Fukakusa clay. Fig-

ure 7c, d shows the evolution of the creep strain of the

Sackville clay with the order increment. On the whole, the

strain and strain rate of soil creep increase rapidly with the

increase in the order. This phenomenon is identical to the

order feature of the fractional element model proposed by

Zhou [37, 38].

Figure 7a, b shows calculation results of creep at a

deviatoric stress of 196 and 235 kPa after normally con-

solidation. Figure 7c, d shows the calculation results of

creep at a deviatoric stress of 35 and 44.5 kPa after con-

solidation by K0. The magnitudes of the final creep strains

at different orders in Figs. 7a–d are discussed, respectively,

as shown in Table 2. The results show that the difference in

final creep strain between adjacent orders decreases as the

stress level increases. That is to say, the stress level limits

the influence of the order on the creep properties of the soil.

6 Conclusions

This paper introduces fractional calculus theory into the

EVP model based on modified Cam-Clay model and

overstress theory. The fractional EVP strain rate model of

soil creep is established, and the fractional creep equation

of soil creep is solved by Laplace integral transform. The

nonlinear analytical solution of EVP model in creep

equation and the description of anomalous diffusion char-

acteristics such as path dependence in creep process of soil

are realized.

Through the existing triaxial creep test results, the pre-

diction ability of the fractional EVP model and the influ-

ence of the order and creep characteristics and the stress

level on the order visualization ability are analyzed. The

result shows that the fractional EVP model is better than

traditional integer EVP model in solving creep equation

and predicting ability. A sensitivity study shows the strain

and strain rate of soil creep will increase rapidly with the

increase in order. In addition, under the same order incre-

ments, the stress level limits the effect of the order incre-

ment on the creep characteristics.

bFig. 5 Comparison between fractional model and integer EVP model

and experimental results on Fukakusa clay

(a)

(b)

(c)

Fig. 6 Comparison between fractional model and integer EVP model

and experimental results on Sackville clay
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